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INTRODUCTION

The tracking of marine animals has grown rapidly
over the past 30 yr, with a 6-fold increase in the past
decade (Hussey et al. 2015). While marine telemetry
has been primarily used to describe movement pat-
terns such as transoceanic migrations (e.g. Block et
al. 2011), this phenomenal increase in data should
unlock a more in-depth understanding of the causes

and consequences of movement in the ocean (Hussey
et al. 2015). However, the shortcomings of many mar-
ine tracking systems limit our capacity to understand
the behavioural mechanisms behind the movement
of marine animals. In particular, most common track-
ing technologies (e.g. GPS) do not work underwater,
and marine tracking systems are often associated
with large measurement errors (e.g. Costa et al. 2010,
Lam et al. 2010). Modelling such movement data
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often requires the use of complex models that are
computationally demanding to fit to data (e.g. state-
space models, see Jonsen et al. 2005, 2013, Albertsen
et al. 2015). This computational burden limits our
capacity to fit a variety of models to the same dataset
and explore complex behavioural mechanisms. Here,
we demonstrate how Template Model Builder (TMB,
Kristensen et al. 2016), a new R package, can facili-
tate the fitting of movement models to 3 of the most
common marine telemetry data types and discuss
how this flexible framework can be used to advance
the study of animal movement.

The movement of some marine species can be
tracked with the conventional GPS system common
in terrestrial studies (e.g. Young et al. 2015, Auger-
Méthé et al. 2016b), but this system is usually inap-
propriate because most marine animals do not sur-
face long enough for the receiver to acquire the
satellite data needed to estimate a location (Tomkie -
wicz et al. 2010, Dujon et al. 2014). As a result, 3 al -
ternative systems are commonly used. Argos teleme-
try is often used to track air-breathing animals, such
as marine mammals, turtles, and penguins, as well as
shark species that surface regularly (e.g. Fitzpatrick
et al. 2012, Pütz et al. 2014, McClintock et al. 2015).
The accuracy of Argos locations partly relies on the
number of successive satellite uplinks and most com-
monly obtained locations for marine species are of
low quality (4−36 km, Vincent et al. 2002, Costa et al.
2010, Hoenner et al. 2012; but see new algorithm,
McClintock et al. 2015). Fastloc-GPS can be used on
animals that surface for only brief periods (10s of mil-
liseconds) and is orders of magnitude more accurate
than Argos (<200 m; Bryant 2007, Tomkiewicz et al.
2010, Dujon et al. 2014). However, the higher cost of
Fastloc-GPS tags can limit the number of individuals
tracked, and the low transmission rate of Fastloc-GPS
compared to Argos tags can limit the description of
fine-scale movement for high-latitude species that
cannot be recaptured (Kuhn et al. 2009, Breed et al.
2011, Lowther et al. 2015). Light-based geolocation is
popular in seabird studies because the small size of
the loggers reduces some of the effects of tags on ani-
mals (Bost et al. 2009, Thiebot & Pinaud 2010), and is
often the only telemetry option available to track fish
species (e.g. Greene et al. 2009, Lam et al. 2010,
Hammerschlag et al. 2011). However, light-based
geo locations are associated with large measurement
errors (∼200 km; Phillips et al. 2004, Pollet et al.
2014). This telemetry system estimates latitude based
on day length, and longitude based on the time dif-
ference with Greenwich Mean Time (Thiebot & Pin-
aud 2010). As a result, latitude estimates are particu-

larly inaccurate close to each equinox, when day
length is nearly equivalent everywhere on earth
(Musyl et al. 2001, Thiebot & Pinaud 2010).

Because many of these tracking systems are associ-
ated with large measurement errors, modelling the
movement of marine animals often requires the use of
state-space models, a class of hierarchical model that
accounts for measurement errors. Many movement
state-space models have been fitted using Bayesian
tools (e.g. JAGS, WinBUGS), which can be computa-
tionally demanding (Jonsen et al. 2005, 2013, Albert-
sen et al. 2015). In particular, the discrete-time model
of Jonsen et al. (2005), and its associated R package
(bsam, available at http://web.science.mq. edu. au/
~ijonsen/ code. html), has been used extensively for
Argos data (e.g. Fitzpatrick et al. 2012, Reisinger et
al. 2015). Recently, Albertsen et al. (2015) demon-
strated that TMB could estimate the true movement
path of an animal much faster than bsam. To do so,
they modified a continuous-time analogue of the
model of Jonsen et al. (2005) that was developed by
Johnson et al. (2008) and compared it to bsam. TMB,
which is similar to AD Model Builder (Fournier et al.
2012), is generally used to perform maximum likeli-
hood estimation for hierarchical models (Kristensen
et al. 2016). The computational efficiency of TMB can
be attributed to its use of reverse-mode automatic dif-
ferentiation and the Laplace approximation for high-
dimension integrals when estimating the parameters
(Albertsen et al. 2015, Kristensen et al. 2016). The
Laplace approximation accelerates the fitting process
by calculating the marginal likelihood of the model
with a deterministic equation that approximates
 integrals (i.e. a second-order Taylor expansion; see
Skaug & Fournier 2006 for more details). In addition
to computational efficiency, TMB is a rare tool that
can be used to fit an extensive variety of non-linear
and non-Gaussian hierarchical models in a fre -
quentist framework. For example, it can be used to
compute simple metrics for model comparison and it
does not require the assignment of priors.

While Albertsen et al. (2015) showed the promise
of TMB in modelling Argos data, they did not directly
compare the efficiency and accuracy of TMB and
bsam, nor did they demonstrate the wider applicabil-
ity of TMB in movement studies. Here, our first goal
was to directly compare the efficiency of TMB to
bsam by fitting the same discree-time model of
 Jonsen et al. (2005). This state-space model was
developed for Argos data and can be used to provide
more accurate estimates of the true locations of the
animal (Jonsen et al. 2005). In our first case study, we
applied this state-space model to Argos data col-
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lected from polar bear Ursus maritimus collars and
compared the locations estimated by TMB and bsam
to GPS locations collected from the same individuals.
We also used simulations to explore the effect of data
quality on the accuracy of the 2 packages.

Model comparison is a powerful tool to identify the
most adequate model for a dataset (Burnham &
Anderson 2002), but it is rarely used to choose among
state-space models. In fact, many movement studies
rely on a single state-space model (e.g. Fitzpatrick et
al. 2012, Pollet et al. 2014, Reisinger et al. 2015). Our
second goal was to demonstrate how TMB’s increase
in computational efficiency, as well as its frequentist
framework, allows researchers to develop and com-
pare a set of models. In our second case study, we
used light-based geolocation data from rhinoceros
auklets Cerorhinca monocerata and a simulation
study to demonstrate how TMB can be used to com-
pute information theoretic metrics, such as Akaike’s
information criterion (AIC, Burnham & Anderson
2002), to find the best way to handle the error
 structure.

Our third goal was to demonstrate the use of TMB
for applications beyond assessing measurement
errors and addressing questions of greater ecological
interest. We focussed on using TMB to quantify tem-
poral changes in movement behaviour. For this, we
developed a model with continuous behavioural
changes that allowed us to use the Laplace approxi-
mation and account for irregular sampling intervals.
In our third case study, we tested this model using
simulations and archival Fastloc-GPS data from grey
seals Halichoerus grypus.

MATERIALS AND METHODS

Case study 1 – Argos tracks from polar bears

We used Argos location data from 4 adult female
polar bears collared in the Beaufort Sea, Northwest
Territories, Canada, in April of 2009 to 2011 (for
 collaring details, see Auger-Méthé et al. 2016b).
These bears had Gen 4 Telonics collars, which col-
lected both Argos and conventional GPS locations.
As  standard GPS data are extremely accurate (≤30 m,
Tomkiewicz et al. 2010) compared to Argos data
(mean accuracy for lowest and highest Argos quality
classes: 0.5−36 km, Costa et al. 2010), we considered
the GPS locations as the true locations of the animals 
and compared these to the estimated locations
obtained by fitting our state-space models to the
Argos data.

The collars collected multiple Argos locations daily,
but 99% of them were collected between 17:00 and
21:00 h. They collected GPS locations every 4 h, but
we used only the daily 17:00 h location, which was
closest in time to the bulk of the Argos locations. We
chose these 4 bears for 2 reasons. First, they had long
time series (>1500 Argos locations), which are more
computationally demanding to fit and could thus be
used to adequately assess the difference in efficiency
between TMB and bsam. Second, they had no data
gaps longer than 2 wk, which ensured that the com-
parison between the location estimates and the GPS
locations was based on days where we had recent
Argos information. The Argos categories provided by
these collars were 3, 2, 1, 0, A and B, and as in other
studies (Costa et al. 2010, Albertsen et al. 2015,
Lowther et al. 2015), most locations were in the
worst quality categories (Table S1.1 in Supplement 1
at www.int-res.com/ articles/ suppl/ m565p237_supp/).
Note that we did not pre-process the data with
a speed filter and kept all Argos locations in the
analysis.

The goal was to directly compare the efficiency
and accuracy of TMB to bsam when fitting the same
model. To do so, we used the 1-behaviour first-differ-
ence correlated random walk (DCRW) available in
bsam (v 0.43.1), which is based on the model de -
scribed by Jonsen et al. (2005). Unless otherwise
indicated, we used the default settings. Our version
of the DCRW in TMB was identical to the version in
bsam, with the exception that it did not use priors as,
unlike bsam, we used a frequentist approach (see
Supplement 1 for a description of the priors used in
bsam). The model was written as:

Initialisation eqn x1 = x0 + �1                                  (1)
Process eqn xt = xt–1 + γ T(θ)(xt–1 – xt–2) + �t  (2)
Measurement eqn yt,i = (1 – ji)xt–1 + ji xt + ηt             (3)

where

                                           (4)

                                           (5)

                                           (6)

and

σ�,c > 0,   –1 < ρ < 1,   0 < γ < 1,   –π < 0 < π,   ψ > 0        (7)

In these equations, yt,i was a 2-dimensional vec -
tor containing an observed location: .
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The 2-dimensional vector, xt, represented the true
unobserved locations at time t: . ji
 represented the proportion of the regular time inter-
val between t − 1 and t at which the observation yt,i

was made. The model used a t-distribution for the
measurement errors and most measurement parame-
ters (φc,q and dfc,q) associated with the coordinates 
(c = latitude or longitude) and Argos quality classes 
(q = 3, 2, 1, 0, A or B) were assumed to be known. Jon-
sen et al. (2005) estimated these parameters based on
the observed error distribution from Vincent et al.
(2002). We had 6 remaining parameters to estimate Θ
= (θ, γ, ρ, σ�,lon, σ�,lat, ψ), which included a correction
factor for the fixed measurement parameters, ψ. The
other parameters to estimate were associated with
the process equation. The mean relative turning
angle (θ) represented the level of directional persist-
ence, with θ = 0 representing an animal that gener-
ally continued in the same direction. γ represented
the autocorrelation in terms of both movement speed
and direction, with γ = 0 representing an animal
using a simple random walk. The 3 parameters asso-
ciated with the process stochasticity (ρ, σ�,lon, σ�,lat)
also controlled the level with which the displacement
at time t was close to the previous displacement in
terms of speed and directionality. The process vari-
ance along each coordinate axis was represented
by σ2

�,lon and σ2
�,lat, while ρ represented the correlation

coefficient between the coordinates.
To demonstrate the difference in efficiency between

TMB and bsam, we estimated the time it took to esti-
mate the parameters of the models. For the TMB tim-
ings, we included the time it took to compile the C++
file with compile(), load the compile function with
dyn.load(dynlib()), construct the objective function
with MakeADFun() and minimize the negative log
likelihood of the objective function using nlminb().
Minimizing the negative log likelihood allowed us to
find the maximum likelihood estimate (MLE) for the
model parameters. For the bsam timings, we in -
cluded the time it took to fit the model using the func-
tion fitSSM(). We ran 2 chains for 55 000 steps, for
which the first 35 000 allowed for adaptive tuning.
We only kept every 50th sample of the last 20 000
steps. We chose a number of steps that would result
in convergence but would be short enough to limit
excessive computing time (see Supplement 1). Our
chain length is within the range of those from similar
movement analyses (e.g. 40 000−90 000; Kennedy et
al. 2014, Silva et al. 2014, Lowther et al. 2015).

Similar to Patterson et al. (2010), we evaluated the
performance of the method in terms of estimating the
value of the states, xt, by calculating the root mean

square error (RMSE) for each coordinate, c (i.e. lati-
tude and longitude):

                                           (8)

where x t,c is the estimated true coordinate value of
the bear at time t, and xt,c is the associated GPS co -
ordinate value for that bear. The RMSEc returned a
decimal degree value. We also calculated the mean
great circle distance between the estimated true
locations and GPS locations.

To investigate whether the quality of the data
affected the relative accuracy of TMB and bsam, we
performed a simulation study. For the bears, the
number of Argos locations per day varied from 3.7 to
5.2 (Table S1.1). To explore the effect of data fre-
quency on the estimation process, we created 3 sim-
ulation scenarios that varied in the number of daily
Argos locations: 0.5, 1 and 5 locations per day. For
each scenario, we simulated 365 d movement tracks
(n = 100) using the model presented in Eqs. (1)−(7)
and the parameter values estimated with TMB for
polar bear PB1 (Table S1.4). To select the Argos class
category of an observation, we sampled based on the
overall occurrence of class categories in the polar
bear dataset (Table S1.1). We applied the model to
the simulated data using both TMB and bsam as
described above, and used the same approach to cal-
culate efficiency and accuracy.

Case study 2 – light geolocation tracks from
 rhinoceros auklets

We used the daily light-based geolocations obtained
from loggers deployed on 4 female rhinoceros auk-
lets breeding on Lucy Island, British Columbia, Can-
ada. The loggers (LAT2900, Lotek Wireless) were
attached to the tarsus and weighed ∼0.4% of the auk-
lets’ body mass, well below the recommended 3%
(Phillips et al. 2003). Birds were captured from their
nest chamber during the chick-provisioning period
(July 2013), and the loggers were recovered at the
time of arrival and egg-laying (May 2014). The pro-
cessing system onboard the loggers used the tem-
plate-fit algorithm to return location estimates. This
algorithm matches the shape of each observed light
curve with a theoretical curve parametrized with
 latitude, longitude and cloudiness factors (Ekstrom
2004), and provides an error estimate for each loca-
tion coordinate (Ekstrom 2007).

Because light-based geolocation is associated with
large measurement errors and frequent aberrant lo -
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cations, a variety of filters are used to remove unreal-
istic locations (e.g. Jessopp et al. 2013, Thiers et al.
2014). To model measurement error rather than dis-
card large amounts of data, we developed 2 versions
of a state-space model similar to that of Winship et al.
(2012). Our model versions were designed to handle
measurement errors typical of light-based geoloca-
tion, through techniques such as modelling the error
of each coordinate (latitude, longitude) separately.
However, similarly to Winship et al. (2012), we
needed to remove some of the most aberrant geo -
locations (see Supplement 2 at www.int-res.com/
articles/ suppl/ m565p237_supp/ for details). Our filter
removed on average 3% of the longitudes and 16%
of the latitudes, which is lower than rates re ported by
others (23−35% of both coordinates removed; Taka-
hashi et al. 2008, Gaston et al. 2011, Thiers et al.
2014).

Similar to our polar bear analysis, we used a 1-
behaviour DCRW based on the model of Jonsen et al.
(2005). Because the auklets were captured to place
and retrieve the loggers, we know the exact locations
of the individuals at the beginning and end of the
time series . We used this
 in formation when initialising the model. Because we
had locations at regular time intervals (daily), and we
assumed that the animal continued in the same
direction (equivalent of fixing θ = 0) and that there
was no correlation in process stochasticity (equiva-
lent of fixing ρ = 0; see Breed et al. 2012), we simpli-
fied the model of Eqs. (1)−(7) to:

Initialisation eqn x1 = x0 + �1                                (9)
Process eqn xt = xt–1 + γ (xt–1 – xt–2) + �t     (10)
Measurement eqn yt = xt + ηt                                (11)

where

                                         (12)

                                         (13)

and

σ�,lon > 0,   σ�,lat > 0,   0 < γ < 1                   (14)

As a result, the process equation had only 3 param-
eters to estimate: γ, σ�,lon and σ�,lat.

To explore how to best model the measurement
errors of light-based geolocation, we made 2 versions
of this model. Each version differed in its description
of ηt,c, where c represents the coordinate (i.e. latitude
and longitude). While both versions used the error
information provided by the tag for the coordinates of

each location, one version (MN) used the normal dis-
tribution (as in Winship et al. 2012) and the other (MT)
used the t-distribution, because its heavy tails allow
for large measurement errors. Table 1 shows a formal
description of the measurement error component of
each version.

To compare the 2 model versions, we used a com-
mon information-theoretic metric: AIC. Because TMB
can be used to estimate the negative log likelihood
value at the MLE, we could calculate the AIC value
(AIC = −2 log(L) + 2k, where L is the likelihood value
at the MLE and k is the number of parameters esti-
mated, see Burnham & Anderson 2002). We chose
AIC, but other metrics such as the Bayesian informa-
tion criterion (BIC) could also be calculated (Burn-
ham & Anderson 2002).

To verify that we could adequately select the best
version with AIC, we simulated each model version
100 times. We created movement paths with 300 time
steps, which is close to the number of locations gath-
ered for the auklets (297−299). For the model param-
eters, we used the values estimated by the best ver-
sion for auklet 1 (Table S2.1 in Supplement 2). To
simulate the error values returned by the tags, we
sampled directly from the tag error values from auk-
let 1. To reproduce the filtering, we removed 3% of
the longitudes and 16% of the latitudes. We fitted the
2 versions to each simulation with the goal to verify
that the lowest AIC value would be associated with
the underlying simulated model version.

Case study 3 – Fastloc-GPS tracks from grey seals

We used the Fastloc-GPS movement data of 4 preg-
nant female grey seals captured on Sable Island,
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Model Measurement error distribution k

MN ηt,c ~ N (0, (αc φt,c)2) 5

MT ηt,c ~ tdist (αc φt,c,dfc) 7

Table 1. Error structures of the 2 versions of the model for
the rhinoceros auklet Cerorhinca monocerata data. Both
versions used the standard deviation (SD) provided by the
tag (φt,c) at each time step (t ) and for each coordinate (c), and
estimated correction factors (αc). Note that α is the equiva-
lent to  1––122ψ in Eq. (6). One version used the normal distribution
(MN), while the other used a t-distribution (MT), which
requires estimating the degrees of freedom (dfc), which are
set to be >3 (see Albertsen et al. 2015). The t-distribution
becomes a normal distribution when dfc → ∞, in which case
αc φt,c would be equivalent across distributions. k represents
the number of parameters estimated for the complete model
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Nova Scotia, Canada, in June 2013. The seals were
equipped with MK10-AF tags (Wildlife Computers)
that were programmed to archive location informa-
tion every 15 min. The average duration of a grey
seal dive is approximately 5 min (Beck et al. 2003).
Thus, we expected to obtain 1 location every 2 to 3
surfacings. The data were downloaded when the
seals were recaptured in December 2013 or January
2014. To preserve battery life, the unit switched to a
less frequent transmission schedule of every 8 d
when the unit was dry for >12 h. As preprocessing,
we removed any location with tag residual values
>35 or based on less than 5 satellites (as suggested
by Dujon et al. 2014). This quality filtering removed a
total of 6 to 23% of the locations of each time series.
All 4 time series had >7000 locations and the time
intervals between consecutive locations were often
close to 15 min. However, the 4 time series had
instances of locations separated by more than 40 h.
The number of observed locations was 43 to 64% of
that expected by the 15 min programming schedule.
See Supplement 3 at www.int-res.com/ articles/ suppl/
m565p237_supp/ for more details on the data of each
seal.

Our third goal was to use TMB to quantify temporal
changes in movement behaviour. A popular method
to quantify animal behaviour with movement data is
using a switching DCRW (Jonsen et al. 2005, Breed et
al. 2009). This model is based on the DCRW model
described in the previous case studies, but allows for
2 sets of mean turning angle and behavioural persist-
ence parameters, with each set associated with a dis-
tinct behaviour. However, the Laplace approxima-
tion, which is one of the main tools TMB uses to
accelerate the estimation process (Albertsen et al.
2015, Kristensen et al. 2016), is only appropriate for
differentiable likelihood functions and cannot be
used on discrete states (Kass et al. 1990, Fournier et
al. 2012, Bolker et al. 2013). This complicates the
implementation of the switching DCRW in TMB. To
be able to use the Laplace approximation, we con-
structed a model similar to that of Breed et al. (2012),
which was also based on the DCRW but considers
behavioural states as continuously changing in inten-
sity rather than as a limited set of discrete states
(see Whoriskey et al. 2017 for another solution). As
per Lidgard et al. (2014), we assumed that Fastloc-
GPS locations were sufficiently accurate to ignore
measurement error. The resulting model was written
as:

Behaviour eqn γi = γi–1 + νi                                    (15)

Movement eqn xi =  xi –1 + γi
Δti––––Δti –1

(xi –1– xi –2) + �i    (16)

where 
νi ~ N (0, Δt2

i σ 2
ν) (17)

(18)

and
σlon > 0,   σlat > 0                             (19)

Note that the movement equation (Eq. 16) was sim-
ilar to the process equation in the 2 previous case
studies (Eqs. 2 & 10). However, there are 3 important
differences. First, the true locations, xi, were directly
observed. Second, while these observations were
collected at semi-regular intervals (i.e. the tags were
programmed to take a location every 15 min), some-
times consecutive locations were separated by multi-
ple hours or, in extreme cases, by a few days. As
such, the locations were indexed by i, xi, and we used
the time difference between subsequent locations,
Δti = ti − ti–1, to account for the effect of the time dis-
crepancies. In particular, we expected the animal to
move farther during longer time periods, thus we
multiplied the distance moved in each direction at
the previous step (xi–1 − xi–2) by the time ratio 

Δti––––Δti –1
.

Because we expected locations that are taken long
time periods apart to be less informed by the previ-
ous movement, we increased the variance of the
movement equation with Δti. Third, the behavioural
persistence parameter, γi , was time-varying and
 represented the continuous behavioural state. As in
Eq. (10), there was no turning angle parameter. The
tendency to continue in the same direction and move
at the same speed as the previous step was controlled
simultaneously with γi. The continuous change in this
behavioural state was modelled by a simple random
walk (Eq. 15), which assumed temporal correlation.
Note that this behaviour equation also accounted for
the time discrepancies by increasing the variance
with Δti. The value of γi can be used as a continuous
representation of the changes in behaviour or can
be further categorized using threshold values for γi.
Because animal movement paths are often dis-
cretized into 2 categories (e.g. Jonsen et al. 2005,
Breed et al. 2009), we used a threshold value of γi <
0.7 to identify areas of tortuous movement. The
choice of the threshold value was arbitrary, but we
chose 0.7 because both with the simulations and seal
data, γi ≥ 0.7 most adequately captured directed
movement and this value fell within the values asso-
ciated with directed movement (52−98, see Jonsen et
al. 2005, Breed et al. 2009).

To verify that we could adequately estimate the
 behavioural states of this model, we simulated 100
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movement paths similar to the seal movement
paths. As in Breed et al. (2012), we simulated
changes in γi using a sine-wave, rather than as in
Eq. (15). We used Eq. (16) to simulate the true loca-
tions of the seal for 10 000 time steps. As an estimate
of the movement variability, we used the observed
standard deviation in the movement of the seals:

. To ensure that the small
error associated with Fastloc-GPS would not affect
our analysis, we added measurement error in the
simulation, using: yi = xi + ηi, ηi ~ N (0, Σ η). We used
the standard deviation calculated from the data set
of differences between Fastloc-GPS locations and
known locations found by Dujon et al. (2014):

. Finally, to account for the
effect of preprocessing and missing locations asso -
ciated with the behaviour of the seal, we removed
45% of the simulated observations, yi, which
resulted in a time-series of length 6500. We then
applied the model described in Eqs. (15)–(19),
where we as sumed that the simulated observed
locations, yi, were the directly observed true loca-
tions in the model: xi.

To assess how well we estimated the continuous
behavioural states, γi, we identified whether the sim-
ulated values fell within the estimated 95% confi-
dence interval (CI). For this, we used the estimated
standard errors provided by TMB and multiplied
them by the 2.5 and 97.5th percentiles of the normal
distribution (as in Auger-Méthé et al. 2016a).

All code is available in Supplement 4 at www.int-
res.com/articles/suppl/m565p237_supp/.

RESULTS

Case study 1 – Argos tracks from polar bears

Our simulations indicated that TMB was at least 1
order of magnitude faster than bsam (Fig. 1A). The
mean computational time for TMB stayed below
2 min, even for the highest data frequency (5 loca-
tions per day, see Fig. 1 and Table S1.6 in Supple-
ment 1). In contrast, the mean computational time of
bsam increased from 15 to 35 min with increasing
data  frequency. While TMB was faster, the accuracy
of the 2 methods was similar (Fig. 1B). TMB was
slightly less accurate when estimating the states and
parameters ρ and ψ, but was generally more accurate
when estimating the parameters θ, γ, σ�,lon and σ�,lat

(Tables S1.6 & S1.7). The accuracy of both methods
increased with increasing data frequency (Fig. 1B
and Tables S1.6 & S1.7).

For our polar bear data, TMB was more than 30
times faster than bsam (Table S1.3). While the meth-
ods differed in terms of computational time, most
parameter estimates were similar (Table S1.4). In
addition, the estimated true locations were almost
identical (Fig. 2, Fig. S1.2), but TMB was slightly less
accurate than bsam (60−470 m, Table S1.3).
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Fig. 1. Comparison of the efficiency and accuracy of
 Template Model Builder (TMB) and bsam for different data
frequency scenarios. (A) Computational time of TMB (in red)
and bsam (in blue). Note the break in the y-axis. (B) Accu-
racy in terms of great circle distance between the estimated 

and simulated locations of the animal

Fig. 2. Comparison of the estimated paths by Template
Model Builder (TMB) and bsam for polar bear Ursus mar-
itimus PB1. The grey points and lines represent the Argos
movement path. The colour points and lines represent the
estimated locations (red: TMB, blue: bsam). The black cir-
cles represent the GPS locations. (A, B) Movement paths,
(C−F) time series of each coordinate. See Fig. S1.2 in Sup-

plement 1 for the other bears
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TMB returned a false convergence message for 1 of
the 4 bears (Table S1.3). The fact that the accuracy of
TMB is close to that of bsam for this bear, and that the
accuracy results from this bear fall in the range of those
from the 3 other individuals (Table S1.3), indicates that
the false convergence did not affect the results signifi-
cantly. However, the false convergence message re-
turned (Table S1.3) often indicates that there is a dis-
continuity in the function, or its gradient, near the last
set of parameter values evaluated, suggesting that
there might be a problem with the model.

Case study 2 – light geolocation tracks from
 rhinoceros auklets

Our simulations indicated that AIC selected the
correct model version in most cases (≥97/100 for both
MN and MT, see Table S2.2). However, when the
 version with the normal distribution was simulated, a
t-distribution version was sometimes selected (3/100).
In these cases, the estimates for the degrees of free-
dom of the t-distribution (dfc) were large (>1.1 × 108).
The t-distribution becomes a normal distribution when
dfc → ∞ and thus MT becomes almost equivalent to
MN when dfc parameters are large.

For the auklet data, the best version (MT) used the t-
distribution (Table 2). This indicates that the tag error
information was not always reliable, something that is
also evident from the fact that MN produced such a
poor movement track for auklet 4 (Fig. S2.2). The
movement paths produced by the 2 versions differed
(Fig. 3 and Fig. S2.2), indicating that choices made
when modelling measurement errors will affect eco-
logical inferences. The movement paths produced by
the best version mostly avoided land, even though we
did not incorporate land as a covariate in the model
(Fig. 3 and Fig. S2.2). The parameter estimates associ-
ated with MT indicated that the heavy tails of the t-
 distribution, which allowed for large measurement
 errors, were useful (dfc close to 3; Table S2.1).

Case study 3 – FastLoc-GPS tracks from grey seals

Our simulations demonstrated that the model was
capable of recovering the behavioural states (Fig. 4A)
and that the model could be used to adequately iden-
tify the areas associated with different behaviours
(Fig. 4B,C). On average, 93.2% (range: 79.9−100.0%)
of the states of a simulation fell within the estimated
CI. The grey seal movement paths showed that seals
varied their movement behaviour during the course
of the time series and that, when we used a threshold
of γt < 0.7, we could identify the less correlated move-
ment behaviour often associated with area-restricted
search (Fig. 5).

DISCUSSION

Our results demonstrated that TMB is a useful tool
to model marine movement data. We showed that
TMB could increase the efficiency of fitting state-
space models to Argos data without substantially
decreasing the accuracy of the estimates. We demon-
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Model Δ AIC
Auklet 1 Auklet 2 Auklet 3 Auklet 4

MN 114.7 129.0 129.0 209.0
MT 0.0 0.0 0.0 0.0

Table 2. Comparison of the 2 versions of the model (MN, MT)
used to represent the light-based geolocation data of 4 rhi-
noceros auklets Cerorhinca monocerata. The versions differ
in their measurement error structure (see Table 1). The AIC 

results are presented for each individual
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Fig. 3. Comparison of the fit of the 2 model versions to one
rhinoceros auklet Cerorhinca monocerata movement track.
The grey tracks represent the observed light-based geo -
location data, and the colour tracks show the estimated
movement paths. (A) Model with normal measurement
errors (MN); (B) model with t-distributed measurement
errors (MT). The intensity of the colour represents the confi-
dence in the location estimate, and any location with
(SE (xlat,t) + SE (xlon,t)) ≥ 5 is not displayed. For the other 

rhinoceros auklets, see Fig. S2.2 in Supplement 2
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strated that TMB’s efficiency and likelihood-based
framework promotes model comparison, an approach
we used to identify how to best model the measure-
ment error associated with light-based geolocators.
To maximize TMB’s efficiency, we used the Laplace
approximation to model behavioural changes. The
Laplace approximation restricts the use of discrete
states (Fournier et al. 2012, Bolker et al. 2013,
 Kristensen et al. 2016). However, we showed that
changes in behaviour can be modelled using a con-
tinuous behavioural state that can be discretized
afterward (Fig. 5). This approach also allowed us to
directly incorporate the effects of irregularly sampled
locations on behavioural transitions and observed
movement tracks. Overall, our results showed that
TMB is a fast, accurate, and flexible framework to
model marine data and that our new models can
extract useful information from light-based geoloca-
tion and FastLoc-GPS data.

Efficiency and accuracy comparison

Both our simulation and polar bear data analyses
showed that TMB was at least an order of magnitude
faster than bsam. Because we timed the compile and
load functions of TMB when applying the model to
each individual movement path, our analysis slightly
underestimated TMB’s computational efficiency.
These actions required 4 to 14% of the time needed to
fit the model to a polar bear movement path, but could
have been executed a single time before repeatedly
fitting the model to data. Albertsen et al. (2015) also
found that TMB was much faster than bsam. Their
best TMB model was 58 to 152 times faster than bsam,
a gain that can be mostly attributed to TMB but may
also be influenced by the continuous formulation of
their TMB model. Regardless, as it can take days to fit
complex models to telemetry data with the common
Bayesian tools used in movement ecology (McClintock
et al. 2015), such increases in efficiency will change
how movement analyses can be approached.

The parameter and state estimates of TMB and
bsam were similar, and both packages provided
accurate estimates of the true locations of the ani-
mals. The accuracy of both packages increased sig-
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Fig. 4. Simulated and estimated changes in behaviour of
modelled grey seal Halichoerus grypus movement. (A) Tem-
poral changes in simulated γi values in blue, as well as the
estimated γi values in red and associated 95% CI. The colour
intensity represents the value of the behavioural persistence
parameter, γi. Lighter colours represent high γi values and
thus movement with directional and speed persistence,
often associated with travelling behaviour. Darker colours
represent low γi values and thus movement with less direc-
tional and speed persistence, sometimes associated with for-
aging behaviour. (B) Simulated movement path, which can
be used to compare to (C) the estimated movement path in
red (light grey shows the locations that were removed 

before fitting the model)

Fig. 5. Estimated changes in behaviour during the move-
ment paths of 4 grey seals Halichoerus grypus. (A−D) Seals
1, 2, 3 and 4, respectively. Large dark points represent γt <<
0.7, and thus area-restricted movement. Smaller light red 

points represent γt ≥ 0.7, and thus directed movement
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nificantly with increasing data frequency. While TMB
was slightly better at estimating most parameter
 values, bsam was marginally better at estimating the
true locations and 2 of the parameters. This dis -
crepancy could be due to bsam’s use of priors (see
Supplement 1) and TMB’s use of the Laplace approx-
imation. In addition, the false convergence message
for one of the bears and the jagged likelihood profiles
(Supplement 1) indicated that TMB had difficulties
estimating the parameters. We recently highlighted
that ecological state-space models may have estima-
tion problems that are easier to diagnose with non-
Bayesian tools such as TMB (Auger-Méthé et al.
2016a). For the polar bear data, the estimation should
have been helped by the temporally clustered Argos
locations, which almost served as replicates for the
same true location. However, 3 aspects of the DCRW
formulation may have triggered estimation problems
that potentially affect both packages, but may be
more easily diagnosed with TMB.

First, the degrees of freedom from the t-distribution
of some Argos categories were fixed to 2, which is
lower than the minimum value used by others to
ensure that the t-distribution has adequate statistical
properties (e.g. defined skewness, see Albertsen et
al. 2015). Second, the measurement error associated
with each geographic coordinate was modelled inde-
pendently. However, the sizes of Argos errors are
often correlated in the latitude and longitude direc-
tions (Costa et al. 2010). Third, the fixed parameters
for the measurement error may not be adequate for
this data set, and the single correction factor pro-
vided by the model (ψ in Eq. 6) may not be sufficient
to account for data-specific differences. Estimated
values for these parameters differ between studies,
and differences are inconsistent across Argos quality
categories (Jonsen et al. 2005, Hoenner et al. 2012,
Lowther et al. 2015). In addition, the bears studied
were more than 20° north of the seals used to esti-
mate these parameters (Vincent et al. 2002, Jonsen et
al. 2005), and the modelled error structure does not
account for the decreasing distance covered by a
degree of longitude with increasing latitude (Lowther
et al. 2015). The inability of a single correction factor
to account for data-driven discrepancies across qual-
ity categories and geographic coordinates may also
help explain why our estimates of the true locations
were slightly less accurate than those of others that
compared bsam estimates to GPS locations (Hoenner
et al. 2012, Lowther et al. 2015). Indeed, Lowther et
al. (2015) replaced the fixed measurement parame-
ters from bsam with values directly estimated from
the animals they studied and applied longitudinal

corrections, which may have contributed to their
 better estimates of the true locations of the animals.

To directly compare TMB to bsam, we limited the
scope of our analysis and simply reproduced the
model from Jonsen et al. (2005). However, TMB’s
flexibility allows researchers to model the measure-
ment error more adequately. For example, we could
easily use a bivariate t-distribution that represents
the directional correlation in measurement error
(see McClintock et al. 2015), or estimate the meas-
urement parameters rather than use fixed values
(see Albertsen et al. 2015).

Facilitating model comparison

One of the main advantages of TMB’s increase in
computational efficiency is that it allows researchers
to develop and fit multiple models to the same data
set. Through a simulation study, we showed that we
could use AIC to select the model that best repre-
sents the data. Using this approach, we showed that
the measurement error of light-based geolocation
was best modelled with t-distributions. Many raw
observations were on land, including many locations
far inland. However, rhinoceros auklets spend most
of their winter migration at sea (Gaston & Dechesne
1996). The best model estimated few locations on
land, which further suggests it adequately repre-
sented the movement of these animals. Because TMB
is also flexible, many alternate models could be ex -
plored. As the accuracy of latitude estimates of light-
based geolocations is closely related to daylength,
some have modelled measurement error as a func-
tion of time since the equinox (e.g. Nielsen et al.
2006). Land masks have been incorporated in state-
space models to further improve location estimates of
seabirds (e.g. Thiebot & Pinaud 2010). Many light-
based geolocators also collect sea surface tempera-
ture data (e.g. Takahashi et al. 2015), and many
state-space models incorporate such information
(e.g. Nielsen et al. 2006, Lam et al. 2010). Implement-
ing such alternative models in TMB could streamline
model assessment and comparison, which will enable
us to understand the strengths and weaknesses of
different models and help us improve them.

Modelling discrete behaviours as continuous states

The Laplace approximation, one of the tools that
maximizes the efficiency of TMB, cannot be used on
discrete states (Bolker et al. 2013). However, this con-

246



Auger-Méthé et al.: Spatiotemporal models using TMB 247

straint can be overcome by using a continuous
behavioural state, which in turn also allowed us to
incorporate the effects of irregularly sampled obser-
vations into our movement model. Using simulations,
we showed that the continuous behaviour model
could adequately estimate behavioural states. Using
data from a grey seal, we demonstrated that this
approach can identify areas of tortuous movement.
Some of these areas overlapped with those associ-
ated with high probability of area-restricted search
behaviour according to hidden Markov models and
seal−fish encounters (Lidgard et al. 2014). While a
more in-depth comparison of the 2 methods is
needed, the geographical overlap indicates that the
continuous behaviour model may be adequate at
identifying area-restricted search.

We used a model with continuous behaviour to
maximize the use of TMB’s main tools, but it is possi-
ble to implement discrete state models in TMB by
using algorithms, such as the Viterbi algorithm (see
Whoriskey et al. 2017). Such methods are promising,
but by-passing the Laplace approximation is likely to
reduce computational efficiency. TMB could be used
to further refine and explore a wide range of behav-
ioural models. Other aspects such as circadian cycles,
environmental covariates and diving information
could be incorporated in the modelling framework.

CONCLUSION

We showed that TMB’s efficiency, accuracy and
flexibility make it a promising tool to model marine
movement data. In particular, we demonstrated how
it can be used to model the measurement errors asso-
ciated with a range of telemetry data. The models
presented are only a small sample of what could be
implemented with TMB. TMB could be used to model
a wide variety of error structures and animal be -
haviours, and we have highlighted a few potential
avenues of future development. In particular, models
with environmental and biological covariates should
be easy to implement in TMB and model comparison
could be used to identify the most important covari-
ates. Such approaches would help deepen our under-
standing of the underlying mechanisms behind the
diverse movement patterns exhibited by marine
 animals.

While terrestrial telemetry is not as heavily affected
by large inaccuracies in geolocations as marine
telemetry, TMB could also become a useful frame-
work to model the movement of land-dwelling ani-
mals. While conventional GPS systems can be used

to study large terrestrial animals, small species are
often studied with telemetry systems such as light-
based geolocation (e.g. song birds, Bridge et al.
2013). In addition, the recent technological advance-
ments in telemetry allow ecologists to collect high-
resolution movement paths of terrestrial animals with
a panoply of associated environmental and physio-
logical data (Kays et al. 2015). While these increas-
ingly large datasets will allow us to answer a breadth
of new questions, their growing volume has pushed
movement ecology into the realm of big data (Kays et
al. 2015). TMB, which is much faster than many of
the Bayesian tools used to fit complex hierarchical
models to data, should provide a solution to some of
these challenges and be useful for studying the
movement of both marine and terrestrial animals.
Thus, TMB has the potential to become an important
framework in movement ecology, as well as in the
many other fields that rely on complex hierarchical
models.
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