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INTRODUCTION

Phytoplankton biomass dynamics in estuarine en -
vironments reflect the highly dynamic and complex
nature of these ecosystems. Inter- and intra-annual
trends in estuarine phytoplankton biomass typically
respond more strongly to local influences than to
regional forcing (Cloern & Jassby 2008), particularly

in low-latitude regions, where seasonal climatic vari-
ability is not strong enough to override other local
influences (Cloern & Jassby 2010). Contributing local
effects include nutrient delivery from oceanic up -
welling and terrestrial freshwater flows (Cloern
1996), connectivity to developed coastal basins, and,
in shallow systems, wind-induced mixing and ben-
thic-pelagic coupling (Cloern 1982, Thompson et al.
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2008). In contrast, phytoplankton biomass in high-
latitude lakes and the open ocean is often dictated by
climatic periodicity (Cloern & Jassby 2008, Winder &
Cloern 2010).

The balance between local effects and regional
forcing is captured in chlorophyll a (chl a) data. While
annual variability in chl a reflects the level of distur-
bance of a system (high inter-annual chl a variability
corresponds to high disturbance), seasonal chl a vari-
ability reflects the annual climate cycle in a system
(low seasonal variability corresponds to weak intra-
annual climatic variability). Cloern & Jassby (2010)
evaluated temporal patterns of phytoplankton bio-
mass in 51 estuarine and nearshore ecosystems by
comparing annual and seasonal chl a variability and
found that, of all the considered systems, Florida Bay
had the highest annual to seasonal chl a variability
ratio. This characterization indicates that Florida Bay
is a disturbed system lacking a pronounced intra-
annual climatic signal. Though this diagnosis was
formulated solely from evaluating the inter- and
intra-annual variability of monitoring data, reviews
of Florida Bay’s ecological health point to a similar
conclusion (Boesch et al. 1993, Rudnick et al. 2005,
Glibert et al. 2009). Florida Bay has suffered from
sporadic instances of acute ecological disturbance in
the form of phytoplankton blooms and other modes
of degradation (Butler et al. 1995, Fourqurean & Rob-
blee 1999, Hall et al. 1999, Glibert et al. 2009), and its
low-latitude location in the subtropics corresponds to
relatively weak seasonal climatic forcing. The combi-
nation of (1) phytoplankton growth that remains min-
imally controlled by climatic variability and (2) the
periodic presence of ecologically disruptive phyto-
plankton blooms makes Florida Bay an exceptionally
dynamic environment and ideal study site for in -
vestigations on estuarine phytoplankton biomass
dynamics.

Concern over Florida Bay’s ecological resiliency to
mounting anthropogenic influences has motivated
field studies, statistical analyses, and mechanistic
modeling of diverse aspects of phytoplankton eco -
logy in the bay. Field observations show that, since
the 1980s, recurrent blooms of unicellular picoplank-
tonic cyanobacteria (e.g. Synechococcus spp.; Phlips
et al. 1999) have driven a variety of disruptive ripple
effects, such as reductions in seagrass communities,
widespread sponge mortality, and related losses of
juvenile spiny lobster habitat (Butler et al. 1995).
Model analyses have furthered these findings by
considering the interplay between changing sea-
grass and phytoplankton distributions (Madden &
McDonald 2009), bloom dynamics along the northern

shore (Melesse et al. 2008), and the influence of cli-
matic patterns on phytoplankton biomass (Briceño &
Boyer 2010). Additional statistical investigations of
the relationships between phytoplankton and water
quality have primarily involved principal component
(Boyer et al. 1997, 1999) or empirical orthogonal
function analyses (Burd & Jackson 2002).

These prior studies have enhanced the qualitative
understanding of phytoplankton ecology in Florida
Bay and beyond, but there exists a gap in the quan-
tification of the changes in relative importance of
drivers between bloom and non-bloom states. Out-
standing questions include: (1) are important water
quality drivers of blooms equally important under
non-bloom conditions; and (2) does the extent to
which water quality drivers vary in importance
between bloom and non-bloom conditions change
 spatially? These questions broadly apply to other
estuarine systems due to the aforementioned chal-
lenges associated with analyzing water quality data
from low-latitude environments characterized by
irregular phytoplankton biomass trends (Cloern &
Jassby 2010).

The goal of the present study was to comparatively
investigate bloom and non-bloom states to infer
changes between these 2 conditions introduced by
water quality drivers. The specific objectives were to:
(1) objectively identify a threshold that separates
bloom from non-bloom conditions, (2) reveal spatio -
temporal differences in phytoplankton−environmen-
tal relationships between non-bloom and bloom con-
ditions, using Florida Bay as a case study, and (3)
quantitatively identify linkages between water qual-
ity descriptors of blooms in subtropical lagoon sys-
tems. To address these objectives, we developed and
applied a novel modification of quantile regression
(Koenker & Bassett 1978, Cade & Noon 2003) to
understand spatial and temporal long-term phyto-
plankton biomass trends across Florida Bay. Quantile
regression has recently been applied to identify lim-
iting factors of phytoplankton blooms in European
lakes (Carvalho et al. 2013) and Lake Champlain,
USA (Xu et al. 2015). These applications analyzed
narrow quantiles across the distribution of observed
chl a in their respective systems. In contrast, the mod-
ification proposed herein identifies a bloom-relevant
quantile threshold to separate chl a observations into
bloom and non-bloom classes. Furthermore, this
modification allows for the study of spatiotemporal
differences in drivers underlying bloom versus non-
bloom conditions. This analytical framework ex -
pands the applicability of quantile regression for
coastal water quality management purposes, and can
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be widely applied to other systems afflicted by algal
blooms. In particular, researchers and environmental
data scientists will find this framework useful for
objectively and quantitatively evaluating seemingly
chaotic phytoplankton biomass data lacking a tem-
perature-driven annual signal, which are typical of
low-latitude estuaries.

MATERIALS AND METHODS

Site description

Florida Bay is a 2200 km2 (Rudnick et al. 1999)
inner shelf lagoon located at the intersection of the
Everglades, Florida Keys, Gulf of Mexico, and
Atlantic Ocean at the tip of the Florida peninsula
(Fig. 1A). A mixture of mud banks, seagrass beds,
and hard-bottom and soft-bottom habitat compose
the benthos. The network of mud banks and man-
grove islands throughout the bay (Fig. 1B) delineates
approximately 44 basins that have distinct water cir-
culation patterns (Nuttle et al. 2000). Circulation pat-
terns in some of the individual basins are partially
defined by differences in freshwater inputs from
canals, creeks, and sloughs flowing from the Ever-
glades and South Florida (Nuttle et al. 2000, Kelble et
al. 2007). The bay receives much of its terrestrial
freshwater inflow from Taylor Slough and the C-111
Canal (Rudnick et al. 1999), and saline fluxes from
the Gulf of Mexico and Atlantic Ocean (Lee et al.
2006). However, human development and water
management practices in Central and South Florida
have starved the Everglades of freshwater over the
past century, and, as a result, reduced Florida Bay’s
freshwater inputs to only a fraction of the historical
flow (McIvor et al. 1994).

Reductions in historical freshwater inputs to the
bay have resulted in increased salinity, particularly
in basins with limited tidal interactions with the sur-
rounding coastal marine environment. The impact of
reduced freshwater influence is further exacerbated
by the shallow nature of the estuary (Nuttle et al.
2000), with the average depth across the bay being
approximately 1.4 m (Hansen & DeWitt 2000). Being
downstream from the Everglades, Florida Bay is im -
pacted by Comprehensive Everglades Restoration
Plan (CERP 2005) activities (FBFKFS 2002), which
include projects aimed at re-introducing historical
freshwater flows to the Everglades and Florida Bay
as well as reducing bloom occurrence.

Analyses of spatial patterns of key environmental
factors in Florida Bay have divided the bay into

regions of observed similarity through different
 characteristics, such as phytoplankton communities
(Phlips et al. 1995), seagrass distributions (Zieman et
al. 1989), and water quality trends (Boyer et al. 1997).
Regions based on those described by Phlips et al.
(1995) were employed for this study to segregate the
bay into 5 regions, i.e. northeast, east, north central,
south central, and west (Fig. 1A). The West Bay expe-
riences nitrogen limitation, whereas the East Bay is
phosphorus-limited (Lavrentyev et al. 1998, Boyer et
al. 1999). The East Bay is starved of phosphorus pri-
marily as a function of its calcium-carbonate-rich
sediments (Zhang et al. 2004), which bind phospho-
rus and render it unavailable for organic assimila-
tion. The nutrient limitation gradients converge in
the Central Bay and cause seasonal fluctuation be -
tween nitrogen and phosphorus limitation (Boyer et
al. 1999). Shifts in phytoplankton community compo-
sition occur along the bay’s nutrient limitation gradi-
ents. Phlips & Badylak (1996) surveyed phytoplank-
ton communities across Florida Bay and determined
that the western edge of the bay was dominated by
diatoms, the Central Bay by cyanobacteria (primarily
Synechoccocus spp., a unicellular picoplanktonic
cyanobacterium), and the eastern region by a mixed
community of diatoms, dinoflagellates, and pico-
cyanobacteria. An exceptionally severe bloom in the
East Bay that persisted from 2005 to 2008 was found,
like the central region of the bay, to be dominated by
Synechococcus spp. (Glibert et al. 2009).

Spatial variability in environmental factors ex -
plains some of the observed trends in phytoplankton
community structure. The West Bay is highly flushed,
moderately turbulent, and has relatively stable mar-
ine-like salinities due to its location alongside the
Gulf of Mexico (Phlips & Badylak 1996). These char-
acteristics create an ideal environment for the dia -
toms of Florida Bay, which have narrow salinity toler-
ances, strong light use efficiency, and require wave
energy to avoid sedimentation due to their lack of
motility and heavy siliceous cell structures (Phlips &
Badylak 1996, Richardson 2009). In contrast, many
interacting factors are believed to underpin the
prevalence of cyanobacteria in the central region of
the bay. Euryhaline character and buoyancy control
(Phlips & Badylak 1996, Phlips et al. 1999), high nut -
rient uptake affinities (Richardson 2009), and grazer
avoidance (Goleski et al. 2010) enable cyanobacteria,
particularly Synechococcus spp., to thrive in the
North Central Bay, a region characterized by long
residence times (Lee et al. 2006), periodically height-
ened salinities (Nuttle et al. 2000, Lee et al. 2006,
Kelb le et al. 2007), deep deposits of organic material
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Fig. 1. Map of Florida Bay, Florida (USA). (A) Five regions of similar phytoplankton community structure shown, along with
dominant sources of terrestrial freshwater to the Bay (Taylor Slough and C-111 Canal) and the Everglades National Park
(Everglades NP) boundary. (B) Satellite imagery of Florida Bay depicting the extensive network of mud banks and mangrove 

islands (base image: NASA Landsat 7, October 2000). Encircled numbers correspond to the 28 stations
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(Phlips & Badylak 1996), and a lack of filter feeders
(Peterson et al. 2006). Cyanobacteria in the central
region of the bay have also been observed to utilize
organic nitrogen and phosphorus (Glibert et al. 2004,
Boyer et al. 2006, Goleski et al. 2010). The diversity in
the phytoplankton community of the eastern regions
of the bay is believed to be driven by severe resource
limitation (i.e. extreme phosphorus limitation), which
promotes a variety of survival strategies (Lavrentyev
et al. 1998).

Dataset description

A water quality monitoring network consisting of
28 spatially distributed stations was maintained in
Florida Bay from 1989 to 2008 by the Southeast Envi-
ronmental Research Center of Florida International
University (FIU) (Boyer & Briceño 2007). Included
among their monthly measurements were chl a, total
organic carbon, species of inorganic and organic
nitrogen and phosphorus, turbidity, pH, salinity, tem-
perature, and dissolved oxygen. Other variables,
such as alkaline phosphatase activity, pH, and silicon
dioxide, were measured less frequently and, thus,
are excluded from this analysis. An alternative
Florida Bay water quality dataset by the NOAA-
Atlantic Oceanographic and Meteorological Labora-
tory (AOML) South Florida Program was also evalu-
ated for this study. Although it includes more recent
data (1998 to 2012) than those in the FIU dataset, the
AOML data were collected less regularly, making
the FIU data more suitable to the analysis described
herein.

For this study, monthly water quality data from the
FIU Water Quality Monitoring Program (http:// serc.
fiu.edu/wqmnetwork/SFWMD-CD/index.htm) were
used. Data spanning August 1992 through Septem-
ber 2008 (194 time steps per station) were used due
to the completeness of the dataset for this time
period. Prior to August 1992, some of the 28 stations
were not regularly sampled. Specific details on sam-
ple handling and analysis are explained in Boyer &
Briceño (2007). Missing values (less than 5% of data)
were replaced with means between the previous and
subsequent time points; in select months wherein
multiple observations were made, intra-month val-
ues were also replaced with mean values to maintain
a monthly time step. Data were locally minimum−
maximum normalized prior to conducting the analy-
sis to permit for direct comparison of coefficient
 values between explanatory variables and stations,
using the following equation:

(1)

where x is an array of observed data (e.g. chl a), k is
the station (ranges from 1 to 28), and x’ is the locally
normalized data vector.

Modified quantile regression model

Quantile regression is a methodological framework
involving the fitting of multiple linear regression
models between one set of explanatory variables and
different quantiles of the response variable’s prob -
ability distribution (Koenker & Bassett 1978, Cade &
Noon 2003). The primary strength of this method is
its ability to identify different rates of change be -
tween explanatory and response variables across the
response variable’s distribution (Cade & Noon 2003).
The traditional quantile regression approach evalu-
ates several small quantiles across the response vari-
able’s distribution, but these subsets are often too
narrow to be relevant in management contexts. The
quantile regression modification used in this study
evaluates subsets of the response variable distribu-
tion that reflect management objectives. The use
of this modified method confronted the question of
whether phytoplankton biomass in Florida Bay
responds to fluctuations in environmental distur-
bance differently during bloom as compared to non-
bloom conditions.

The methodological framework of this manage-
ment-relevant modification of quantile regression
includes the following steps. (1) Inspect the empirical
cumulative distribution function of normalized chl a
(includes locally normalized data collected at all sta-
tions) in order to identify a shift in curvilinear behav-
ior, which is assumed to correspond to the point at
which phytoplankton biomass conditions transition
from non-blooms to blooms. This transition point
is designated as the quantile threshold that dis -
tinguishes chl a observations as 2 separate states: an
upper quantile that represents ‘bloom’ conditions,
and a lower quantile that represents ‘non-bloom’
conditions. (2) Divide each station’s chl a distribution
into bloom and non-bloom quantiles based on the
determined threshold. The bay-wide quantile thresh-
old translates into site-specific chl a concentrations
that vary station by station, which allows for spatial
heterogeneities to be taken into account while main-
taining perspective of the entire ecosystem. (3) As -
sess the performance and parsimony of models with
different combinations of candidate explanatory
variables in order to identify the ‘best’ set of explana-
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tory covariates for the case study. (4) Fit multiple lin-
ear regression models consisting of the optimal set of
explanatory variables to the upper and lower quan-
tiles of each station’s chl a distribution, which, in this
case, produces 56 models in total. (5) Evaluate each
model by quantifying performance and evaluating
errors for time dependency. (6) Quantify the relative
importance of each explanatory variable under
bloom and non-bloom conditions at all stations. Each
of these steps is detailed below.

(1) Bay-wide quantile threshold

To divide the chl a distributions of the 28 stations
into quantiles reflective of blooms and non-blooms, a
data-driven threshold at which to segregate the dis-
tributions was identified. A previous study by Boyer
et al. (2009) also established chl a thresholds for
Florida Bay using a quartile-based method outlined
by the EPA (EPA 2001), whereby the chl a value cor-
responding to the 75th chl a percentile of a reference
system was designated as the level at which chl a
values in Florida Bay departed from baseline condi-
tions. We decided not to employ this approach due to
the a priori percentile threshold it imposes on the
data, as well as its need for selection of a reference
system. Instead, the locally normalized chl a data
from all 28 stations were compiled into a single series
from which the empirical cumulative distribution
function (ECDF) was constructed and objectively
evaluated for a breakpoint in curvilinear behavior;
this threshold is assumed to be consistent with bloom
initiation and continuance. The spatially explicit data
were collapsed into a single data series based on the
similarity of the right-skew in their probability den-
sity functions (Fig. S1 in Supplement 1 at www. int-
res. com/ articles/ suppl/ m567 p057 _ supp1. pdf); this me -
thod would be inappropriate for evaluating data
collected among sites characterized by chl a distribu-
tions with dramatically differing skews.

A piecewise linear curve was fit to the ECDF to
objectively identify a breakpoint that represents the
quantile at which the slope of the curve begins to
considerably increase. The piecewise curve was re-
fit to 1000 bootstrapped samples of the ECDF to
quantify the 95% confidence interval of the break-
point. The quantile corresponding to the identified
break was used as the threshold by which the upper
and lower chl a quantiles were separated. Although a
piecewise linear curve does not track the exact shape
of an ECDF or represent the curve in its entirety, this
approach effectively screened the distribution for a

breakpoint and, thus, was deemed appropriate for
the present application. The breakpoint’s confidence
interval also provided useful information by indica-
ting whether the breakpoint was representative of a
distinct change in curvilinear behavior: narrow confi-
dence intervals indicate an acute change in slope,
whereas wide intervals point to absent or slow-
 moving changes.

(2) Station-specific chl a concentration thresholds

The bay-wide quantile threshold was applied to
the stations’ individual chl a distributions, and the
corresponding chl a values were tabulated. The
bloom threshold is unique to each station when in
units of chl a, as opposed to quantile.

(3,4) Parsimonious model selection

To select the optimal, or ‘best,’ suite of explanatory
variables, all of the regularly sampled water quality
covariates included within the dataset were screened
with the exception of dissolved oxygen (DO) and
total organic carbon (TOC). DO was excluded as it is
unclear whether variability in DO in this very shallow
ecosystem is a significant driver of phytoplankton
biomass. TOC was deemed inappropriate as an ex -
planatory variable since this covariate likely serves
as a proxy measurement for chl a rather than as an
explanatory descriptor of phytoplankton biomass;
although other components of TOC (i.e. dissolved
organic carbon) may influence phytoplankton bio-
mass dynamics in Florida Bay, the inseparability of
chl a and TOC, particularly in times of heightened
phytoplankton biomass, precluded its inclusion in
the model evaluation process. Nitrogen and phos-
phorus were considered in the form of total nitrogen
(TN) and total phosphorus (TP), respectively. This is
due to the reported importance of both the organic
and inorganic fractions of nitrogen and phosphorus
for phytoplankton growth in Florida Bay (Glibert et
al. 2004, Boyer et al. 2006), which make these com-
posite values appropriate indicators of the system’s
nutrient status.

To ensure that the covariates in the reduced data-
set were independent and suitable for inclusion in
multiple linear regression models, the covariates
were evaluated for multicollinearity using the vari-
ance inflation factor (VIF) (Montgomery & Peck
1992, Zuur et al. 2007). Candidate explanatory vari-
ables with VIF values greater than 5 were excluded

62

http://www.int-res.com/articles/suppl/m567p057_supp1.pdf
http://www.int-res.com/articles/suppl/m567p057_supp1.pdf


Nelson et al.: Bloom versus non-bloom phytoplankton biomass descriptors

from subsequent analyses (Montgomery & Peck
1992, Zuur et al. 2007). VIF values were calculated
for bloom and non-bloom subsets of the data at each
of the 28 stations (in total, VIF values were calcu-
lated for 56 subsets of the entire Florida Bay data-
set).

Every possible explanatory variable combination
(ranging from single explanatory variables to the en -
tire explanatory variable dataset) was fed into mod-
els of the upper and lower chl a quantiles of the 28
stations; thus, 56 models (an upper and lower quan-
tile model for each station) were produced per ex -
planatory variable combination. The simulated data
of these 56 models were combined by station to pro-
duce 28 simulated chl a time series. The coefficient of
determination (R2; Eq. 2) and Bayesian information
criterion (BIC; Eq. 3) were calculated for these 28
series, the medians of which were tabulated for every
explanatory variable combination:

(2)

(3)

where N is the number of observations, Oi is the
observed data, Omean is the mean of the observed
data, Si is the simulated data, RMSE is the root mean
square error, SD is the standard deviation, and z is
the number of model parameters. When R2 = 1, the
simulated data perfectly match the observed data. A
threshold of R2 = 0.65 has been proposed in the liter-
ature to be the lower limit of valid goodness-of-fit
(Moriasi et al. 2007, Ritter & Muñoz-Carpena 2013).

The ‘best’ model was then objectively selected as
that which achieved the highest model performance
(maximized the median R2) while maintaining parsi-
mony (minimizing median BIC) (Zuur et al. 2007).
Note that although the same model structure (covari-
ates) was used for all stations, each model was fit
with local data; for example, the Stn 1 models were fit
with data collected at Stn 1.

(5) Model evaluation

Model goodness-of-fit was evaluated using R2 cou-
pled with a block bootstrapping significance test
(Politis & Romano 1994) that determined the confi-
dence interval of each of the fitted models (Ritter &
Muñoz-Carpena 2013). Although the upper and
lower quantiles of the chl a distributions were mod-
eled separately, the simulated results were recom-

bined and ordered temporally to evaluate overall
goodness-of-fit at each location.

Time series regression models are prone to having
time-dependent errors (Helsel & Hirsch 2002), the
presence of which results in a loss of effective de -
grees of freedom. Thus, it is prudent to evaluate
model residuals for serial correlation and adjust error
statistics accordingly. The Breusch-Godfrey test for
evaluating autocorrelation in residuals of models that
include an autoregressive explanatory variable
(Asteriou & Hall 2011) was applied to each of the
56 models’ residuals. The null hypothesis of the
Breusch- Godfrey test is that the residuals have no
autoregressive structure over the window of consid-
ered lags (in this case, 12 mo). For models that did not
pass the Breusch-Godfrey test at an alpha level of
0.05, the residuals were fit with autoregressive mod-
els of order one (AR(1)) and the autocorrelation func-
tions of their residuals were plotted. When the AR(1)
model effectively removed the autocorrelation, as
evidenced by insignificant values in the autocorrela-
tion function plots, the standard errors of the coeffi-
cients and associated p-values were recalculated
using an effective sample size (Ne; Eq. 4) that
accounts for the loss of effective degrees of freedom
resulting from the presence of residual autocorrela-
tion (Mitchell et al. 1966, Santer et al. 2000):

(4)

where r1 is the residual autocorrelation coefficient of
the first lag (1 mo); this correction is only adequate
when model residuals have an AR(1) structure.

(6) Relative importance of explanatory variables

Explanatory variable importance was quantified
using 2 metrics: average semipartial R2 (Lindeman et
al. 1980) and regression coefficient values. By locally
fitting the 56 models with the same set of explanatory
variables, direct comparisons of each explanatory
variable’s relative importance in describing chl a
dynamics could be made across locations.

Semipartial R2 quantifies an explanatory variable’s
individual contribution to the total variance ex -
plained by the model; the greater the variance ex -
plained by an explanatory variable, the greater its
semipartial R2 value, and the greater its importance.
The semipartial R2 values of all explanatory variables
included within the model sum to the model’s R2 if
the variables are orthogonal. Semipartial R2 values
associated with each explanatory variable can vary
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as a function of the order in which explanatory vari-
ables are added to the model, which can bias the
results. Average semipartial R2 addresses this poten-
tial source of bias by calculating semipartial R2 val-
ues for every possible explanatory variable order,
and averaging the resulting vector of values.

The regression coefficient values of the quantile
models were also evaluated as measures of relative
importance. Coefficient magnitudes and semipartial
R2  values provide similar information with regards to
importance of the covariates, but with differing
interpret ability. Semipartial R2 values quantify the
contribution of individual explanatory variables in
terms of fraction of total explained variance, which
can be interpreted in both relative and absolute
terms; coefficient values can only be evaluated rela-
tive to one another. Because semipartial R2 values are
non-negative, they give no indication regarding rela-
tionship directionality (positive or negative) between
ex plan atory variables and phytoplankton biomass,
whereas coefficient values do. Therefore, when eval-
uated to gether, coefficient and semipartial R2 values
provide a complete and complementary picture of
relative importance, absolute importance, and rela-
tionship directionality.

Coefficient and semipartial R2 values were mapped
at each of the station locations and spatially inter -
polated using inverse distance weighting to visualize
each explanatory variable’s importance under non-
bloom and bloom conditions across the bay.

Software

Data management and analysis were performed in
R (R Core Team 2015); specifically, the relaimpo
package (Grömping 2006), SiZeR package (Sonder -
egger et al. 2009), gstat package, and lm function
were employed for average semipartial R2, piecewise
linear regression, inverse distance weighting, and
multiple linear re gres sion calculations, respectively.
Spatial data were plotted using functions in the raster
and maptools packages. Quantification of R2 confi-
dence intervals using block bootstrapping was per-
formed with the FITEVAL software package (Ritter &
Muñoz-Carpena 2013) in MATLAB (The MathWorks
Inc 2015). See Supplement 2 at www.int-res.com/
articles/suppl/ m567p057_ supp2. zip for sample code.

RESULTS

Bloom threshold

The 0.88 quantile, with a 95% confidence interval
of [0.87, 0.90], was identified as the breakpoint in the
piecewise linear curve of the bay-wide chl a distribu-
tion (Fig. 2), thus also making it the threshold se -
parating non-bloom from bloom conditions. This
quantile threshold corresponded to station-specific
chl a concentrations ranging from 0.86 to 7.70 µg l−1

(Table 1), with the majority of the threshold values
falling below 2 µg l−1 (Fig. S2). To visualize the sepa-
ration of bloom and non-bloom conditions against
actual observations, the thresholds were plotted
against chl a data (Fig. 3, Fig. S3). These plots con-
firmed that the quantile threshold successfully sepa-
rated bloom events from non-bloom conditions
across locations with varying ecologies.

Blooms by region

When evaluating the frequency of blooms across
each region and year (Fig. 4), prevalent spatial and
temporal patterns emerged. The longest-lasting
bloom occurred in the Northeast Bay in 2006, and
persisted for most of the year. Prior to 2006, blooms in
the Northeast Bay, when present, typically lasted for
less than 2 mo. Similarly, blooms in the remaining 4
regions of the bay generally endured for 3 mo or less.
The East, North Central, and South Central Bay were
similar in temporal structure, and characterized by
strong bloom years in 1993, 1994, 1999, and 2006,
and relatively mild bloom years from 2001 to 2004.
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Stn Qtl Multiple linear regression parameters Semipartial R2 R2

BT μ βchla βT βTN βTP βturb βsal R2
chla R2

T R2
TN R2

TP R2
turb R2

sal [95% CI]

1       B     1.31     0.048       0.375***   0.211     −0.121     −0.267       1.365***  0.118         0.213     0.015    0.004     0.013    0.238   0.018         0.828
      NB               0.002       0.353***   0.012       0.025**   0.054*     0.107***  0.009         0.261     0.006    0.02       0.034    0.073   0.001   [0.717, 0.863]

2       B     1.17   −0.05         0.405*     0.022       0.379       0.089       1.339***  0.286         0.222     0.02      0.017     0.022    0.243   0.069         0.853
      NB               0.031**    0.325***   0.009       0.006       0.032       0.109***−0.002         0.187     0.001    0.005     0.011    0.079   0          [0.610, 0.898]

3       B     1.37     0.094       0.353       0.009     −0.206       0.091       0.534**    0.225         0.234     0.024    0.02       0.04      0.263   0.08           0.878
      NB             −0.002       0.459***   0.02**     0.016       0.044       0.02         0.003         0.318     0.02      0.015     0.036    0.007   0.002   [0.736, 0.908]

4       B     1.62     0.085       0.357     −0.035       0.265     −0.087       0.37         0.199         0.204     0.022    0.027     0.01      0.1       0.032         0.809
      NB             −0.013       0.43***     0.033*   −0.008       0.117       0.089       0.026         0.296     0.021    0.002     0.031    0.004   0.023   [0.571, 0.863]

5       B     1.57   −0.191       0.303       0.074       0.339       0.079       0.911*     0.313         0.144     0.01      0.04       0.002    0.135   0.027         0.815
      NB               0               0.444***   0.016       0.01         0.059       0.148***  0.008         0.344     0.003    0.012     0.012    0.083   0.001   [0.719, 0.853]

6       B     1.22     0.32**      0.097     −0.43**   −0.098       0.156       0.289       0.35*         0.154     0.198    0.006     0.059    0.139   0.111         0.823
      NB               0.004       0.289***   0.024*** 0.015**   0.003       0.169***−0.017**     0.186     0.034    0.048     0.014    0.081   0.07     [0.602, 0.877]

7       B     1.23     0.268       0.364       0.091     −0.25         0.527     −0.011     −0.269         0.194     0.019    0.045     0.175    0.017   0.036         0.752
      NB               0.049***   0.034     −0.005       0.014       0.036       0.143***  0.05***     0.018     0.004    0.008     0.01      0.122   0.126   [0.620, 0.802]

8       B     1.50     0.345*   −0.121     −0.226     −0.119       0.064       0.306*     0.588***   0.07       0.042    0.025     0.002    0.092   0.241         0.780
      NB               0.034*     0.264***   0.04**     0               0.029       0.072*   −0.028*       0.132     0.026    0.012     0.012    0.022   0.043   [0.568, 0.857]

9       B     0.86     0.571*     0.127       0.332     −0.485*   −0.27       −0.039       0.044         0.007     0.036    0.168     0.024    0.012   0.013         0.688
      NB               0.026       0.168***   0.017       0.096**   0.038       0.25**      0.009         0.095     0.002    0.056     0.001    0.054   0.004   [0.611, 0.763]

10     B     1.99     0.58***     0.087       0.128     −0.1           0.216       0.225     −0.212         0.013     0.035    0.045     0.064    0.121   0.045         0.694
      NB               0.096**    0.249***   0.036     −0.001       0.17**     0.705***−0.145***   0.127     0.003    0.007     0.054    0.106   0.075   [0.562, 0.783]

11     B     0.92     0.615**    0.142     −0.185     −0.005     −0.068     −0.017     −0.122         0.061     0.067    0.002     0.006    0.001   0.01           0.656
      NB               0.084**    0.308***   0.066**   0.031     −0.031       0.034     −0.1**         0.198     0.02      0.019     0.002    0.015   0.07     [0.531, 0.732]

12     B     5.15     0.64***  −0.057       0.02       −0.087       0.369**   0.035     −0.081         0.062     0.008    0.014     0.283    0.009   0.057         0.856
      NB             −0.109***   0.252***   0.095**   0.134***  0.146***  0.444***  0.045         0.231     0.016    0.117     0.096    0.17     0.006   [0.783, 0.892]

13     B     5.05     0.785***−0.142     −0.365       0.016     −0.146       1.092     −0.2             0.013     0.146    0.026     0.008    0.07     0.066         0.753
      NB             −0.032       0.27***     0.057       0.094*     0.133**   0.16**      0.006         0.151     0.007    0.074     0.117    0.055   0.006   [0.643, 0.821]

14     B     7.70     0.645***−0.473**  −0.065     −0.27       −0.088       0.66**   −0.424**     0.061     0.003    0.05       0.007    0.097   0.222         0.750
      NB               0               0.222***   0.063*** 0.025       0.174***−0.017     −0.037         0.128     0.022    0.077     0.187    0.017   0.046   [0.642, 0.827]

15     B     6.79     0.823***−0.39*     −0.25       −0.114     −0.171       0.434     −0.288*       0.067     0.086    0.041     0.014    0.055   0.14           0.754
      NB             −0.011       0.143***   0.051*     0.035       0.301***  0.038     −0.03           0.078     0.007    0.102     0.241    0.027   0.011   [0.662, 0.813]

16     B     5.45     0.426*   −0.01         0.27         0.032       0.559     −0.088     −0.38           0.007     0.031    0.015     0.142    0.028   0.075           0.71
      NB               0.111***   0.178***   0.037       0.058       0.066       0.199***−0.094*       0.087     0.004    0.019     0.039    0.079   0.019   [0.598, 0.786]

17     B     3.31     0.309       0.112       0.241     −0.084       0.596     −0.231     −0.528         0.092     0.02      0.008     0.308    0.015   0.171         0.846
      NB               0.04         0.033       0.035       0.091       0.118       0.096     −0.085         0.025     0.01      0.085     0.13      0.084   0.063   [0.768, 0.899]

18     B     3.01     0.389*     0.153     −0.164     −0.086       0.523     −0.446       0.116         0.022     0.059    0.004     0.096    0.062   0.006         0.808
      NB               0               0.136***   0.054*** 0.073***  0.135***  0.687***−0.061**     0.124     0.013    0.078     0.095    0.22     0.027   [0.723, 0.855]

19     B     3.29     0.341*   −0.193     −0.047     −0.024       0.247       0.481***  0.01           0.061     0.041    0.009     0.123    0.338   0.013         0.846
      NB             −0.015       0.133***   0.032       0.059**   0.11***    0.243***−0.004         0.1         0.008    0.046     0.088    0.14     0.004   [0.777, 0.912]

20     B     1.99     0.216     −0.105       0.253       0.126       0.704** −0.172     −0.069         0.03       0.058    0.011     0.273    0.012   0.024         0.831
      NB             −0.043**    0.139***   0.062**   0.11*** −0.005       0.292***  0.002         0.099     0.016    0.047     0.007    0.171   0.003   [0.755, 0.883]

21     B     2.12     0.038       0.11       −0.092     −0.023       0.803***  0.135       0.232         0.041     0.014    0.022     0.455    0.257   0.023         0.884
      NB             −0.001       0.205***   0.031*     0.046**   0.01         0.067***  0.008         0.156     0.011    0.051     0.006    0.038   0.002   [0.793, 0.934]

22     B     1.31     0.441*   −0.066     −0.142     −0.04         0.475       0.036       0.013         0.003     0.034    0.003     0.068    0.009   0.01           0.718
      NB               0.012       0.196***   0.03         0.031       0.017       0.071       0.008         0.177     0.019    0.033     0.003    0.004   0.002   [0.627, 0.778]

23     B     0.88     0.265       0.143     −0.09         0.116       0.682       0.399     −0.025         0.051     0.02      0.015     0.168    0.195   0.028         0.741
      NB               0.051**    0.283***   0.017       0.07**   −0.04         0.142** −0.031         0.193     0.006    0.034     0.003    0.026   0.014   [0.618, 0.816]

24     B     0.87     0.256***   0.207*     0.135     −0.286***  0.108       0.46***    0.168         0.02       0.023    0.116     0.076    0.43     0.043         0.764
      NB               0.034       0.24***  −0.004       0.016     −0.017       0.212***  0.028         0.12       0.01      0.007     0.001    0.099   0.003   [0.630, 0.879]

25     B     4.49     0.399** −0.022       0.43         0.026       0.265       0.171     −0.39**       0.006     0.033    0.008     0.022    0.116   0.159         0.693
      NB               0.158***   0.034       0.059       0.04         0.02         0.234***−0.124***   0.008     0.01      0.005     0.03      0.114   0.053   [0.577, 0.788]

26     B     4.12     0.356     −0.141       0.293     −0.009       0.575       0.29       −0.395         0.009     0.016    0.001     0.041    0.076   0.046         0.675
      NB               0.118***   0.117**  −0.025       0.052     −0.152*     0.267***−0.064**     0.051     0.018    0.017     0.018    0.09     0.054   [0.582, 0.738]

27     B     2.09   −0.105       0.154       0.215       0.47*** −0.845       0.603***−0.018         0.034     0.018    0.134     0.124    0.324   0.054         0.808
      NB               0.03***     0.096***   0.006       0            −0.108***  0.192***−0.015         0.064     0.005    0.001     0.021    0.038   0.023   [0.554, 0.884]

28     B     1.57     0.248** −0.012       0.411*** 0.241*     0.709***−0.656***−0.233*       0.018     0.145    0.112     0.147    0.112   0.024         0.792
      NB               0.05**      0.157***   0.063*** 0.042       0.028       0.113** −0.084***   0.094     0.009    0.009     0.001    0.024   0.031   [0.690, 0.859]

Table 1. Bloom (B) and non-bloom (NB) model parameters, semipartial R2, and overall R2 values for each station. Asterisks
 indicate significant differences from 0 (*p < 0.10, **p < 0.05, ***p < 0.01). Qtl: quantile; BT: bloom threshold (µg chl a l−1);
μ: level factor (µg chl a l–1); chl a: antecedent chl a; T: water temperature; TN: total nitrogen; TP: total phosphorus; turb: 

turbidity; sal: salinity
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Though these regions were similar in terms of the
average number of bloom months per year, their chl a
concentrations greatly differed. The greatest chl a
concentrations occurred in the North Central Bay;
the maximum chl a concentration in this dataset was
recorded in the North Central Bay in 1999 at a value
of 35.6 µg l−1 (Fig. 4). In contrast, the maximum
recorded chl a concentration in the longstanding
2007 bloom of the Northeast Bay measured 10 µg l−1.
Bloom temporality in the West Bay was unlike that
observed in the other bay regions; the blooms per-
sisted for approximately 1 to 2 mo each year in the
West Bay, with the periods of 1992−1999 and 2000−
2008 tending more towards 2 and 1 bloom month(s)
per year, respectively. This regularity was more in -
dicative of natural blooms, which contrasted with the
irregularity of bloom frequency in the other regions.
With the exception of the Northeast Bay, bloom dura-
tion throughout the bay generally declined over the
study period; notably, no blooms were observed in
the last 2 years of the study period (2007−2008) in the
North Central Bay.

Selection of model variables

All of the considered water quality variables were
non-collinear (maximum VIF = 4.64; Table S1) and in-
cluded in the model screening process. After evaluat-
ing all possible candidate explanatory variable com-
binations for model performance and parsimony, the
final set of candidate explanatory variables in cluded
all considered variables: total nitrogen (TN), antecedent
chlorophyll a (chlat−1), total phosphorus (TP ), wa ter
temperature (T ), turbidity (turb), and salinity (sal ). An-
tecedent chlorophyll a was defined as chl a from the
previous month, or ‘lagged’ chl a. For a summary of
model screening results, see Fig. S4 and Table S2.

Spatial variation in the medians of each of these
variables for the lower (non-bloom) and upper
(bloom) quantiles is shown in Fig. 5. Median chl a
concentrations under bloom conditions generally
increased from less than 4 µg l−1 in the East/North-
east Bay to greater than 4 µg l−1 in the West Bay, with
the exception of a strong peak in the North Central
Bay in excess of 10 µg l−1 (Fig. 5A). For non-bloom
conditions, median chl a concentrations showed a
modest decline from less than 1 µg l−1 in the Central
and East/Northeast Bay to 0.5−2 µg l−1 in the West
and North Central Bay (Fig. 5B).

Median water temperatures under bloom condi-
tions varied from upwards of 28°C in the North Cen-
tral and East Bay regions, to less than 25°C in parts of

the East and South Central Bay (Fig. 5C). In contrast,
median water temperatures during non-bloom condi-
tions were spatially uniform and ranged from 26 to
27°C throughout Florida Bay (Fig. 5D).

Median TN concentrations under bloom conditions
were highest in the Central and parts of the East Bay
with values in excess of 0.8 mg l−1, peaking in the
North Central Bay at greater than 1.2 mg l−1 (Fig. 5E).
To the east and west of the central region, median TN
concentrations declined to less than 0.8 mg l−1, with
the lowest values on the western boundary of the
bay. The same general spatial pattern of median TN
levels was observed under non-bloom conditions, but
at lower levels (Fig. 5F).

Median TP concentrations under bloom conditions
generally increased from less than 0.02 mg l−1 in the
East/Northeast Bay to greater than 0.02 mg l−1 in the
West/South Central Bay, with a strong peak in the
North Central/North West Bay in excess of 0.035 mg
l−1 (Fig. 5G). For non-bloom conditions, median TP
concentrations showed an east to west gradient, from
less than 0.01 mg l−1 in the East/Northeast Bay to
around 0.015 mg l−1 in the West Bay with a peak in
the North Central Bay near 0.02 mg l−1 (Fig. 5H).

Median turbidity levels under bloom conditions
showed a spatial pattern similar to that of median TP
concentrations, with values less than 7 nephelomet-
ric turbidity units (NTU) in the Northeast and South
Central Bay to greater than 7 NTU in the West Bay
and parts of the North Central Bay; median turbidity
values were greatest in the northwestern region of
the West Bay, where values exceed 15 NTU (Fig. 5I).
For non-bloom conditions, median turbidity levels
were generally below 5 NTU through most of the
bay, with values below 2 NTU in the Northeast Bay
and in the South Central Bay near major inlets to the
Atlantic Ocean in the southern Florida Keys (Fig. 5J).

Median salinities during blooms (Fig. 5K) were, on
average, less than those during non-blooms (Fig. 5L).
Median salinity was highest in the West Bay, where
values ranged from about 27 to 35 PSU between
blooms and non-blooms, respectively. Median salin-
ity was lowest in the East Bay, particularly on its
northern shore; within the East Bay, salinity ranged
north-to-south from less than 10 PSU to greater than
20 PSU during bloom and non-bloom conditions.

Bay-wide quantile model

The multiple linear regression model used in this
study to describe key relationships between phyto-
plankton biomass (as chl a) and the aforementioned

68
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covariates is described by Eq. (5), where k denotes the
station, q represents the quantile (upper or lower), μ is
the level factor, and the βs are coefficient values:

(5)

Each model suite was separately fit to the upper
12% and lower 88% of the chl a data at each station.
This produced a total of 28 lower quantile models
and 28 upper quantile models; all of the models had
the same explanatory variables, but with different
coefficients as each model was fit with local data
(Table 1).

Of the 56 models, 21 had residuals with non-zero
autocorrelation over a 12-mo window at a significance
level of 0.05 (Table S3), and an approximately AR(1)
structure (Fig. S5). The p-values of these models’
coefficients were adjusted using the effective sample
size to account for the residuals’ time dependency.

Overall, the models performed well in reproducing
chl a values from non-bloom and bloom conditions.
The bay-wide average R2 of all locations was 0.78,
with a range of 0.66 (Stn 11) to 0.88 (Stn 21). R2 values
with confidence intervals for all 28 stations are
shown in Table 1. Representative simulated data
series from each of the 5 regions of Florida Bay are
shown in Fig. 3 (solid lines).

Spatial patterns of model coefficients and
 semipartial R2

Spatial patterns of explanatory variable impor-
tance under bloom and non-bloom conditions are
summarized in Table 1 and Fig. 6. Under bloom con-
ditions, there was a positive relationship between
phytoplankton biomass and antecedent chl a in the
Northeast, East, and West Bay, and a mildly negative
relationship in the North and South Central Bay
(Fig. 6C). The semipartial R2 results showed that the
strength of this relationship was at its peak in the
Northeast Bay, and weak elsewhere (Fig. 6A). The
spatial pattern in the importance of antecedent chl a
under non-bloom conditions was similar to that dur-
ing bloom conditions, but with greater semipartial R2

values, consistently positive coefficients, and decrea -
sing importance going westward from the Northeast
Bay (Fig. 6B,D).

Coefficient values revealed that phytoplankton
bio mass and water temperature were positively re -
lated throughout most of the bay under bloom condi-
tions, with some stations in the North Central Bay

and along the northern shore of the East Bay being
parameterized by negative coefficients (Fig. 6G); the
semipartial R2 values revealed that water tempera-
ture was mostly of minor to moderate importance in
the central region of the bay, and negligible else-
where (Fig. 6E). Under non-bloom conditions, water
temperature was an inconsequential descriptor of
phytoplankton biomass (Fig. 6F,H).

During bloom conditions, relationships between
phytoplankton biomass and TN ranged from mildly
negative in the East Bay and northern shore of the
North Central Bay, to slightly positive in the south-
western part of the West and Northeast Bay, to negli-
gible in the remaining areas of the bay (Fig. 6K).
Overall, TN explained a relatively small fraction of
phytoplankton biomass variance under bloom con -
ditions (Fig. 6I). During non-bloom conditions, the
 relationships between phytoplankton biomass and
TN were minor (Fig. 6J) and characterized by inap-
preciable co efficient values (Fig. 6L). In contrast, un-
der bloom conditions, TP explained considerable
phytoplankton bio mass variance at many locations,
particularly those in the North and South Central Bay,
and stations neighboring these regions in the West
and East Bay (Fig. 6M). In areas where the relation-
ship be tween TP and phytoplankton biomass during
blooms was the strongest, coefficient values were
positive; in other areas where TP explained relatively
less phytoplankton biomass variance, coefficient val-
ues ranged from strongly to mildly negative (Fig. 6O).
Under non-bloom conditions, the relationship be-
tween phyto plankton biomass and TP was greatest in
the North Central Bay, and mildly to negligibly impor-
tant elsewhere in the bay (Fig. 6N); coefficient values
were positive in the North Central Bay, and predomi-
nantly negligible elsewhere (Fig. 6P).

Semipartial R2 values characterizing the relation-
ship between turbidity and phytoplankton biomass
during bloom conditions highlighted a great deal of
variability across the bay; each region included sta-
tions whereat turbidity was either a strong or weak
descriptor of phytoplankton biomass (Fig. 6Q). Co -
efficient values parameterizing turbidity under
bloom conditions were predominantly positive, but a
band of negative values was distinctly present along
the eastern boundary of the West Bay (Fig. 6S). Dur-
ing non-bloom conditions, turbidity was a moder-
ately important descriptor of phytoplankton biomass
(Fig. 6R), particularly in the central region and the
West Bay, and was consistently parameterized by
positive coefficient values (Fig. 6T).

Salinity was predominantly of negligible impor-
tance during non-bloom conditions, but explained a

, , , , ( –1), , , , ,

, , , , , ,
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small fraction of phytoplankton biomass variance in
the West Bay (Fig. 6V,X). Conversely, salinity was an
important descriptor of blooms in the North Central
and West Bay (Fig. 6U). In these regions, where salin-
ity played an influential role on bloom biomass, the
corresponding coefficient values were negative
(Fig. 6W).

DISCUSSION

The results of the modified quantile regression
analysis of Florida Bay revealed regional differences
in the importance of water quality covariates associ-
ated with phytoplankton biomass (i.e. as chl a) under
bloom and non-bloom states, including antecedent
chl a, water temperature, TN, TP, turbidity, and salin-
ity. From the perspective of phytoplankton structure
and function, the non-bloom state includes periods of
bloom initiation and biomass expansion, which are
strongly affected by the availability of growth-
 supporting resources, such as nutrients and light,
and the presence of seed populations (Reynolds
2006). The bloom state represents a period of bio-
mass climax and stationary state, which is often asso-
ciated with nutrient limitation, diminished growth
rates, self-shading of light, and increased proportion
of senescent/diseased cells (Reynolds 2006), as well
as enhanced potential for top-down control due to in -
creases in zooplankton grazer abundances (Ward et
al. 2014). The findings of the model analyses for
bloom and non-bloom states are discussed below;
note that the mechanisms offered as possible drivers
of the statistical results produced herein are hypo-
thetical, and confirmation of their validity requires
further testing through mechanistic modeling or con-
trolled experiments.

Non-bloom conditions

Antecedent chl a was a positive predictor of non-
bloom phytoplankton biomass throughout the bay,
which demonstrates the importance of this auto -
regressive variable and reflects how increases in bio-
mass are progressive during the early and exponen-
tial stages of growth and expansion. In the East and
Northeast Bay, the high degree of importance of this
autoregressive variable relative to the other consid-
ered explanatory covariates highlights the more oli-
gotrophic character of these regions, which dimin-
ishes the temporal longevity and magnitude of shifts
in nutrient availability, and dampens the dynamic

scale of biomass variability (Reynolds 2006). Non-
bloom phytoplankton biomass in regions outside of
the East and Northeast Bay were also described by
TP, TN, and turbidity. The coefficient values in the 28
non-bloom models were all positive, with only one
exception for Stn 26 in the West Bay. Combined, the
results indicate that: (1) non-bloom phytoplankton
biomass increases when the biomass from the prior
month is relatively elevated, (2) non-bloom phyto-
plankton biomass in southern, central and northern
Florida Bay increases in response to elevated TP con-
centrations, while in the western bay, biomass
responds more strongly to increases in TN, and (3)
increases in turbidity in the southern, central and
western regions of the bay relate to increases in non-
bloom biomass.

In the North Central Bay, the importance of TP
under non-bloom conditions reflects the overriding
importance of phosphorus as a descriptor of phyto-
plankton growth in this region (Fourqurean et al.
1993, Boyer et al. 1999, Rudnick et al. 1999, Glibert et
al. 2004). The more moderate importance of TN may
be explained in relationship to TN-enriched runoff
from the bordering watersheds of the Florida Ever-
glades (Fourqurean et al. 1993, Rudnick et al. 1999).
The relative importance of phosphorus and nitrogen
limitation varies by region, with greater potential for
nitrogen limitation in the western bay and more
prominent phosphorus limitation in the central and
eastern areas of the bay (Fourqurean et al. 1993,
Rudnick et al. 1999, Glibert et al. 2004). The pattern
of nutrient limitation is, in part, a product of relatively
low inorganic and organic phosphorus concentra-
tions in sources of loading from the Everglades into
the central and eastern regions of the bay (Rudnick et
al. 1999); in contrast, comparatively high inorganic
and organic nitrogen levels, as well as dissolved
organic carbon, from the Everglades may help to
 promote phytoplankton growth (Glibert et al. 2004,
Boyer et al. 2006, Goleski et al. 2010). It has also been
proposed that the dominance of major blooms in the
North Central Bay by picoplanktonic cyanobacteria
(Phlips et al. 1999) is in part a result of 2 key factors:
(1) the ability of these species to compete effectively
for phosphorus at low concentrations and take ad -
vantage of organic forms of nitrogen and phosphorus
(Glibert et al. 2004, Boyer et al. 2006, Goleski et al.
2010), and (2) low rates of zooplankton grazing losses
for picoplanktonic cyanobacteria compared to euka -
ryotic taxa (Glibert et al. 2004, Boyer et al. 2006,
Goleski et al. 2010).

The positive relationship between turbidity and
non-bloom phytoplankton biomass in Florida Bay
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runs contrary to observations from some other eco-
systems wherein increases in turbidity are associated
with inhibition of phytoplankton growth as a result of
corresponding decreases in water column light avail-
ability (Gameiro et al. 2011). However, due to the
very shallow depths (i.e. <2 m) throughout Florida
Bay, pelagic light availability appears to remain at
levels that support phytoplankton growth (Phlips et
al. 1995, Kelble et al. 2005), meaning that changes in
turbidity do not necessarily create light-limiting con-
ditions. There are several processes that could poten-
tially underlie a positive relationship between turbid-
ity and phytoplankton biomass, such as resuspension
of sedimented algae (Carrick et al. 1993), and/or
 turbulence-driven injection of nutrient-rich porewa-
ter into the water column (Santschi et al. 1990,
Lawrence et al. 2004). The latter process is particu-
larly relevant in Florida Bay due to its calcium-car-
bonate-rich sediment deposits (Zhang et al. 2004),
where nutrients are both adsorbed to the sediment
and available in benthic porewaters (Santschi et al.
1990).

Water temperature was a largely insubstantial pre-
dictor of phytoplankton biomass overall, as was salin-
ity. The water temperature result is not surprising
considering the subtropical/tropical location of Flori -
da Bay, where water temperatures exceed 25°C for
most of the year and only occasionally drop below
20°C for short periods of time as a result of mid-
 winter passage of cold fronts.

Bloom conditions

While predictors of non-bloom biomass provide
insights into factors that support increases in phyto-
plankton biomass, the predictors associated with the
bloom biomass subset of the data help to identify fac-
tors associated with the highest peaks in biomass.

A number of parameters were significant predic-
tors of bloom biomass in one or more regions of
Florida Bay, including turbidity, salinity, and TP, and,
to a lesser extent, temperature, TN, and antecedent
chl a.

From a bay-wide perspective, turbidity was the
most broadly important descriptor of bloom phyto-
plankton biomass, primarily as a positive correlate.
The mechanisms previously described to explain the
positive turbidity−phytoplankton relationships under
non-bloom conditions (i.e. porewater mixing, nutri-
ent desorption and re-suspension of sedimented
algae) also help to explain the turbidity−bloom rela-
tionship. The opposite trend of a negative turbidity−

bloom relationship in parts of the West Bay may
reflect difference sources of phytoplankton biomass
in this location as compared to other parts of the bay.
The openness of the West Bay to the Gulf of Mexico
indicates that temporal dynamics of phytoplankton
biomass in this region are driven by allochthonous
biomass inputs from the southeastern gulf, and less
by local autochthonous processes which dominate in
the rest of the bay. For example, turbidity may induce
light limitation of phytoplankton production in the
deeper regions of the adjacent gulf, thereby indi-
rectly influencing biomass in the West Bay. The im -
portance of allochthonous influences on blooms in
estuaries has been observed elsewhere (Phlips et al.
2012, Hart et al. 2015).

Salinity was inversely related to phytoplankton
bloom biomass in the West and North Central Bay.
Although elevated salinity can dampen biomass of
stenohaline species (Reynolds 2006), the dominant
bloom-forming taxa in Florida Bay, Synechococcus
spp., are strongly euryhaline and therefore mini-
mally impacted by hypersaline conditions observed
in this region (Phlips & Badylak 1996, Phlips et al.
1999, Richardson 2009). Therefore, in the North Cen-
tral Bay, hypersalinity alone is not expected to drive
an appreciable reduction in bloom biomass. More
likely, lower salinities reflect inputs of water and
nutrients from local coastal watersheds, including the
Everglades and the river-dominated estuaries of
southwest Florida, which elevate bloom biomass
potential. Phlips et al. (1999) noted this relationship
during the strong cyanobacteria bloom period of
1993− 1996 in the North Central Bay, where peak
phytoplankton biomass levels often coincided with
periods of declining salinity. A similar hypothetical
explanation may extend to the West Bay, as phyto-
plankton blooms in the adjacent Gulf of Mexico can
be en hanced by freshwater discharges from water-
sheds along the southwest coast of Florida (Heil et al.
2007, Boyer et al. 2009, Zhao et al. 2013), and, in turn,
be imported into this region of the bay.

Water temperature was least important as a de -
scriptor of phytoplankton biomass under bloom con-
ditions in the West and East Bay, and of mostly mild
importance elsewhere. Coefficient values parameter-
izing water temperature in bloom models were pri-
marily positive, except along the northern shore of
the North Central and East Bay. This implies that, in
these areas, bloom biomass decreases as tempera-
tures increase, whereas the inverse relationship is
evident elsewhere in the bay. The negative tempera-
ture−bloom relationship could be explained by sea-
sonality of rainfall, whereby blooms along the north-
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ern shore decrease in response to greater freshwater
runoff from the Everglades, and, consequently,
greater hydrodynamic flushing. Furthermore, the
temperature regime of Florida Bay does not preclude
the formation of blooms in the winter season, as
observed by Phlips et al. (1999).

The lack of consistent importance of TP as a signif-
icant positive predictor of bloom biomass in most of
the bay except the south central region suggests that
blooms, as defined by the data subset of peak bio-
mass values in the 88% quantile, are not as closely
aligned to nutrient factors as observed in the non-
bloom state. It is important to keep in mind that the
peak biomass achieved by blooms can be affected
by a range of non-nutrient factors, such as grazing
losses, sedimentation of phytoplankton cells, and
flushing rates (i.e. export or dilution of biomass). In
addition, bioavailable nutrients that initially drive the
early stages of bloom initiation and expansion (i.e.
included in the non-bloom state data sub-set defined
in this study) can become depleted at peak bloom
biomass levels, leading to declines in biomass poten-
tial, even though total nutrient concentrations in the
water column may not be dramatically altered. By
contrast, TP was a consistent positive bloom descrip-
tor in the South Central Bay. Previous studies have
shown that tidal exchange with the Gulf of Mexico
delivers TP to this region (e.g. Fourqurean et al.
1993), which may in part help to explain the spatial
pattern observed in the TP bloom results.

Though TN was of minimal or negligible impor-
tance in predicting bloom biomass throughout the
bay, it was associated with negative coefficient val-
ues in the North Central and East Bay regions, mean-
ing that an increase in TN was associated with a de -
crease in blooms. Since an increase in TN would not
be expected to suppress phytoplankton growth dur-
ing bloom conditions, this relationship provides fur-
ther support for the previously proposed hypothesis
of TN acting as a tracer of freshwater: while terres-
trial runoff may provide nutrient subsidies during
non-bloom conditions, study results suggest that ter-
restrial runoff may dampen phytoplankton biomass
during blooms. Increased hydrodynamic flushing can
negatively impact biomass, particularly during later
stages of the bloom cycle, when growth rates are rel-
atively low (Monsen et al. 2002).

Evaluated together, these results suggest the fol-
lowing: (1) the Northeast Bay’s bloom phytoplankton
biomass is autoregressive and minimally explained
by additional descriptors included in this study, (2)
factors that contribute to phytoplankton biomass dur-
ing non-bloom conditions (antecedent chl a, water

temperature, and TN) negatively influence bloom
phytoplankton biomass in the North Central Bay, (3)
pulses of TP in the South Central Bay and parts of the
North Central and West Bay result in bloom in -
creases, (4) turbidity positively influences bloom
phyto plankton biomass in locations where it explains
a large fraction of the phytoplankton biomass vari-
ance, but also dampens growth in regions where
brackish and marine waters converge, and (5) in -
creases in salinity prompt decreases in blooms in the
West and North Central Bay.

CONCLUSIONS

The central goal of this study was to identify how
spatial and temporal water quality variability differ-
entially drives phytoplankton biomass during bloom
and non-bloom conditions. Using a novel modifica-
tion of quantile regression, bloom and non-bloom
conditions were comparatively evaluated to calculate
how spatiotemporal changes in environmental vari-
ability correlated to these phytoplankton biomass
states. By regressing explanatory covariates against
management-relevant quantiles of the response vari-
able (bloom, non-bloom), this approach contrasted
with traditional quantile regression, whereby ex -
planatory variables are regressed against several
narrow and arbitrary quantiles of the response vari-
able. This analytical framework offered a straightfor-
ward and objective method for identifying a bloom
threshold without having to select a reference sys-
tem, as well as for comparing phytoplankton biomass
dynamics across a diverse set of monitoring sites.

This new approach successfully identified water
quality descriptors of both bloom and non-bloom
phytoplankton conditions in Florida Bay, the site
investigated in this analysis, and informed the devel-
opment of data-driven hypotheses for future research
regarding potential underlying mechanisms driving
phytoplankton biomass dynamics in the bay. Human-
driven changes to surface water flow from Central to
South Florida, including the Everglades, over the
span of a century have impacted the ecology of
Florida Bay and contributed to phytoplankton blooms
in this iconic ecosystem (Fourqurean & Robblee 1999,
Rudnick et al. 2005). The minimal climatic forcing
and highly variable phytoplankton biomass dynam-
ics that characterize Florida Bay make this system a
representative study site for analysis of bloom trends
in low-latitude systems. Results from this study high-
lighted complicated relationships between nutrients
and phytoplankton biomass, particularly in the North
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Central Bay, and the widespread importance of tur-
bidity, TP, and autoregressive chl a as correlates of
bloom and non-bloom conditions. Beyond water
quality drivers, further research should (1) address
other processes known to influence phytoplankton
biomass dynamics in Florida Bay, such as grazing by
zooplankton (Goleski et al. 2010) and benthic filter
feeders (Lynch & Phlips 2000, Peterson et al. 2006),
which were not addressed in this study due to a lack
of available long-term data, and (2) test hypotheses
inspired by statistical findings herein, such as of the
potential importance of non-nutrient (i.e. physical)
factors as bloom drivers in the North Central Bay,
and allochthonous inputs in the West Bay.

Though this study analyzed data solely from Flo -
rida Bay, the processes driving change in this system
are broadly relevant to other bloom-affected estuar-
ine systems, particularly those characterized by het-
erogeneous ecologies. Researchers and water quality
managers in these settings will find the modified
quantile regression methodology proposed herein
readily applicable and useful for providing insights
on bloom dynamics.
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