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ABSTRACT: A decade of visual surveys (2005-2014) revealed that humpbacks Megaptera
novaeangliae occupy a temperate fjord system in British Columbia, Canada, in a wave pattern
that propagates from outer channels in the summer to deep inland channels in late fall. Monte
Carlo randomization confirmed this apparent pattern statistically. ‘Before’ and ‘after’ shift phases
were most evident in July and October, respectively. We hypothesized that the ‘whale wave' was
being driven by (1) prey following, (2) the tracking of environmental proxies, (3) fine-scale
philopatry, or some combination of these three factors. To evaluate these hypotheses, we collected
new data in 2015, including visual and hydroacoustic surveys and oceanographic sampling. To
both full-season and monthly datasets, we fit generalized additive models (GAMs) in a stepwise
procedure, using variable sets that represent our hypotheses. Prey models were generally the
worst predictors of humpback distribution, while the most complex habitat models were the best.
The Prey model performed best in June but increasingly poorly in remaining months. The per-
formance of all models declined throughout the season, suggesting not only that this whale wave
is being driven by needs other than food, but also that untested variable(s) inform late-season dis-
tribution. Alternative explanations of the wave include physiological maintenance and social
habitat partitioning. Our findings demonstrate that marine predators can use complex spatial
strategies not only to navigate vast areas of ocean but also to exploit specific habitats thoroughly.
Though annually persistent and specific in structure, the whale wave would go (and has gone)
unnoticed in typical marine mammal surveys.
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INTRODUCTION

As the world's largest predators, the great whales
must satisfy superlative energetic needs (Alexander
2005) during brief foraging seasons in which ephe-
meral prey patches are dispersed across vast areas.
Foraging efficacy must be optimized, meaning habi-
tat use must be strategic; cues about prey conditions
must be tracked at nested spatial and temporal
scales, from transoceanic migration to a single forag-
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ing excursion (Ballance et al. 2006, Bailey et al.
2009, Hazen et al. 2009, Benoit-Bird et al. 2013). But
whales are more than mouths; foraging must be bal-
anced by other needs (e.g. reproductive, social, and
health), and resource space must be navigated based
on a combination of continuous habitat sampling
(either directly or indirectly through proxies), recent
experience (Mayo & Marx 1990, Fauchald 1999),
and sheer habit (time-tested heuristics in behavior
and distribution that maximize chances of resource

© Inter-Research 2017 - www.int-res.com


http://www.int-res.com/abstracts/meps/v567/c_p211-233

212 Mar Ecol Prog Ser 567: 211-233, 2017

access; e.g. philopatry). The balance of these strate-
gies is likely species-, context-, and scale-specific
(Fauchald 1999, Jaquet & Whitehead 1996, Ander-
wald et al. 2012). Habitat use is thus a dynamic amal-
gam of motivations (Manly et al. 2002) that is difficult
but necessary to parse in order to identify and protect
critical habitats (Bjorge 2001, Canadas et al. 2005,
Guisan & Thuller 2005). Without an understanding of
underlying causes, researchers cannot advance
beyond descriptions of spatial pattern to tractable
accounts of habitat use that describe why a given
habitat is important to a predator (Redfern et al.
2006).

The high dimensionality of habitat use is reflected
in the prevalence of multivariate cetacean-habitat
models. While prey metrics alone can strongly predict
whale densities (e.g. Piatt & Methven 1992), many
published models are improved by the inclusion of
non-prey variables, such as fixed hydrographic data
(e.g. seafloor depth) and dynamic water column data
(e.g. chlorophyll a concentration) (Friedlaender et al.
2006, Benoit-Bird et al. 2013). Meanwhile, many have

Mobile predator habitat use is notoriously difficult
to study amid the subtleties and expanse of the open
ocean (Block et al. 2011), but equal and unique
challenges are present in complex coastal habitats
such as fjords. Compared to other coastal zones,
fjords are seasonally productive, spatially complex,
oceanographically dynamic, and economically valu-
able (Syvitski et al. 1987). As semi-closed systems in
which oceanographic processes are relatively self-
contained, fjords are also exciting venues for ecosys-
tem research (Pearson 1989). Overall, they serve as
intriguing foraging grounds for large whales (Ware
et al. 2011), but the opportunity to study feeding
whales in such habitats has only recently become
possible as recovering populations in some areas
return to pre-whaling coastal habitats.

Industrial whaling severely depleted humpbacks
in the coastal fjords of British Columbia (BC), Canada
(Ford 2014), but as the North Pacific population
recovered, they began returning en force in the last
2 decades (Ashe et al. 2013). Here, we report on
a decade of cetacean research within a northern

found significant results without in-
cluding prey variables at all (e.g. Fer-
guson et al. 2006, Dalla Rosa et al.
2012, Bombosch et al. 2014). Environ-
mental variables in these models are
often assumed to serve as proxies
for prey abundance and availability
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the relationships remain poorly under-
stood (Pershing et al. 2009). Alterna-
tive explanations for the importance
of non-prey variables, such as the ther-
mal maintenance of epicutaneous algal
growth (Boily 1995, Durban & Pitman
2012), are receiving increased atten-
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knowledge of which variables to in-
clude in a habitat model relies upon
hypotheses about the relationships
among variables that can only be in-
spired by close familiarity with the
specifics of a system, including the
prevalence and persistence of the spa-
tial pattern in question.

Fig. 1. Study area within the Kitimat Fjord System, within the Gitga'at First
Nation territory in British Columbia, Canada. Asterisk (north VER) is treated
as the entrance to Gardner Canal for Nearest Inlet variable and as the refer-
ence point for Ocean Distance measurements. Primary waterways: CAA: Caa-
mano Sound; CMP: Campania Sound; DOU: Douglas Channel; EST: Estevan
Sound; MCK: McKay Reach and Ursula Channel; SQU: Squally Channel;
VER: Verney Pass; WHA: Whale Channel; WRI: Wright Sound. Research
headquarters: NCCS: North Coast Cetacean Society; Hartley Bay: Gitga'at
Cetacean Research Program; GW: Gitga'at Guardian Watchmen outcamp
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BC fjord system (Fig. 1) proposed as critical habitat
for humpback whales Megaptera novaeangliae and
other marine mammal species (Ashe et al. 2013).
Collectively, our sightings suggest that humpbacks
occupy this fjord system in a kind of ‘wave’, in which
high whale densities propagate from outer channels
in summer to deep inner channels in the fall (Fig. 2).
If this apparent pattern is real, the 'whale wave'
would be a rare example of persistent, structured,
and complex habitat use that would (1) be an excep-
tion to paradigms in the conservation of large marine
predators and (2) likely go unnoticed and/or unvet-
ted at the spatio-temporal coverage of typical marine
mammal surveys which, given finite resources, tend
to prioritize greater spatial range instead of repeated
coverage of a restricted site. Furthermore, this novel
habitat use strategy may lend insight into the impor-
tance of fjord systems to recovering whale popula-
tions in BC and elsewhere, as well as the converse:
the whales' ecological importance to fjords, both his-
torical and potential.

Our objective in this study was first to verify the ap-
parent spatial pattern statistically, then to determine
the underlying driver(s) of the whale wave. To do so,
we designed and launched a new oceanographic
survey in 2015 designed to evaluate the following
hypotheses of increasing habitat use complexity:

(1) Prey: Humpbacks are strictly following their prey.

(2) Proxy: Humpbacks are tracking environmental
indicators of prey conditions or other habitat needs.
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(3) Habit: Humpbacks are practicing a habit of
habitat use, concentrating in certain portions of the
fjord system at certain stages of the summer, akin to
a fine-scale and timed philopatry.

(4) Prey + Proxy: Distribution is informed by both
direct interactions with prey and the tracking of envi-
ronmental indicators.

(5) Prey + Proxy + Habit: Distribution is informed
by all 3 strategies.

MATERIALS AND METHODS
Study area

The study area (1961 km? of water) is located
within the Kitimat Fjord System (KFS) of northern
mainland BC, centered at 53°N and 129°W (Fig. 1).
The KFS contains the marine territory of the Gitga'at
First Nation, the confined channel portion of several
proposed shipping lanes (e.g. Enbridge 2010), critical
habitat for several endangered or threatened species,
and Fisheries Management Area (FMA) 6 for the BC
coast (Ashe et al. 2013).

This fjord complex extends 140 km inland from
the Pacific Coast (Macdonald et al. 1983), nested
within the Kitimat Ranges of the Great Bear Rain-
forest, the largest temperate coastal rainforest in
the world (Thomson 1981). An uncommon attribute
of this fjord system is its large islands that compart-

mentalize the fjord into a network of
channels. These channels have a
typical fjord morphology, with steep
bedrock walls and relatively smooth
sediment-floored basins separated by
high-relief sills (Pickard 1961, Mac-
donald et al. 1983). Douglas Channel,
Gardner Canal, and to a lesser extent
Surf and Cornwall Inlets are the pri-
mary fjords that feed the system
(Pickard 1961).

Spanning the coastal boundary be-
tween ocean and the coastal ranges,
the KFS is characterized by strong
offshore-inshore gradients in climate
(Fissel et al. 2010), oceanographic prop-
erties (Macdonald et al. 1983), and in-
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Fig. 2. As summer turns to fall (x-axis), humpback whale Megaptera novaean-

gliae sightings occur increasingly deeper into the Kitimat Fjord System (y-

axis). Black line is the running 10 d mean of raw sightings (gray dots, n = 2527)
from Gitga'at and North Coast Cetacean Society surveys 2004 to 2014

‘ tertidal ecology (Turner 2003). KFS
330 waters are circulated by a combination
of 3 processes: estuarine circulation
(forced by freshwater discharge), wind
forcing (e.g. katabatic outflows), and
tides (Macdonald et al. 1983). The rela-
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tive importance of each varies according to location,
season, and timescale. Water movements are further
influenced by seasonal patterns and punctuated storm
events on the adjacent shelf, which are strongestin au-
tumn (Macdonald et al. 1983).

In the spring, seasonally resident humpback whales
Megaptera novaeangliae migrate to the KFS from
tropical Pacific breeding grounds, primarily Hawaii
(Ashe et al. 2013). Most leave the KFS by late fall,
though our field observations suggest that some indi-
viduals may overwinter in protected coastal waters of
northern BC. During the summer, these humpbacks
feed opportunistically upon euphausiids and small
schooling fish. Local net tows indicate that dominant
euphausiid species include Euphausica pacifica,
Thysanoessa spinifera, T. longipes, and Tessarabra-
chion oculatum, and data on community dynamics are
currently being prepared for publication (K. Qualls
pers. comm.). Based on field observations and local
traditional knowledge, fish prey include herring Clu-
pea harengus pacifica, sand lance Ammodytes hexa-
pterus, and various species of smelt (f. Osmeridae). In
rare years, KFS humpbacks have been observed feed-
ing upon sardine Sardinops sagaz caerulea (J. Wray,
H. Meuter, & C. Picard unpubl. data).

Visual surveys 2005-2014

Over the course of a decade, whale surveys were
conducted an average of once per month by 2 collab-
orative research efforts: the Gitga'at Cetacean Moni-
toring Program and North Coast Cetacean Society
(NCCS) study (Fig. 3), with some differences in
methodology and spatial coverage.

Gitga'at surveys were conducted from either a 7 m
or 9 m vessel. Nearly all surveys began in Hartley
Bay and included the circumnavigation of Gribbell
and Gil Islands (Fig. 3). The remainder of the survey
route varied according to weather conditions and
available daylight. Beginning in 2013, additional
surveys focused on the outer channels (primarily
Caamano Sound), launching from and ending at a
remote outcamp (GW in Fig. 1). Survey routes were
recorded manually using GPS. Average survey speed
was 38 km h™?.

NCCS surveys were conducted in non-winter
months during good weather conditions with visibility
greater than 3 nautical miles and sea state no greater
than Beaufort 3. All surveys began from the south end
of Gil Island (Fig. 3). Surveys were conducted aboard
a 7 mvessel at an average speed of 28 km h™! (in 2006,
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Fig. 3. Left: Survey effort by Gitga'at (red) and NCCS (blue), 2005 to 2014. Right: Sampling plan for 2015 vessel transects
(lines) and oceanographic stations (filled circles) in 2015 aboard RV ‘Bangarang’
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a 8 mvessel was used at 12 km h~!). Regular stops with
the engine off were made to listen for blows.

On both platforms, 2 to 3 observers scanned for
cues of whale presence such as blows, splashes,
flukes, fins, or breaches. Groups were approached
slowly in order to estimate group size and record
behavior, and GPS location was recorded manually
from the vessel's chartplotter. During each en-
counter, 1 observer would continue scanning for the
presence of other whales. An encounter ended when
notes on group size and behavior were complete, or
within 30 min, at which point the survey would con-
tinue along the pre-determined route.

2015 survey efforts

May through September 2015, we conducted con-
current visual and oceanographic surveys aboard the
RV '‘Bangarang’, a 12 m motorsailer with a survey
speed of 5 knots, with a team of 3 researchers. We
completed monthly surveys of the study area within
a target duration of 20 d, during which we visited a
grid of stations (n = 24), between which we con-
ducted concurrent visual and acoustic transect
surveys (Fig. 3).

Visual whale surveys. Monthly surveys were con-
ducted using line-transect sampling methodology
(Buckland et al. 2001). Bearing and reticle readings
using Fujinon 7 x 50 binoculars, min-max-best group
size estimates, and cue behaviors for each sighting
were recorded by an observation team from a plat-
form 2 m above sea level. At standard intervals
observers rotated between 3 positions, one of which
was data entry at the helm. Survey routes were
recorded in a data entry software interfaced to a
Garmin 441s GPS unit with an external antenna
mounted atop the radar tower.

Hydroacoustic data. Hydroacoustic data were col-
lected along survey tracklines with a down-sounding
Sygwest Hydrobox echosounder (33 and 200 kHz
dual-frequency) to obtain a profile map of the depth,
distribution, and patchiness of backscatter down to
300 m, a range that encompasses the maximum dive
recorded for humpback whales (Hamilton et al. 1997).
The Supplement at www.int-res.com/articles/suppl/
mb567p211_supp.pdf provides details of echosounder
data collection and processing. When odontocetes
were seen, the echosounder was turned off to mini-
mize disturbance.

Oceanography. We limited oceanographic vari-
ables for our habitat models to surface temperature,
surface salinity, and maximum chl a concentrations

between the surface and 250 m depth. During tran-
sects, surface water temperature and salinity were
sampled at 0.3 m depth every 2 s with a Seabird Elec-
tronics 45 thermosalinograph (TSG). At each station,
we sampled chl a with a WetLabs ECO-FL fluorome-
ter mounted to a SBE25plus CTD.

Analysis

Seasonal spatial pattern. A seasonal distribution
shift is a pattern in both space and time. Observing it
requires (1) the division of the study area into small
geographic strata and (2) the division of the year into
small temporal blocks. The fjord system is compart-
mentalized by islands and underwater sills that
divide the fjord into discrete channels. We pooled
survey effort within these channels into a total of 26
geographic strata in a scheme that balanced spatial
resolution against the loss of statistical power with
increased strata, making sure to compartmentalize
high-effort areas (e.g. thoroughfares, entries to head-
quarters) from low-effort areas. We aimed for 2 to 4
strata per channel.

The area of viable humpback habitat within each
stratum was calculated with a GIS (www.geojson.io)
using local knowledge and our combined field expe-
rience. In this steep-walled fjord system, humpbacks
are commonly seen accessing habitat up to and
within the intertidal zones of the area's shoreline. We
therefore defined the study area as the waters that
humpbacks could easily access at all tides.

Tracks from Gitga'at and NCCS surveys were
drawn in a GIS (same as above) based on waypoints
and notes taken during the surveys. For each survey,
effort (kilometers of trackline surveyed) and hump-
backs seen were then totaled within each geographic
stratum. Effort and whales were further pooled into
monthly bins. From these datasets, humpback den-
sity in each month-stratum was calculated as the
number of whales seen per kilometer of effort.

We used Monte Carlo randomization in R (R Devel-
opment Core Team 2013) to test the null hypothesis
that, within each geographic stratum, month-to-
month differences in observed humpback density
were due only to random chance. In effect, we ran 26
randomization tests, one per stratum. Randomization
tests are a versatile, valid and relatively intuitive
alternative to classical tests when data may not meet
parametric assumptions (Manly 1991). Each stra-
tum's randomization entailed 10 000 iterations of the
following procedure. All humpbacks seen within a
given stratum were totaled across all months and
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years. These whales were then randomly redistrib-
uted amongst the months during which effort
occurred. Redistributed sightings were divided by
actual tracklength covered to arrive at a simulated
null density for each month. After all iterations were
complete, a distribution of null densities was avail-
able for each month-stratum. The observed density
was then compared to the null distribution to infer
statistical significance. The quantile of the null densi-
ties that corresponded to the observed density was
interpreted as the likelihood that observed density
equaled or surpassed that which would be expected
by random chance.

Acoustic backscatter. Acoustic backscatter pro-
cessing is detailed in the Supplement. In summary,
the Syqwest Hydrobox outputs a pixelated represen-
tation of water column backscatter, where pixel
value positively correlated with backscatter. These
pixel data were georectified to account for variable
vessel speed and were visually scrutinized to ensure
all reflections attributable to seafloor, near-surface
water bubbles, engine cavitation, sonars of passing
ships, and whales were removed. To reduce each fre-
quency further to display only backscatter of proba-
ble whale prey, we filtered data based on patch char-
acteristics and overlapping frequencies so that, to the
extent possible, 33 kHz backscatter represents small
schooling fish, while 200 kHz backscatter represents
euphausiids. Deepwater krill imaging and zooplank-
ton tows were used to verify the efficacy of the 200
kHz backscatter processing methods.

Middle-priced echosounders like that used in this
study can characterize prey-like backscatter but can-
not quantify the biomass of constituent taxa. We
developed 3 simple metrics for each filtered fre-
quency, described below and depicted in Fig. S29 in
the Supplement. These metrics were cross-checked
pairwise for collinearity.

(1) Total backscatter (T): The mean sum of pixel
values of prey-like backscatter; this is a proxy for the
quantity of potential prey available.

(2) Backscatter intensity (I): The mean pixel value of
prey-like backscatter; this is a proxy that can repre-
sent the school density, body size and composition,
and/or patch characteristics of potential prey swarms.

(3) Vertical dispersion (D): The standard deviation
of the depth distribution of prey-like backscatter; this
is a proxy for the vertical extent of prey swarms;
highly dispersed backscatter may be less ideal for
batch-feeding predators such as rorqual whales.

Station interpolation. Within each survey month,
chl a values from stations were interpolated for each
transect centroid using inverse path-weighted dis-

tance, a function that linearly weights combinations
of sampled points based on their distance from the
interpolation cell, accounting for land obstruction (R
package ipdw; Stachelek 2015). Interpolation was
also used to fill the few gaps in TSG data that were
the result of rare priming issues caused by air enter-
ing the plumbing during large swells.

Habitat modeling. We used generalized additive
models (GAMs) to test for and elucidate relationships
between humpbacks, potential prey metrics, and
other environmental variables. The GAM is a model-
ing approach that relates observations (in our case,
humpback counts) to predictor variables using non-
linear link functions (smoothing or ‘spline’ functions)
without imposing parametric limits on the data
(Hastie & Tibshirani 1990). GAMs can accommodate
highly nonlinear functional relationships (Zuur et al.
2009). GAMS were built using R package mgcv
(Wood 2006). Poisson, quasi-Poisson, and negative
binomial models were explored (with their default
link functions) for modeling humpback counts along
transects.

Monthly surveys were split into transects of
approximately 5 km length (n = 216; after Hedley et
al. 1999). This scale was sufficient to minimize auto-
correlation between adjacent transects, include a
sufficient percentage of humpback sightings, and
maintain adequate sample size for modeling. Be-
cause the model families tested required us to model
whale counts and not densities, the logarithm of
transect length was included in models as an offset.
An example model, in which humpback counts are
modeled by total 200 kHz backscatter and disper-
sion, would appear as follows in R: gam(formula =
hw ~ offset(log(effort)) + s(T.hi) + s(I.hi), data = data,
family = nb, gamma = 1.4).

We excluded our third survey (late July) because
oceanographic data were not collected, and redun-
dant transects in Squally and Campania were
removed to equalize effort among all geographic
blocks (Fig. 1). For each 5 km transect, TSG read-
ings were averaged, backscatter metrics were
derived, and chl a maxima (calculated from fluores-
cence using SBE laboratory calibrations) were
taken from the interpolation cell containing the
transect centroid. Whale positions were geo-located
using binocular bearing and reticle readings from
the observation platform (using R package bang-
arang [Keen 2016] which accounts for horizon
obstruction in confined North Pacific channels),
and their Euclidean distances to transect centroids
were calculated (swfscMisc; Archer 2014). Hump-
backs and effort (km trackline surveyed) were
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totaled in a 2.5 km radius from the centroid of each
transect.

We developed sets of candidate models that cor-
respond to our 5 hypotheses (see ‘Introduction’).
Prey, Proxy and Habit model candidates were based
on non-overlapping sets of explanatory variables
(Table 1) that are regularly included within cetacean-
habitat models (Reilly 1990, Reilly & Fiedler 1994,
Redfern et al. 2006). We developed 1 novel metric,
distance to nearest inlet (Inlet), inspired by observa-
tions across years of humpback association with the
fjord system's 3 major freshwater inlets (Surf Inlet,
Cornwall Inlet, and Gardner Canal; Fig. 1). These
waters enter the fjord in tidally mediated flows that
can become rapids at peak ebb. In late summer,
humpbacks are regularly seen near or among these
rapids (Fig. 4). Both Inlet and distance into fjord (Dist)
were calculated in R as shortest-path travel routes
between points in the Kitimat Fjord System, account-
ing for winding channels and island obstruction
(Keen 2016).

Models for Prey + Proxy and Prey + Proxy + Habit
hypotheses were built by pooling their constituent
variable sets and adding bivariate interactions that
combined variables from separate sets. For models
that required position variables, both continuous and

categorical versions were trialed (Table 1). Categori-
cal variables and bivariate interactions (e.g. Lat x
Long) are penalized during model selection due to
the degrees of freedom they require, but they may
best capture the spatiotemporal trend of the wave.
All continuous variables were tested for pairwise
collinearity with a Pearson's correlation coefficient
cutoff of 0.5 (Zuur et al. 2009). We found that sea sur-
face salinity (SSS) was correlated with distance into
fjord and latitude (Pearson's > = 0.71). This reflects
the inshore—offshore salinity gradient typical of fjord
oceanography. Given the different motivations each
variable represents, we kept all 3 variables (SSS, dis-
tance into fjord and latitude) and explored results
with caution.

Models were evaluated based on the second-order
Akaike information criterion (AICc), a metric for
model comparison that, like its predecessor AIC,
weighs negative-log likelihood against the number
of parameters it invokes (Akaike 1974) but more
heavily penalizes overfitting and provides bias cor-
rection for small sample sizes (Burnham & Anderson
2002). In doing so, AICc selects for models that cap-
ture central tendencies most parsimoniously and thus
are more predictive than descriptive. Since AICc is a
relative measure of fit with no standard scale, Akaike

Table 1. Explanatory variables used in habitat-use models. Model stages are enumerated: 1: Prey; 2: Proxy; 3: Prey + Proxy; 4:
Habit; 5: Prey + Proxy + Habit. Each acoustic backscatter ‘Variable' consists of 2 variables — one for each frequency (H: 200 kHz,
L: 33 kHz). Variable types are continuous (Cont.) or categorical (Cat.)

Variable category Variable Symbol Type  Models Description
Acoustic backscatter Total Th Cont. 1,3,5 Mean sum of water column pixel values
T
Intensity Iy Cont. 1,3,5 Mean pixel value
L
Dispersion Dy Cont. 1,3,5 Standard deviation of backscatter depth
Dy distribution (m)
Oceanography Nearest inlet Inlet Cont. 2,3,5 Swimming distance (km) to nearest
major inlet
Sea surface temperature SST Cont. 2,3,5 Degrees Celsius (°C)
Sea surface salinity SSS Cont. 2,3,5 Practical salinity units (psu)
Chlorophyll a maximum Chl Cont. 2,3,5 Peak interpolated water column
chlorophyll a concentration (ug ml™)
Position Survey month Month Cat. 4,5 4 levels: June, July, August, September
Block Blk Cat. 4,5 8 levels (see Fig. 1)
Day of Year Day Cont. 4,5
Position Lat Cont. 4,5 Geospatial coordinates (dec. deg.)
Long
Distance into fjord Dist Cont. 4,5 Swimming distance (km) from the
furthest point inland
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Fig. 4. (A) At peak ebb tide in late August 2015, humpback whales gather at the bottleneck entrance to a large freshwater inlet

(Cornwall Inlet) in the study area. Ephemeral but dramatic tidal rapids develop at this site during ebb tides. Coincidentally

moored in an adjacent cove just out of the tidal stream, we were able to document this pair and their associated Stellar's sea li-

ons Eumetopias jubatus rollicking in the rapids (B) for >1 h, repeatedly practicing contortion maneuvers (C,D). Stills pulled
from footage by Luke Padgett, available online at: https://vimeo.com/154083846 (password: baleen)

weights (w) were also calculated within each model
set to compare evidence ratios on a scale from O to 1,
such that all w for a model set sum to 1 (Burnham &
Anderson 2002). When ranked in decreasing order
of w, the subset of models whose cumulative w is
20.95 is called the 95 % confidence set. A large 95 %
set suggests that many variable combinations achieve
the same level of parsimony and that there is no clear
model choice (Symonds & Moussali 2011). When no
single model is clearly the best fit, 95% confidence
set is the most transparent way to report results
(Symonds & Moussalli 2011).

Where possible, we kept candidate model sets ‘bal-
anced’, such that each variable within a setis used an
equal number of times. Given equal representation,
each variable's cumulative Akaike weight, summed
across all models that include it, can be used as a
metric of relative variable importance (RVI; Burnham
& Anderson 2002). Interaction terms were not in-
cluded in balanced sets.

Models were first fit to the full season dataset.
Explanatory variables were normalized to a mean of
zero, a transformation that preserves variable spread
but improves model convergence and facilitates the
comparison of effect sizes (Zuur et al. 2009). Proxy

variables (SST, SSS, Chl, Inlet) were normalized
across the season, but we opted to normalize back-
scatter metrics within each month separately. Our
rationale was that doing so would (1) reflect the fact
that humpbacks are orientating themselves to the
best prey conditions available and (2) clarify inter-
pretation of results. We wished for our models to elu-
cidate patterns in humpback habitat use rather than
account for trends in explanatory variables.

Models were fit to individual months using the same
sets of model candidates. Before fitting, all explanatory
variables were normalized within each survey subset.
Interaction terms were not used due to reduced
sample size, and Day of Year was excluded from the
Habit variable set. Prey, Proxy, and Prey + Proxy sets
were balanced, and for these stages, we calculated
RVI as above. To facilitate results exploration, RVI
were also scaled by the most important variable, so
thatallRVIranged between 0 and 1. AICc scores were
calculated to determine these variable weights but
were not used for model selection because AICc
could not be compared across models based on differ-
ent datasets (Burnham & Anderson 2002). Instead, we
selected best models based upon minimum prediction
error from leave-one-out cross validation, an iterative
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routine in which each datum (‘test set') is excluded
from the data used for model fitting (‘training set’); its
humpback count is then predicted with the training
model (Hastie et al. 2009). The mean squared error
(MSE) of predictions, scaled by the mean observation
value to account for changes in local humpback
abundance and/or group size, provides a metric of
model performance across similar datasets (here, sur-
vey month), with lower MSE being better.

RESULTS
2005-2014 surveys

Gitga'at effort comprised 182 d spanning all 10 yr
of the survey period. NCCS effort (beginning in
2006) comprised a total of 252 d. Effort was concen-
trated April to November, but occasional opportunis-
tic trips occurred from December to March. In gen-
eral, survey lengths for both platforms increased
during summer months and in the latter years of the
study decade (Fig. 5).

Between 2005 and 2014, NCCS and Gitga'at sur-
veys found a total of 4783 humpbacks Megaptera
novaeangliae. Pooled sightings from all years con-
firmed that, even after effort-corrected density esti-
mation, the whale wave was strongly apparent
(Fig. 6, top). Sightings and effort were also pooled
into pairs of years, and spatially stratified density was
mapped, confirming that the wave was an annually
persistent phenomenon.

The Monte Carlo test found that results were non-
random at the 5% significance level in most strata in
most months (Fig. 6, bottom). The pattern was most
evident in July and October. The test suggested that
the move inland actually happens fairly abruptly
between August and September. In general, the pat-
tern was more uniformly significant in the interior
channels to the northeast of Gil Island. In May, 13 of

14 geographic strata inland of Gil Island had lower
observed humpback densities than was expected by
random chance, 11 of which were lower than 95 % of
simulated densities. By September, all 14 strata had
higher observed densities than 95 % of random trials.
The pattern was reversed in the outer channels: in
July, 12 out of 13 outer strata had higher humpback
densities than 95% of simulated densities, but by
October, this number dropped to 3. Of the remaining
outer strata, 9 had lower densities than expected by
chance, and 5 of these were lower than 95 % of simu-
lated densities.

Statistical results broadly supported the existence
of a wave of humpback density that propagates
from outside to inside waters, but not uniformly so.
Notable exceptions to the pattern include certain
strata in central and outer waters. The strata at the
bottom of Gil Island seemed to have unexpectedly
high humpback densities in May, before other
outer channels were populated, and onward into
the fall when the other adjacent strata had already
been cleared out. Based on our field experience,
this area appears to be of special importance to res-
ident humpbacks across seasons. Another stratum
of interest is the most southeastern in the study
area, the sector of Caamano Sound that abuts
Laredo Sound and Surf Inlet (1 of the 3 large inlets
feeding the fjord system). In all months, this
stratum was exceptional, and the pattern coincides
with local knowledge about late-fall cetacean activ-
ity at the mouth of Surf Inlet.

2015 survey

Visual survey. In 2015, the 5 vessel surveys cov-
ered a total of 1653 km of trackline in 5 surveys over
117 d (Table 2). On average, each survey covered
331 km (min. 320, max. 346) in 23 d (min. 16, max.
28). In total, 968 humpbacks were observed, 430 of
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Fig. 6. The 'whale wave' is (a) evident in humpback whale sighting rate (whales per km) estimates and (b) verified by Monte
Carlo randomization tests. The 2004 to 2014 surveys from Gitga'at and North Coast Cetacean Society (NCCS) platforms were
pooled and then spatially stratified (n = 26 strata). Randomization results (b) are color-graded for each stratum as dark red: ob-
served whale sighting rate was lower than at least 95% of the random trials; pink: observed sighting rate was lower than the
randomization median; light blue: observed was higher than randomization median; dark blue: observed was higher than

95 % of random trials

which were seen during transect effort (in 268 sight-
ings, mean 54 per survey, min. 39, max. 89). Mean
group size was 1.6 individuals. While humpbacks
were abundant in all survey months, the highest
numbers were observed in August. The monthly dis-
tribution of these sightings confirms that the whale
wave occurred again in 2015 (Fig. 7). As the wave
propagated inland, humpback

in some months and full in others (e.g. compare Whale
Channel [WHA] month to month in Fig. 9).

Krill-like backscatter (200 kHz) was prevalent
throughout the season. Total backscatter was highest
in the outer channels during June. In other months, to-
tal backscatter remained stable overall, but distribution
was patchy and variable. In early summer, most total

densities also became less con-
centrated. The most dispersed
humpback distribution was ob-
served in September.
Backscatter. For backscatter ex-
ploration, we developed both map
and profile views (Figs. 8 & 9).
Backscatter distribution on both Month Survey effort
frequencies shifted throughout Days km  n,  Bft Ny
the summer, but these shifts

Table 2. Monthly oceanographic surveys on the RV ‘Bangarang’ in 2015, detailing the

days of fieldwork within each survey month (Days); the formal transect effort (km); the

number (ny) of 5 km transect bins used in habitat models (late July was excluded from

modeling); the average Beaufort sea state conditions (Bft) during the formal effort; the

number (n,,) of humpback whales (HW) seen; the average group size during the

month (Grp), the mean + SD of humpback counts within 5 km transect bins (Mean
count), and the percentage of bins with a count of 0 (% 0)

HW sightings
Grp Mean count % 0

May-June 16 320 47 1.6 39  1.538 0.705+1.425 75

were neither unidirectional nor June-July 26 335 57 1.3 39 1744 1.143+£2422 71
Slmp]_e. Some Channels Consis_ Late Ju].Y 21 346 - 1.4 49 1.714 1.114 + 1.806 60
. . August 26 322 59 1.4 89 1.416 1.681+2.587 48

tently contained krill-like patches | ¢ jiomper 28 330 56 14 52 1.558 0853+ 1417 62

(e.g. Squally Channel [SQU]), Total 117 1653 219
while others were entirely empty

- 268 - 1.101 £2.005 63
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Fig. 7. Humpback whale sightings from the surveys in 2015 aboard RV ‘Bangarang’. Circles are scaled positively by group
size. Black-filled circles are on-transect sightings; empty circles are sightings during ‘casual’ or transit effort

backscatter was generally confined to the western half
of the study area, in July almost exclusively in north
SQU and western Wright Sound. By late summer,
areas of high total backscatter had dispersed into mul-
tiple channels, including those further inland.

Total fish-like backscatter (33 kHz) declined
throughout the summer. The highest readings were
in June, also in the outer channels. As total backscat-
ter declined, isolated aggregations of backscatter

June July

4

Krill-like |
Total

250

px/m

0

Fish-like i
Total |

developed in all channels with no clear offshore-
inshore pattern. One noteworthy exception was a
late-season area of high total backscatter in the fur-
thest inland channels of the study area (see Fig. 9,
VER block during September). Total backscatter was
consistently high in the offshore channel of Caamano
Sound (CAA).

Patterns were less obvious in the dispersion and
intensity metrics (Fig. S30 in the Supplement). Mean

Aug. Sept.

/ .
P 7 4

" 534
I

EST
CMP =}

. A
t12940 -129.6 %A -129.0
% S o

Fig. 8. Total backscatter for both filtered frequencies (pixel m™; total pixel values per meter of trackline) interpolated from 5 km

bins of trackline within each monthly survey in summer 2015. Color scales range from noise floor to the season's maximum read-

ing. Interpolation was performed using inverse path weighted distance, a function that linearly weights combinations of
sampled points based on their distance from the interpolation cell, accounting for land obstruction
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intensity was highest overall in June and September,
for both frequencies. The only noteworthy pattern in
dispersion was for 200 kHz in September: lower val-
ues in the inland channels (i.e. tighter scattering lay-
ers) than in outer channels, although both areas con-

June

July

tained relatively high total 200 kHz backscatter for

the month.

Oceanography. Month-to-month sea surface con-
ditions were highly variable (Fig. 10, Table 3). Outer
channels were consistently the coolest and most

Sept.

-129.6
I

-129.0 -129.6
| S8 |

Fig. 10. Near-surface oceanographic variables of the Kitimat Fjord System, summer 2015. Sea surface salinity (SSS, top) and
temperature (SST, middle row) were sampled along transects at 0.3 m depth then interpolated (see ‘Methods'). Chlorophyll a

(Chl a, bottom) was calculated from fluorescence measurements at station locations (n = 24) then interpolated

Table 3. Summary of oceanographic properties sampled in each monthly survey of 2015 aboard RV ‘Bangarang’. SSS: sea
surface salinity; SST: sea surface temperature (°C); Chl a: chlorophyll a (ng ml™!). Metrics comprise the mean, standard
deviation, minimum (Min.) and maximum (Max.). Chl a was not sampled in July

Month SST (°C) Chl a (ug ml™!) ——
Mean SD Min. Max. Mean D Min. Max. Mean SD Min. Max.
May-Jun 2570 248 15.60 30.67 13.00 1.03 10.35 17.78 14.09 6.57 0.49 28.05
Jun—-Jul 26.72 247 17.75 31.16 14.67 127 1141 19.05 5.50 4.95 0.95 20.89
Jul 27.84 284 17.46 31.68 13.74 1.08 11.16 1797 - - - -
Aug 25.51  4.02 11.59 31.36 1354 1.16 11.16 16.63 5.07 5.01 1.01 21.39
Sep 26.92 243 19.21 31.73 12.37 0.88 1048 14.92 3.24 5.14 095 27.02
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saline; inner channels were typically the freshest but
with variable temperatures (SST). Property ranges
were widest in July and August for SST (11.41 -
19.05°C) and SSS (11.59 - 31.36), respectively.
Waters were warmest in July (mean 14.67°C, max
19.05°C), with isolated areas of warmer surface
waters in SQU, Wright Sound, and McKay Reach and
Ursula Channel. The offshore-inshore salinity gradi-

validation residuals (Anscombe 1953). There were
2 accepted algorithms within the literature (Mc-
Cullagh & Nelder 1989, Choi et al. 2005), so we cal-
culated both. Results were practically identical;
those based on the Choi et al. (2005) algorithm are
presented here.

The Prey model gave the poorest explanation of
humpback distribution (min. AICc =601; Table 4). All

ent was strongest in August and
June but relatively negligible
in July and September. The most
homogenous surface conditions
occurred in September, perhaps
due to mixing by the early on-
set of autumn storms, as did
the coolest (mean 12.37°C, min
10.48°C) and most saline mea-
surements (mean 26.92, max.
31.73).

Chlorophyll a (Chl) maxima
declined throughout the season
(Fig. 10, Table 3). June Chl con-
centrations were much higher in
the southwest channels (max.
28.5 ng 1Y), After June, strong
maxima only persisted in isolated
hotspots occurring increasingly
inland. The largest maxima were
found in north SQU in June
(above value) and in Douglas
Channel (DOU) in September
(27.02 pg ml™).

Habitat models

Full season. Superimposing
humpback counts upon back-
scatter data was an important
means of visually ground-
truthing the modeling process
(Fig. 9). We found overdispersion
in humpback whale count data,
and the negative binomial model
was selected over the Poisson
and quassi-Poisson models based
on visual inspection of quantile-
quantile plots. Because residual
distributions in negative bino-
mial models are typically non-
Gaussian (Hilbe 2011, Zuur et al.
2009), the Anscombe correction
was applied to survey cross-

Table 4. Full season model results for each hypothesis. Data rows summarize the
datasets, including sample size (n) and the number of explanatory variables (Vars.) in
each stage. Model set summarizes the number of variable combinations fit to the data
(Combos), and the subset of those models that are Balanced (equal variable represen-
tation). Balanced model sets were used to calculate relative variable importance (RVI)
for Prey and Proxy models. 95% Models rows summarize the resulting 95 % confi-
dence sets based on Akaike weights: the number of models in each set (n,,), the num-
ber of those models that are AICc equivalent (= AICc; within 6 AICc units of the set's
minimum AlCc, after Hilbe 2011), the minimum AICc in the 95 % set (minAIC), and
the proportion of null deviance explained by the model (r%). 95% Vars list the explana-
tory variables within 95 % sets; variables with a '~' were among the candidates; those
with v were included (Incl.). Variables used in the model with the lowest AICc are de-
noted instead with the significance level (p-value) of their smoothing function. When
balanced subsets were available, RVI is reported. Bivariate interactions are given
their own rows, joined by an ‘x’

Hypothesis
Prey Proxy Habit Prey+ Prey+
Proxy Proxy +
Habit
Data n 216 216 216 216 216
Vars 6 4 7 5 12
Model Combos 95 39 22 30 55
set Balanced 51 15 0 0 0
95% o 41 4 1 7 8
Models =AICc 41 4 1 3 8
minAICc 601.1 586.6 570.3 579.6 553.5
r? 0.16 0.35 0.41 0.39 0.62
Incl. RVI Incl. RVI Incl. Incl. Incl.
95% Ty v 1.00 v v
Vars Ty v 0.76 v -
Dy v 0.61 - -
Dy v 0.37 - -
Iy v 0.32 - -
I 0.1 0.41 - -
Ty x Dy 0.001 v v
Ty x Iy v - -
Ty x Vi, v - -
Dy x Dy, v - -
SSS - 1.00 - -
SST - 0.16 - -
Chl v 0.27 v v
Inlet v 0.40 v v
SSS x SST 0.001 0.001 0.01
Chl x Inlet v v v
Ty x Chl 0.01 0.05
Ty x Inlet v v
Lat x Long 0.001 0.01
Day of Year - 0.001
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other model stages yielded model fits with lower
AICc values and higher proportions of null deviance
explained (hereafter represented as r? after Fried-
laender et al. 2006), culminating in the Prey + Proxy
+ Habit model (min. AICc = 554, r? = 0.62). The best
Prey models explained only 16 % of the dataset’s null
deviance.

Of the 95 candidate Prey models, 41 remained in
the 95% confidence set, all of which were AICc
equivalent (i.e. within 6 AICc units for datasets of n <
256, Hilbe 2011), a sign of high uncertainty in model
selection. Of the 39 Proxy models fitted, 4 AICc-
equivalent models remained in the 95% set (min.
AICc = 587, r? = 0.35). The Prey + Proxy model set,
which fit 30 candidates, yielded a 95% confidence
set of 7 models, 3 of which were AICc equivalent
(min. AICc = 580, 2= 0.39). Of 16 candidate models,
the 95% Habit set kept only one (AIC = 560, 1? =
0.42), a good sign of strong support. While the sec-
ond-best model had considerably worse parsimony
(AICc = 571), it is worth noting that this model con-
tained the categorical variable Block, whose 8 levels
would have been heavily penalized in an AICc
framework. Its low AICc suggests the potential
importance of channel-specific patterns in variables
and/or humpback distribution. 55 candidate models
were passed to the Prey + Proxy + Habit step. The
95% set contained 8 models, all AICc-equivalent
(min. AICc = 553, r? = 0.62).

Monthly surveys. Based on low importance in full-
season fits, backscatter metrics 33 kHz dispersion
and 200 kHz intensity were left out of monthly vari-
able sets. Prediction error generally increased
throughout the summer (Fig. 11). Prey model per-
formance was relatively poor, but it was not always
the worst; in fact, the June Prey model tied for overall
lowest prediction error, but its error increased
steeply from thereon. In all months but June, the
best-fit Prey + Proxy model was the same as the
Proxy model (i.e. no backscatter variables were used;
Table 5). Habit model performance was sporadic,
declining most sharply from August to September.
The Prey + Proxy + Habit model was always the best
fit. Its prediction error was lowest in July.

Variable importance. Based on the variables pres-
ent in the full-season 95 % confidence sets (Table 4),
Total 200 kHz was the most important backscatter
metric, though 200 kHz Dispersion and Total 33 kHz
were also used within interaction terms. Total
200 kHz was the only variable to persist in the Prey +
Proxy 95% set, but 200 kHz Dispersion returned in
interaction with Total 200 kHz within the overall
best-fit model. All 4 oceanographic variables re-

3.0 Re
—6— Prey ,/

o5 | E Proxy /,’

’ —A— Prey + Proxy
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Fig. 11. Prediction errors of the best-fit models for each hy-
pothesis of humpback whale habitat use across monthly sur-
veys in summer 2015. Models were fit to each month sepa-
rately, with unique sets of variable combinations for each
hypothesis (see Table 1). For each survey, prediction error is
calculated as the mean square of Anscombe residuals (Choi
et al. 2005), scaled by the month's mean humpback count

mained in the 95% Proxy set. SST and SSS only
appeared important when in interaction with each
other; the best-fit Proxy model included SST x SSS
only. The best available Habit model included Day of
Year and the bivariate interaction Lat x Long Similar
results were found in RVI weights calculated from
balanced subsets of the Prey and Proxy candidates.
With interaction terms removed, SSS arose as the
most important oceanographic variable by far. This
may be more related to its collinearity with latitude
(see 'Methods’) than its indication of proximity to the
fjord's freshwater source. Interestingly, Inlet was the
second most important variable in the Proxy models.

Results differed slightly within the best-fit monthly
models, in which importance, when inferred from
both 95% sets and RVI, shifted month-to-month
(Table 5). Total 200 kHz and dispersion remained the
most important backscatter variables, but all months
were best-fit by multivariate Prey models. One no-
table finding was that Total 200 kHz was the most im-
portant backscatter metric in June and July, butin the
second half of the summer, 200 kHz Dispersion be-
came the most important, possibly suggesting in-
creasing importance of patch characteristics in late
season foraging strategy. Except for June, backscatter
was entirely absent from Prey + Proxy models, sug-
gesting that oceanographic and position variables
held much more explanatory power at the timescale
(and sample size) of a single month. One notable dis-
crepancy is that Total 200 kHz was the most
important variable in the July Prey + Proxy model ac-
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Table 5. Best-fit models for each month (June to September 2015) under each hypothesized model of humpback whale habitat
use (Prey, Proxy, etc. in Model column). Performance metrics: Mean square prediction error (Adj. MSE) based on Anscombe
residuals (Choi et al. 2005) and scaled by mean humpback count; proportion of null deviance in humpback counts explained
by model (r?); explanatory variables used in candidate models (defined in Table 1). Variables included in the best-fit model are
denoted with the significance level (o) of their smoothing function (ns when p > 0.05). Variables that were tested but not in-
cluded in a best-fit model are denoted with ‘~'. For the first 3 model stages, whose model sets were balanced (equal variable
representation), relative variable importance (RVI) is also reported, calculated from Akaike weights and scaled within month-
models between 0 and 1. Note that RVI metrics can only be quantitatively compared within model-months

Model Month Adj. r? Explanatory variables
MSE Backscatter Oceanography Position
Ty Ty Dy L, SSS SST Chl Inlet Long Lat Dist
Prey J 0.81 0.16 o - ns ns ns
RVI 1.00 048 0.55 0.92
J 1.50 0.38 o ns - .05 ns
RVI 1.00 0.30 0.42 0.23
A 2.10 0.19 o - 0.1 .05 -
RVI 0.47 0.73 1.00 0.52
S 2.38 0.17 o ns ns ns ns
RVI 0.89 0.60 1.00 0.87
Proxy J 1.65 0.39 o - - 0.1 ns
RVI 0.31 0.26 1.00 0.24
J 092 0.56 o ns - ns .05
RVI 0.08 0.27 0.12 1.00
A 141 0.68 o .001 - - .001
RVI 1.00 0.19 0.22 0.85
S 221 0.16 o - ns ns ns
RVI 0.53 0.63 1.00 0.55
Prey + J 0.81 0.16 o ns - ns ns - - - -
Proxy RVI 0.03 0.01 0.02 0.03 0.31 0.26 1.00 0.24
J 092 0.56 o - - - - ns - ns 0.05
RVI 1.00 0.30 0.42 0.23 0.04 0.12 0.05 0.46
A 141 0.68 o - - - - 0.001 - - 0.001
RVI 0.00 0.00 0.00 0.00 1.00 0.19 0.22 0.85
S 221 0.16 o - - - - - ns ns ns
RVI 0.43 0.29 048 0.42 0.53 0.63 1.00 0.55
Habit J 1.36  0.41 - - ns
J 1.48 0.37 0.05 - -
A 1.39 0.69 0.001 0.001 -
S 3.04 0.12 ns -
Prey + J 0.76  0.52 - - - - ns - 0.05 - - - ns
P:Xng J 0.54 0.48 - - - - o1 - - - - 005 -
it
P A 134 069 - - - - 01 - - - 0.001 0.001 -
S 1.64 0.18 - - - - ns - ns - - ns -

cording to Akaike-based RVI, but residual-based
prediction error selected a model with no backscatter
metrics whatsoever. On a monthly basis, Chl and SSS
were regularly the most important oceanographic
variables. Again, geospatial coordinates outper-
formed distance into fjord as a position metric.

Functional relationships. Inspection of smoothing
functions for the variables in the top season models re-
vealed complexinteractions between explanatory vari-
ables and the linear predictor in some cases (e.g. SST x
SSS, Fig. 12b), but near-linear relationships in others
(e.g.ChlinFig. 12a,e). Thelarge central bulgeinthe Lat
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Fig. 12. Smoothing functions of explanatory variables included in the best models fit to the full 2015 dataset. (a—c) Bivariate

smoothing functions from the all-round best-fit model (Prey + Proxy + Habit model in Table 4); (d—f) smoothing functions from

2 AlCc-equivalent models (within 6 AICc of the minimum AICc; Hilbe 2011) that contained Chl and 200 kHz integrated

backscatter in univariate terms, whose plots offer a simpler but related perspective on functional relationships between nor-

malized explanatory variables and the linear predictor of humpback counts (z-axis in 3-D graphs, y-axis in 2-D plots). Plots d—f
feature superimposed residuals (dots) and +1 standard error bounds (gray shading)

x Long perspective plot corresponds to the position of stratified Monte Carlo procedure were strongly non-
SQU, which sustained the highest humpback densities random but not absolute. The persistent high-density
throughout the season (Fig. 12c). The Day of Year areas to the southwest of Gil Island (Fig. 6) demon-

smoothing function captured theincreasein humpback strate that there are fine-scale deviations from the
abundance in August (Fig. 12d). The smoothing func- mesoscale pattern of the wave. Interestingly, another
tion for integrated 200 kHz backscatter was a near-sig- persistent exception to the pattern was the late sea-
moidal curve (Fig. 12f), reminiscent of a Type III func- son hotspot at the entrance of Surf Inlet, one of the 3
tionalresponse (Holling 1965; see ‘Discussion’). major sources of surface freshwater to the outer fjord

system (Fig. 1; more on these inlets below).

DISCUSSION
Habitat models

Documenting the wave
This study involved (1) long-term, 4-season moni-

Ten years of research demonstrated that hump- toring that identified spatial pattern and developed
back Megaptera novaeangliae densities propagate hypotheses, followed by (2) new fieldwork dedicated
throughout the Kitimat Fjord System in an offshore- to hypothesis testing. While we recommend this re-

inshore wave as summer turns to fall. Results of our search procedure in general, we acknowledge the
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limitations of using a single summer to explain a
long-standing pattern. The year 2015 may have been
an exceptional year in terms of oceanography that
decoupled humpbacks from their typical associations.
Indeed, it was in the aftermath of the ‘warm blob’ and
at the onset of an El Nino (Bond et al. 2015, CPC
2016). It is particularly difficult to discount philopatric
behavior, which would have been acquired and re-
fined over many years, as any one year may not be
optimal.

Nevertheless, our analysis allowed us to compare
conventional theories of habitat use strategy against
each other, weighing their relative explanatory
power on the scale of the full season and from month-
to-month. Similar to previous studies (e.g. Friedlaen-
der et al. 2006, Ferguson et al. 2006, Dalla Rosa et al.
2012), the most complex models of habitat use
(including both prey, proxy, and habit variables)
tended to best explain humpback distributions. Also
similar to past findings (e.g. Benoit-Bird et al. 2013)
was the importance of multiple prey metrics rather
than just backscatter quantity, and there was some
indication that as volume declined, the vertical dis-
persion of remaining backscatter became an increas-
ingly important predictor.

Our most curious results were (1) the generally low
importance of prey metrics relative to environment
variables, (2) the decline in Prey model rank from
first in June to among the worst in remaining months,
and (3) the general decline in performance of all
models as the season wore on.

Low prey importance. Certain backscatter metrics
(particularly Total 200 kHz) were included in many of
the best-fit models, but in monthly surveys, their im-
portance was quite low compared to environmental
variables. This may reflect reliance upon environ-
mental proxies instead of direct prey sampling at the
spatiotemporal scales of our data collection. However,
apparently weak whale-prey coupling may also be an
artifact of our sampling design. Our study attempted
to capture a pattern in both space and time, and it may
be that our surveys of the study area were not suffi-
ciently synoptic to capture whale-prey associations.
Our instrumentation or backscatter metrics may have
inadequately characterized humpback prey, or the
measurement scales of our backscatter bins and
humpback count radii may have been mismatched;
weak results could speak more to analysis design
than to ecological patterns (Levin 1992). Many preda-
tor-prey association studies have found mixed, highly
scale-sensitive results when relying on prey quantity
metrics alone (Fauchald 2009). Benoit-Bird et al.
(2013) emphasized that observed spatial pattern (or

lack thereof) depends entirely upon what is measured,
which is why we included several backscatter metrics.
While we were able to use frequency differencing
and patch characteristics to roughly distinguish prey
type within backscatter patches, our prey metrics may
have failed to capture a dimension of prey association
related to nutritional differences, if any, in available
prey. This has been an important distinction in
seabird foraging studies (Hunt et al. 1993).

An issue with an automated approach to the
backscatter metric calculation is that our results
depend upon the level of refinement and biological
relevance of the metrics and filters we developed.
However, we stand by our automated analysis on the
grounds that (1) manual approaches are subject to
human error and not reproducible, and (2) underesti-
mation is more likely than overestimation in auto-
mated methods, whereas manually selected patches
can incorporate subjective knowledge that increases
the risk of positively biased results.

Decline in prey model performance. We offer 5
hypotheses to explain the disproportionate decline in
prey model performance throughout the season:

(1) Prey switching: Humpbacks switched to a prey
type that was inadequately detected by our echo-
sounder or backscatter metrics, though we cannot
guess what that prey type would be, nor did we ever
observe any major shifts in foraging style.

(2) Inadequate coverage: Our sampling plan may
have been inadequate to detect locally rich but gener-
ally sparse backscatter patches of early fall. Indeed,
when we broke transect in fall 2015 to approach the
whales within inland channels, groups generally be-
haved as if they were feeding at depth, and the
echosounder detected isolated but dense backscatter
patches at depth as well (E. Keen unpubl. data).

(3) Satiation: After a winter of fasting, early sum-
mer habitat use was 1-dimensional and food-focused.
As blubber stores were replenished, whales no
longer needed to track the best prey conditions avail-
able. Search effort could have relaxed, perhaps
falling back on the heuristics of proxies and habit,
and other priorities were allowed to inform habitat
use (see '‘Competition’).

(4) Competition: Overall backscatter volume de-
creased while humpback densities increased, peak-
ing in August. At this time of year, a community of
other euphausivorous predators descends upon the
fjord system, including fin whales Balaenoptera
physalus (Ford 2014, authors’ unpubl. data), a variety
of seabirds, and salmon. Most of these exhibit prefer-
ence for outer and central channels (authors’' unpubl.
data). Intra- and inter-specific competition may have
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pushed humpbacks deeper inland and compromised
their spatial overlap with prey.

(5) Search shift: While spatial overlap with prey
must occur on the smallest scale in order for feeding to
occur, mobile oceanic predators must seek out and
position themselves for that opportunity by navigat-
ing and assessing prey conditions at multiple nested
scales in space and time. The scale of apparent spatial
association, therefore, may be a moving target. In the
abundance of early summer, humpbacks may have
been able to find sufficient prey patches without much
searching (once they had arrived in the most produc-
tive channels). But in the scarcity of autumn, the best
foraging strategy may have been to allocate more time
and effort to searching, remaining mobile until ade-
quate patches were found. If so, from our trackline
perspective, the average humpback would be spa-
tially decoupled from prey-rich areas, but all could
still have been engaged in food-driven behavior.

Decline in all models’ performance. The growing
prediction error in all models throughout the summer
suggests that we failed to sample some habitat com-
ponent that became increasingly important into the
fall. Two possible needs that were poorly included in
this study are as follows.

(1) Physiological maintenance: 'Nearest inlet’ was
our only health-related variable, inspired by curious
field observations (Fig. 4) and hypotheses from the
literature (Boily 1995, Durban & Pitman 2012). Dur-
ban & Pitman (2012) hypothesized that physiological
maintenance was a driver of baleen whale migration.
It seemed possible to us that turbulent mixing zones
of fresh, warm water within fjord systems may pro-
vide a similar service that prolongs the foraging sea-
son; this could also explain why many humpbacks
are able to remain in the deep channels of this fjord
system long into the fall, possibly overwintering here
(J. Wray, H. Meuter & C. Picard unpubl. data). How-
ever, inlet importance was mixed according to 95 %
model sets and RVI. This hypothesis merits further
investigation, given that such inlets are a feature
unique to fjord foraging habitats and may suggest
the unsung importance of fjords, both historically and
into the future, for whale populations.

(2) Social habitat needs: Humpbacks are often
philopatric to reliably productive feeding grounds
(Fleming & Jackson 2013). However, the foraging
season also has a strong social component. Foraging
regions tend to correspond to distinct breeding popu-
lations (Baker et al. 2013). Field biologists in these
feeding grounds often observe complex behavioral
transmission (Weinrich et al. 1992), annually persist-
ent social bonds (Ramp et al. 2010), and even song

(Vu et al. 2012). Social interests may gain precedence
over foraging as migration and breeding season
nears, and the interior channels of the fjord system
may be better for socializing in some way. If so,
acoustics may be a driving concern for this exception-
ally vocal species in this habitat. The steeper walls of
bare bedrock and narrow channels of the interior
fjords, secluded as they are from major shipping
lanes, may offer an attractive acoustic space (Williams
et al. 2013). Both social calls and song are common
within this fjord system during the late fall (H. Meuter
& J. Wray unpubl. data), but further data are needed
to test for differences in call rates among channels.
An alternative is that the whales found further inland
belong to a social network distinct from those loyal to
the outer channels, and the apparent wave is in fact a
turnover in the resident population with different
habitat preferences. Territoriality or inter-group com-
petition may even exacerbate the pattern. Social as-
sociation analyses based on photo-identification data
from our decade of research are forthcoming.

Whale-climate coupling

If the whale wave is a response to changes in prey
or their environmental proxies, then its ultimate
mechanism is oceanographic. As in most fjord sys-
tems, the KFS experiences strong offshore-inshore
gradients in oceanography and meteorology driven
by seasonal signals in climate and water mixing
(Macdonald et al. 1983; Fig. 10). These midsummer
gradients may serve as aids to orientation or cues to
habitat needs. Gradients are maintained by estuarine
circulation, a seaward surface flow of relatively fresh
water atop a landward countercurrent at depth
(Syvitski et al. 1987). Estuarine flow is governed by
snowmelt and, to a lesser degree, seasonal rains
(Masson & Cummins 2000). Gradients are disrupted
with the onset of fall storms, whose sea waves and
strong winds overwhelm estuarine flow and collide
with katabatic outflows, inducing vigorous mixing
(Thomson 1981, Freeland et al. 1980). By wintertime,
KFS waters are relatively homogenous (Macdonald
et al. 1983). The breakdown of cue gradients could
disperse prey and/or instigate in situ prey production
deeper inland. In this way, the timing of the whale
wave may be coupled to the shifting balance be-
tween estuarine circulation and autumn mixing by
storms. Both of these processes are governed by cli-
mate, including interannual oscillations and long-
term trends. If so, whale use of fjord habitats could be
particularly sensitive to global trends in climate.
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Threshold foraging and ecological role

The season's relationship between humpbacks and
krill-like backscatter was muted but sigmoidal
(Fig. 12f), suggesting a threshold functional response
to prey conditions (Holling 1965). Metabolic and
kinematic theory predicts that foraging thresholds
are high in large marine predators and have implica-
tions for habitat use (Goldbogen et al. 2011). Piatt &
Methven (1992) was the first study to document a
threshold response in cetaceans (between humpback
whales and capelin Mallotus villosus). Piatt (1990)
observed a similar response to the same prey in com-
mon murres Uria aalge. Friedlaender et al. (2006),
using a GAM framework similar to ours, found a
functional relationship between humpbacks and
backscatter that was nonlinear but more reminiscent
of a saturation response than a sigmoid. Energetic
costs of mobility and associated threshold foraging
have ecological consequences by reducing the pro-
portion of accessible habitat that is usable, which de-
couples a predator's trophic impact from its geo-
graphic distribution.

Interestingly, the functional relationship with chl a,
the strongest environmental predictor, was practi-
cally linear (Fig. 12e). Its difference from the
backscatter sigmoid may reflect nested strategies, in
which proxies are used to position for the best proba-
bility of prey interactions (higher is always better),
while their prey association within those high-proba-
bility areas is more discriminating (Fauchald et al.
2000).

As the whales propagate inland, so too does their
ecological footprint. Although humpbacks are
abundant within the KFS, their trophic impact at
any one time is highly localized. Beyond predation
and competition, this includes the facilitation of
other predators and nutrient redistribution (Roman
et al. 2014). Other species may come to coordinate
their use of this fjord system accordingly. Habitat
use patterns like the whale wave may be a signifi-
cant medium of ‘ecosystem engineering’ among
large marine predators.

Implications for management

Habitat use inevitably manifests itself as a pattern
in both space and time. Like all spatial patterns, it
may only be strong, stable, and/or apparent at cer-
tain scales (Levin 1992). Others have studied hump-
backs in this area without detecting the whale wave
(Williams & Thomas 2007, Wheeler et al. 2010,

Gribba & Bailey 2015), and their findings have be-
come the basis for the impact assessment of proposed
industrial activities in this fjord system (Williams &
O'Hara 2010, Enbridge 2010). Long-lived, mobile
predators must be observed across seasons and for
many years before strategies and motivations of
habitat use can be understood. Where available,
research is greatly enhanced by the involvement of
local residents who have the familiarity with their
home system to interpret observations with unique
insight. Our study highlights the value of long-term,
local monitoring by indigenous communities and
their partnership with non-profit and academic
research organizations.

Our findings suggest humpback foraging needs
within this fjord system are balanced against inter-
ests other than food and that the balance shifts within
the foraging season. The annual persistence and sta-
tistical strength of the whale wave demonstrate that
humpback habitat use can be structured and strate-
gic. It may facilitate the most thorough possible use
of a fjord system's resources, provide similar access
to other complex systems of BC's fjordland, and
accommodate higher densities of humpbacks in the
dwindling number of relatively undisturbed coastal
foraging grounds of the northeast Pacific than would
otherwise be possible. It is likely coordinated to the
specific oceanography of the study system, suggest-
ing that local displacement by human impacts may
have more consequences than previously supposed.
Industrial projects that disrupt habitat continuity,
such as shipping lanes, may be particularly detri-
mental to the integrity of this and other critical habi-
tats. Until sufficiently thorough habitat-use studies
have been carried out, irrevocable management
decisions should be treated with caution.

Protecting entire species ranges is typically impos-
sible, particularly in the case of mobile oceanic
predators such as whales, so we must ask which
portions are most important. It is here that the com-
mon depiction of mobile predators as masters of for-
aging improvisation and environmental forensics
can be counterproductive for conservation. Though
accurate, this picture can be misconstrued as an
argument against the protection of specific sites,
given that an entire ocean remains available. This
outlook ignores the fact, demonstrated by our find-
ings, that mobile marine predators can use complex
strategies not only to navigate vast swaths of marine
habitat but also to tune into the specific features
and attributes of certain areas and to develop
spatial strategies that enable their most thorough
and efficient use.



Keen et al.: Whale wave: shifting habitat use strategies

231

Data archive. Keen EM, Wray J, Meuter H, Thompson KL,
Barlow JP, Picard CR (2017) Data from: 'Whale Wave":
shifting strategies structure the complex use of critical fjord
habitat by humpbacks. UC San Diego Library Digital
Collections. http://doi.org/10.6075/J0GT5K3B

Acknowledgements. NCCS and RV '‘Bangarang’ fieldwork
was conducted under federal permit (DFO XR 83 2014) and
formal research agreement with the Gitga'at First Nation.
NCCS fieldwork was funded in part by the Save Our Seas
Foundation and Willow Grove Foundation, with special
thanks to Andy Wright, the Zumwalt family, Julie Walters
and Sam Rose. The 2015 ‘Bangarang’ fieldwork was funded
by the Gitga'at First Nation Guardian Watchmen, Canadian
Department of Fisheries and Oceans, NSF Graduate
Research Fellowship program (DGE-114086), and private
donations from the Watson, Ayres, Cunningham, Barlow
and Keen families. Fieldwork was also made possible through
earlier support from the National Geographic-Waitt Grant
(2681-13). The authors thank Katie Qualls for her work on
euphausiid counts, World Wildlife Fund for providing GIS
coordinates for NCCS 2008-2012 survey tracks, B. L. Pad-
gett for providing inlet footage, and Megan Ferguson for
analytical guidance. E.M.K. thanks his coauthors for intro-
ducing him to the study area and for inviting him to lead this
paper, as well as the 2015 ‘Bangarang’ crew not yet men-
tioned: Mike Keen, Will Bostwick, Jay Barlow, Barb Taylor,
Kim-Ly Thompson, Anne Simonis, Sam Watson, Emily Ezell,
Matt Irwin, Nelle Pierson, Sara Keen, Nicholas Bruns and
Jeff Garretson.

LITERATURE CITED

A Akaike H (1974) A new look at the statistical model identifi-
cation. IEEE Trans Automat Contr 19:716-723
] Alexander RM (2005) Models and the scaling of energy costs
for locomotion. J Exp Biol 208:1645-1652
#Anderwald P, Evans PGH, Dyer R, Dale A, Wright PJ,
Hoelzel AR (2012) Spatial scale and environmental
determinants in minke whale habitat use and foraging.
Mar Ecol Prog Ser 450:259-274
Anscombe FJ (1953) Contribution to the discussion of H.
Hotelling's paper. J R Stat Soc B 15:229-230
Archer E (2014) swfscMisc v.1.0.3. R package. Available at
https://github.com/EricArcher/swfscMisc
#Ashe E, Wray J, Picard CR, Williams R (2013) Abundance
and survival of Pacific humpback whales in a proposed
critical habitat area. PLOS ONE 8:e75228
Bailey H, Mate BR, Palacios DM, Irvine L, Bograd SJ, Costa
DP (2009) Behavioural estimation of blue whale move-
ments in the Northeast Pacific from state-space model
analysis of satellite tracks. Endang Species Res 10:93-106
]\(Baker CS, Steel DJ, Calambokidis J, Falcone E and others
(2013) Strong maternal fidelity and natal philopatry
shape genetic structure in North Pacific humpback
whales. Mar Ecol Prog Ser 494:291-306
X Ballance LT, Pitman RL, Fiedler PC (2006) Oceanographic
influences on seabirds and cetaceans of the eastern trop-
ical Pacific: a review. Prog Oceanogr 69:360-390
ZBenoit-Bird KJ, Battaile BC, Heppell SA, Hoover B and oth-
ers (2013) Prey patch patterns predict habitat use by top
marine predators with diverse foraging strategies. PLOS
ONE 8:e53348

Bjorge A (2001) How persistent are marine mammal habitats
in an ocean of variability? In: Evans PGH, Raga JA (eds)
Marine mammals: biology and conservation. Kluwer
Academic/Plenum Publishers, London, p 63-91

,"( Block BA, Jonsen ID, Jorgensen SJ, Winship AJ and others
(2011) Tracking apex marine predator movements in a
dynamic ocean. Nature 475:86-90

]\'{Boily P (1995) Theoretical heat flux in water and habitat
selection of phocid seals and beluga whales during the
annual molt. J Theor Biol 172:235-244

]\<Bombosch A, Zitterbart DP, Opzeeland IV, Frickenhaus S,
Burkhardt E, Wisz MS, Boebel O (2014) Predictive habi-
tat modeling of humpback (Megaptera novaeangliae)
and Antarctic minke (Balaenoptera bonaerensis) whales
in the Southern Ocean as a planning tool for seismic sur-
veys. Deep-Sea Res 191:101-114

]\viBond NA, Cronin MF, Freeland H, Mantua N (2015) Causes
and impacts of the 2014 warm anomaly in the NE Pacific.
Geophys Res Lett 42:3414-3420

Buckland ST, Anderson DR, Burnham KP, Laake JL,
Borchers DL, Thomas L (2001) Introduction to distance
sampling: estimating abundance of biological popula-
tions. Chapman & Hill, New York, NY

Burnham KP, Anderson DR (2002) Model selection and mul-
timodel inference: a practical information-theoretic ap-
proach, 2nd edn. Springer-Verlag, New York, NY

]\(Caﬁadas A, Sagarminaga R, De Stephanis R, Urquiola E,
Hammond PS (2005) Habitat preference modelling as a
conservation tool: proposals for marine protected areas
for cetaceans in southern Spanish waters. Aquat Conserv
15:495-521

]\'{ Choi Y, Hongshik H, Chen JJ (2005) Regression trees for
analysis of count data with extra Poisson variation. Com-
put Stat Data Anal 49:893-915

CPC (Climate Prediction Center) (2016) El Niho / Southern
Oscillation (ENSO) Diagnostic Discussion. 11 February
2016. Available at www.cpc.ncep.noaa.gov/products/
analysis_monitoring/enso_advisory/

A Croll DA, Marinovic B, Benson S, Chavez FP, Black N, Ter-
nullo R, Tershy BR (2005) From wind to whales: trophic
links in a coastal upwelling system. Mar Ecol Prog Ser
289:117-130

ADalla Rosa L, Ford JKB, Trites AW (2012) Distribution and
relative abundance of humpback whales in relation to
environmental variables in coastal British Columbia and
adjacent waters. Cont Shelf Res 36:89-104

]% Durban JW, Pitman RL (2012) Antarctic killer whales make
rapid, round-trip movements to subtropical waters: evi-
dence for physiological maintenance migrations? Biol
Lett 8:274-277

Enbridge (2010) Volume 8A: overview and general informa-
tion —marine transportation; Volume 8B: environmental
and socio-economic assessment (ESA)—marine trans-
portation. Enbridge Northern Gateway Project Sec. 52
Application. Northern Gateway Piplines Inc., Calgary

]\'{ Fauchald P (1999) Foraging in a hierarchical patch system.
Am Nat 153:603-613

]\Vi Fauchald P (2009) Spatial interaction between seabirds and
prey: review and synthesis. Mar Ecol Prog Ser 391:
139-151

Fauchald P, Erikstad KE, Skarsfjord H (2000) Scale-depen-
dent predator—prey interactions: the hierarchical spatial
distribution of seabirds and prey. Ecology 81:773-783

Ferguson MC, Barlow JP, Reilly SB, Gerrodette T (2006) Pre-
dicting Cuvier's (Ziphius cavirostris) and Mesoplodon


https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1242/jeb.01484
https://doi.org/10.3354/meps09573
https://doi.org/10.1371/journal.pone.0075228
https://doi.org/10.3354/meps10508
https://doi.org/10.1016/j.pocean.2006.03.013
https://doi.org/10.1371/journal.pone.0053348
https://doi.org/10.1038/nature10082
https://doi.org/10.1006/jtbi.1995.0020
https://doi.org/10.1016/j.dsr.2014.05.017
https://doi.org/10.1002/2015GL063306
https://doi.org/10.1002/aqc.689
https://doi.org/10.1016/j.csda.2004.06.011
https://doi.org/10.3354/meps289117
https://doi.org/10.1016/j.csr.2012.01.017
https://doi.org/10.1098/rsbl.2011.0875
https://doi.org/10.1086/303203
https://doi.org/10.3354/meps07818

232

Mar Ecol Prog Ser 567: 211-233, 2017

beaked whale densities as functions of the environment
in the eastern tropical Pacific Ocean. J Cetacean Res
Manag 7:287-299
Fissel DB, Borg K, Lemon DD, Birch JR (2010) Marine phys-
ical environment. Enbridge Northern Gateway Project.
Tech Data Rep, ASL Environmental Sciences, Sidney
Fleming A, Jackson J (2013) Global review of humpback
whales (Megaptera novaengliae). NOAA Tech Memo
NMES SWFSC-474
Ford JKB (2014) Marine mammals of British Columbia.
Royal BC Museum, Victoria
Freeland HJ, Farmer DM, Levings CD (1980) Fjord oceanog-
raphy. Plenum Press, New York, NY
ﬁiFriedlaender AS, Halpin PN, Qian SS, Lawson GL, Wiebe
PH, Thiele D, Read AJ (2006) Whale distribution in rela-
tion to prey abundance and oceanographic processes in
shelf waters of the Western Antarctic Peninsula. Mar
Ecol Prog Ser 317:297-310
] Goldbogen JA, Calambokidis J, Oleson E, Potvin J, Pyenson
ND, Schorr G, Shadwick RE (2011) Mechanics, hydrody-
namics, and energetics of blue whale lunge feeding: effi-
ciency dependence on krill density. J Exp Biol 214:
131-146
Gribba R, Bailey M (2015) Using fine scale marine mammal
distributions to predict potential effects of underwater
vessel noise. Society for Marine Mammalogy 21st Bien-
nial, 13-18 Dec 2015, San Francisco, CA
A Guisan A, Thuller W (2005) Predicting species distribution:
offering more than simple habitat models. Ecol Lett 8:
993-1009
Hamilton PK, Stone GS, Martin SM (1997) Note on a deep
humpback whale Megaptera novaeangliae dive near
Bermuda. Bull Mar Sci 61:491-494
Hastie TJ, Tibshirani RJ (1990) Generalized additive mod-
els. Monogr Stat Appl Probab 43
Hastie TJ, Tibshirani R, Friedman J (2009) The elements of
statistical learning: data mining, inference and predic-
tion, 2nd edn. corr. Springer Series in Statistics. Springer,
New York, NY
] Hazen EL, Friedlaender AS, Thompson MA, Ware CR, Wein-
rich MT, Halpin PN, Wiley DN (2009) Fine-scale prey ag-
gregations and foraging ecology of humpback whales
Megaptera novaeangliae. Mar Ecol Prog Ser 395:75-89
Hedley SL, Buckland ST, Borchers DL (1999) Spatial model-
ling from line transect data. J Cetacean Res Manag 1:
255-264
Hilbe JM (2011) Negative binomial regression, 2nd edn.
Cambridge University Press, Cambridge
Holling CS (1965) The functional response of predators to
prey density and its role in mimicry and population reg-
ulation. Mem Entomol Soc Can 45:1-60
Hunt GL Jr, Harrison NM, Piatt JF (1993) Foraging ecology
as related to the distribution of planktivorous auklets in
the Bering Sea. In: Vermeer K, Briggs KT, Morgan KH,
Siegel-Causey D (eds) The status, ecology and conserva-
tion of marine birds in the north Pacific. Canadian
Wildlife Service Spec Pub, Ottawa
]%Jaquet N, Whitehead H (1996) Scale-dependent correlation
of sperm whale distribution with environmental features
and productivity in the South Pacific. Mar Ecol Prog Ser
135:1-9
Keen EM (2016) Bangarang. v.1.0.0. R package. Available at
https://github.com/ericmkeen/bangarang
ﬁiLevin SA (1992) The problem of pattern and scale in ecol-
ogy. Ecology 73:1943-1967

Macdonald RW, Bornhold BD, Webster I (1983) The Kitimat
fjord system: an introduction. In: Macdonald RW (ed)
Proceedings of a workshop on the Kitimat marine envi-
ronment. Can Tech Rep Hydrogr Ocean Sci No. 18. Insti-
tute of Ocean Sciences, Sidney, p 2-13

Manly BFJ (1991) Randomization and Monte Carlo methods
in biology. Chapman & Hall, London

Manly BFJ, McDonald LL, Thomas DL, McDonald TL, Erik-
son WP (2002) Resource selection by animals: statistical
design and analysis for field studies. Kluwer Academic
Publishers, Dordrecht

] Masson D, Cummins PF (2000) Fortnightly modulation of the
estuarine circulation in Juan de Fuca Strait. J Mar Res 58:
439-463

] Mayo C, Marx M (1990) Surface foraging behavior of the
North Atlantic right whale and associated zooplankton
characteristics. Can J Zool 68:2214-2220

McCullagh P, Nelder JA (1989) Generalized linear models,
2nd edn. Chapman & Hall, London

Pearson TH (1989) Fjordic ecosystems. In: Ray L, Alexander
V (eds) Proc Sixth Conf Comité Arctique Int, 13-15 May
1985, Fairbanks, Alaska. Vol 6. Brill Academic Publish-
ers, Leiden

]% Pershing AJ, Record NR, Monger BC, Mayo CA and others
(2009) Model-based estimates of right-whale habitat use
in the Gulf of Maine. Mar Ecol Prog Ser 378:245-257

Piatt JF (1990) The aggregative response of Common Mur-
res and Atlantic Puffins to schools of capelin. Stud Avian
Biol 14:36-51

APiatt JF, Methven DA (1992) Threshold foraging behavior of
baleen whales. Mar Ecol Prog Ser 84:205-210

]\'{ Pickard GL (1961) Oceanographic features of inlets in the
British Columbia mainland coast. J Fish Res Board Can
18:907-999

R Development Core Team (2013) R: a language and envi-
ronment for statistical computing. R Foundation for Sta-
tistical Computing, Vienna, www.R-project.org/

HRamp C, Hagen W, Palsboll P, Berube M, Sears R (2010)
Age-related multi-year associations in female humpback
whales (Megaptera novaengliae). Behav Ecol Sociobiol
64:1563-1576

] Redfern JV, Ferguson MC, Becker EA, Hyrenbach KD and
others (2006) Techniques for cetacean—habitat modeling.
Mar Ecol Prog Ser 310:271-295

,"{ Reilly SB (1990) Seasonal changes in distribution and habi-
tat differences among dolphins in the eastern tropical
Pacific. Mar Ecol Prog Ser 66:1-11

Reilly SB, Fiedler PC (1994) Interannual variability of dolphin
habitats in the eastern tropical Pacific. I. Research vessel
surveys 1986-1990. Fish Bull (Wash DC) 92:434-450

#‘Roman J, Estes JA, Morisette L, Smith C and others (2014)
Whales as marine ecosystem engineers. Front Ecol Envi-
ron 12:377-385

Stachelek J (2015) ipdw. v.02-4. R package. Available at
https://github.com/jsta/ipdw

A¢Symonds MRE, Moussalli A (2011) A brief guide to model
selection, multimodel inference and model averaging in
behavioural ecology using Akaike's information crite-
rion. Behav Ecol Sociobiol 65:13-21

Syvitski JPM, Burrell DC, Skei JM (1987) Fjords: processes
and products. Springer-Verlag, New York, NY

Thomson RE (1981) Oceanography of the British Columbia
coast. Fish Aquat Sci Spec Pub 56

] Turner NJ (2003) The ethnobotany of edible seaweed (Por-
phyra abbottae and related species; Rhodophyta:Ban-


https://doi.org/10.3354/meps317297
https://doi.org/10.1242/jeb.048157
https://doi.org/10.1111/j.1461-0248.2005.00792.x
https://doi.org/10.3354/meps08108
https://doi.org/10.3354/meps135001
https://doi.org/10.2307/1941447
https://doi.org/10.1357/002224000321511106
https://doi.org/10.1139/z90-308
https://doi.org/10.3354/meps07829
https://doi.org/10.3354/meps084205
https://doi.org/10.1139/f61-062
https://doi.org/10.1007/s00265-010-0970-8
https://doi.org/10.3354/meps310271
https://doi.org/10.3354/meps066001
https://doi.org/10.1890/130220
https://doi.org/10.1007/s00265-010-1037-6
https://doi.org/10.1139/b03-029

Keen et al.: Whale wave: shifting habitat use strategies 233

giales) and its use by First Nations on the Pacific Coast of
Canada. Can J Bot 81:283-293

#Vu ET, Risch D, Clark CW, Gaylord S and others (2012)
Humpback whale song occurs extensively on feeding
grounds in the western North Atlantic Ocean. Aquat Biol
14:175-183

HWare C, Friedlaender AS, Nowacek DP (2011) Shallow and
deep lunge feeing of humpback whales in fjords of the

West Antarctic Peninsula. Mar Mamm Sci 27:587-605

ﬁ<Weinrich MT, Schilling MR, Belt CR (1992) Evidence for
acquisition of a novel feeding behavior: lobtail feeding in
humpback whales, Megaptera novaeangliae. Anim
Behav 44:1059-1107

Wheeler B, Rambeau A, Zottenberg K (2010) Technical data

report: Marine mammals. Enbridge Northern Gateway

Editorial responsibility: Per Palsboll,
Groningen, The Netherlands

Project. Stantec, Vancouver

Williams R, O'Hara P (2010) Modelling ship strike risk to
fin, humpback and killer whales in British Columbia,
Canada. J Cetacean Res Manag 11:1-8

Williams R, Thomas L (2007) Distribution and abundance of
marine mammals in the coastal waters of British Colum-
bia, Canada. J Cetacean Res Manag 9:15-28

Williams R, Clark CW, Ponirakis D, Ashe E (2013) Acoustic
quality of critical habitats for three threatened whale
populations. Anim Conserv. doi:10.1111/acv.12076

Wood S (2006) Generalized additive models: an introduction
with R. Chapman & Hall/CRC Press, Boca Raton, FL

Zuur AL, Ieno EN, Walker NJ, Saveliev AA, Smith GM
(2009) Mixed effects models and extensions in ecology
with R. Springer, New York, NY

Submitted: April 4, 2016; Accepted: December 12, 2016
Proofs received from author(s): March 3, 2017


https://doi.org/10.3354/ab00390
https://doi.org/10.1111/j.1748-7692.2010.00427.x
https://doi.org/10.1016/S0003-3472(05)80318-5



