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INTRODUCTION

The degree to which individuals are dispersed
within and among populations can have substantial
influences on range and population dynamics,
genetic diversity, community composition, and rates
of speciation and extinction in the sea (Roughgarden
et al. 1988, Grosberg & Cunningham 2001, Swearer
et al. 2002, Hastings & Botsford 2006, Hughes et al.
2008). However, levels of connectivity and dispersal
are not clearly understood for many benthopelagic
species, mainly due to the difficulty in tracking lar-

vae directly (Cowen & Sponaugle 2009, Anderson et
al. 2014). The prevailing thought has been that high
levels of gene flow and population connectivity char-
acterize species with the potential for extensive dis-
persal (Caley et al. 1996). However, for many species,
recent behavioral observations, genetic studies, and
biophysical models are revealing that larvae can use
simple behaviors in the water column to limit disper-
sal, allowing for high retention of locally produced
larvae within their natal populations (Knight-Jones
1953, Behrmann-Godel et al. 2006, Gerlach et al.
2007). As such, an increasing number of studies are
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revealing that even species with lengthy pelagic lar-
val durations can display significant levels of genetic
structure over relatively small spatial scales (Selkoe
et al. 2006, Iacchei et al. 2013, Concepcion et al. 2014,
Ottmann et al. 2016, Selwyn et al. 2016). For exam-
ple, the California spiny lobster Panulirus interruptus
shows significant kin structure at multiple sites
despite low population differentiation across its
1400 km range (Iacchei et al. 2013). Thus, levels of
differentiation among populations can exist at
smaller scales, despite little to no genetic structure
with increasing spatial distance (Gorospe & Karl
2013).

Genetic studies that estimate rates of retention and
migration in metapopulations are therefore con-
fronted by the issue of spatial scale, whereby the
absence of genetic structure at a larger scale, despite
its presence at a more localized scale, can inflate
such estimates (Wiens 1989, Levin 1992, Gorospe &
Karl 2013). Although evidence for localized genetic
structure and self-recruitment in marine systems is
mounting, few studies have considered the potential
for a lack of gene flow between groups of individuals
located less than several kilometers apart across
shorter time scales (Jolly et al. 2003, Taylor & Hell-
berg 2003, Calderón et al. 2007, Gorospe & Karl 2013,
Kamel & Grosberg 2013, D’Aloia et al. 2015). For
example, in habitat-forming species, genetic varia-
tion within patches can determine productivity and
resilience from disturbance and disease, as well as
the number and diversity of other species, thereby
affecting community structure and ecosystem pro-
cesses (Whitham et al. 2006, Kamel et al. 2012, Sta-
chowicz et al. 2013). In order to gain a more compre-
hensive view of the processes influencing a species’
population dynamics, it is therefore crucial to exam-
ine patterns in the genetic makeup of populations
across multiple spatial scales, and in particular, those
at which individuals directly interact. Characterizing
levels of connectivity and dispersal on these scales
should therefore be of critical concern in species
that contribute largely to ecosystem function, such as
oysters.

The eastern oyster Crassostrea virginica provides
key ecosystem services, including water quality
enhancement, habitat construction, and sediment
stabilization (Meyer & Townsend 2000, Cressman et
al. 2003, Newell & Koch 2004, Grabowski et al. 2012).
A recent assessment of such ecosystem services
places its economic value upwards of US$ 99 000 ha−1

yr−1, not including harvest value, which in the state of
North Carolina, USA, totals close to $52 000 ha−1 yr−1

(Grabowski et al. 2012). Despite their critical role in

ecosystem function, oyster populations have experi-
enced a global decline of ~85% in the past century
due to overfishing, disease, and habitat destruction
(Beck et al. 2011). The decline of oyster stocks has
prompted concern over sustainability and consider-
able restoration efforts. Current management of oys-
ters in North Carolina is explicitly spatial, including
oyster sanctuaries, seed beds, and a patchwork of
individual oyster leases. The success of spatial man-
agement can be improved with an understanding of
how oyster subpopulations are connected demo-
graphically and genetically by the exchange of lar-
vae, and the degree to which individual subpopula-
tions are self-seeding. However, the extent of
connectivity among oyster subpopulations in tidal
creeks and estuaries in North Carolina remains
unknown.

Previous studies of genetic structure in this species
have primarily focused on geographic scales of 10s to
100s of km (Mann et al. 1994, Hare & Avise 1996,
Rose et al. 2006, Anderson et al. 2014). For example,
biophysical modeling of larval movements in the
Pamlico Sound marine protected area (MPA) in
North Carolina suggest that C. virginica larval dis-
persal distances may range up to 110 km (Haase et
al. 2012), though how these estimates relate to real-
ized dispersal and genetic structure on the scale of an
individual reef is unknown. Here, we use microsatel-
lite markers to estimate kinship and genetic structure
within and among reefs across multiple scales: from
meters to kilometers within tidal creek populations in
North Carolina. Quantifying local patterns of reef
structure at relatively small spatial scales will clarify
the degree to which reefs are connected by dispersal,
which is important for the spatial design of fisheries,
MPAs, and reef restoration efforts. Moreover, the
patterns of genetic structure which emerge within a
reef might influence individual and population-level
traits, which in turn can shape ecosystem processes.

MATERIALS AND METHODS

Study system

Crassostrea virginica is an economically and eco-
logically valuable species (Grabowski et al. 2012)
that can be found from the Gulf of St. Lawrence in
Canada and along the US Atlantic coast to the Gulf of
Mexico (Carriker & Gaffney 1996). In southeastern
USA, C. virginica reefs occupy a substantial area
along the lower fringe of salt marshes and the inter-
tidal bottom of creeks and estuaries (Meyer &
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Townsend 2000). C. virginica are broadcast spawn-
ers, releasing gametes into the water column. After
fertilization, larvae have a planktonic phase of 2−
3 wk, after which the larvae seek hard substrate and
attach to develop into permanently sessile individu-
als. In North Carolina, primary peaks in reproductive
output occur from May to June, with smaller second-
ary peaks from July to August (Haase et al. 2012,
Puckett et al. 2014). In addition to its harvest value,
C. virginica contributes substantially to ecosystem
function by providing services such as habitat pro-
duction, sediment stability, and water filtration (Beck
et al. 2011, Grabowski et al. 2012).

Sample collection

We sampled 16 reefs along the North Carolina
coast from intertidal estuaries in Middle Marsh,

Hewlett’s Creek, Masonboro Sound, and Lockwood
Folly (Fig. 1). All 4 sampling sites are characterized
by densely populated, naturally occurring C. vir-
ginica reefs across relatively flat areas devoid of
apparent geographic barriers to gene flow. Adult
oysters (>40 mm) were collected from 4 reefs at each
site in August 2014 and in March and May 2015. The
closest and farthest distances at which 2 reefs were
sampled were approximately 3.8 m and 169.5 km,
respectively. Individuals were randomly collected
within a 9 m radius from the center of each reef,
yielding a total sample size of 950 individuals.

DNA extraction and genotyping

We dissected gill tissue from each individual, sus-
pended the tissue in 95% ethanol, and stored it at
−20°C. We then isolated genomic DNA from each tis-
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Fig. 1. Sampling sites for eastern oyster Crassostrea virginica along the coast of North Carolina, USA. Sites are Lockwood
Folly (LF), Masonboro Sound (MS), Hewlett’s Creek (HC), and Middle Marsh (MM). Within each site, 2 fringe reefs (F) and 2

patch reefs (P) were sampled
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sue sample using a salting-out precipitation method
as employed either with the Puregene DNA Purifica-
tion Kit (Gentra Systems) or the BioExpress Ultra-
clean Tissue and Cells Extraction Kit (MoBio Labora-
tories). We amplified 22 microsatellite loci previously
developed for C. virginica (Brown et al. 2000, Reece
2004, Carlsson et al. 2006, Wang & Guo 2007, Wang
et al. 2009, Wang et al. 2010) in 4 multiplex PCRs.
Individual primer working stocks contained 1 µl of
10 µM fluorescently labeled forward primer, and
10 µl each of 50 µM unlabeled forward and reverse
primers diluted in 80 µl of ddH2O; primers were sub-
sequently combined into ‘soups’. The basic PCR
reaction contained 3.0 µl of 30 ng µl−1 genomic DNA,
5.0 µl of 2× Qiagen Multiplex Mix, 0.5 µl of ddH2O,
and 1.5 µl of 1 of each of the 4 different primer soups.
PCR conditions for all multiplex reactions were as fol-
lows: 95.0°C for 15 min, followed by 6 cycles of 30 s at
95.0°C, 45 s at 58.0°C and 1 min at 70.0°C, then 10
cycles of 30 s at 95.0°C, 45 s at 55.0°C, and 69.0°C at
1 min 30 s, then 4 cycles at 95.0°C for 30 s, 53°C for
45 s, and 69.0°C for 2 min, and finally 16 cycles of
95.0°C at 30 s, 45 s at 50.0°C, 68.0°C at 2 min 30 s,
ending with a 10 min extension at 68°C. Following
PCR, we set up 2 sequencing reactions: one contain-
ing 0.5 µl each of PCR product from Multiplex 1 and
2, and one containing 0.5 µl each of PCR product
from Multiplex 3 and 4. We added PCR products to
9 µl of formalin containing GeneScan-600 (LIZ) size
standard (Applied Biosystems) for genotyping on an
ABI Prism 3130XL Genetic Analyzer at the University
of North Carolina Wilmington’s Center for Marine
Science DNA sequencing facility. Fragments were
scored using the software STRAND version 2.3.69
(Toonen & Hughes 2001).

Data analyses

We tested for departure from Hardy-Weinberg
equilibrium (HWE) within each reef by locus and
over all loci using GENEPOP version 4.2 (Raymond &
Rousset 1995). We calculated standard diversity in -
dices, tests for linkage disequilibrium (LD), inbreed-
ing coefficients (FIS) according to Weir & Cockerham
(1984), and observed and expected heterozygosity
(Ho and He) using ARLEQUIN version 3.11 (Excoffier et
al. 2005). Using the PopGenReport package in R
(Gruber & Adamack 2015), we calculated allelic rich-
ness, rarefied to 58 individuals. We then used
MICROCHECKER version 2.2.3 to determine whether
any deviations from HWE were due to null alleles or
large allele drop-out, as well as to check for stutter-

ing (Van Oosterhout et al. 2004). Since individuals
homozygous for a null allele or heterozygous for 2
null alleles will present as missing data, there may be
an association between the amount of missing data at
a locus and deviation from HWE when null alleles
are present. As such, we performed a linear regres-
sion between the proportion of individuals which
failed to amplify at each locus by reef combination as
well as the difference between He and Ho to deter-
mine if any deviations from HWE might be caused by
null alleles.

Spatial analyses

We used a hierarchical analysis of molecular vari-
ance (AMOVA) in ARLEQUIN 3.11 (Excoffier et al.
2005) to partition genetic variance across spatial
scales. To further assess the degree of genetic differ-
entiation among reefs, we calculated all pairwise val-
ues of population differentiation using Weir & Cock-
erham’s F-statistics (Weir & Cockerham 1984), and
tested for significance with 10 000 permutations of
the data. We also calculated Weir’s FST using the
ENA correction method for null alleles employed by
FreeNA (Excoffier et al. 2005). To test for isolation-
by-distance among all reefs and sites, we performed
a Mantel test using linearized FST and the natural log
of Euclidean distance using Isolation by Distance
Web Service version 3.2.3 (IBDWS; Jensen et al.
2005), and tested for significance of correlations with
10 000 matrix randomizations. The geographic dis-
tance (in km) between sites was the shortest over-
water path connecting those points.

Kinship analyses

To investigate spatial patterns of family structure,
we calculated kinship coefficients (Loiselle et al.
1995), which are based on the relative probability of
2 alleles being identical by descent between each
pair of individuals, using GENODIVE (Meirmans & Van
Tienderen 2004). To determine whether kin were
more likely to be clustered on the same reef patch,
we used the PERMANOVA+ 1.0.2 software add-on in
PRIMER7 (Clarke & Gorley 2006) to conduct a 1-way
ANOVA on kinship coefficients following the
approach of Iacchei et al. (2013). The data were
uploaded as a correlation resemblance matrix, and a
1-way ANOVA was performed. To further investi-
gate relationships among oysters within reefs, we
binned individuals according to the following levels
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of kinship (k): ‘nearly identical’, 0.57 > k > 0.375; ‘full
siblings’, 0.375 > k > 0.1875; ‘half siblings’, 0.1875 > k
> 0.09375; and ‘quarter siblings’, 0.09375 > k > 0.047.
Here the bounds represent the midpoints between
coancestry coefficients (Loiselle et al. 1995, Iacchei et
al. 2013). We also conducted a permutation test
where the observed number of closely related indi-
viduals within reefs was compared to a null distribu-
tion of kinship coefficients generated by randomly
assigning oysters to reefs (Iacchei et al. 2013).

RESULTS

Data analyses

We successfully genotyped 950 individuals at 22 loci
from 16 reefs comprising 4 different sites along the
North Carolina coast. The mean number of alleles per
locus ranged from 11.4 to 17.0 across reefs; similarly,
mean allelic richness ranged from 11.6 to 14.3 across
reefs (Table 1). Ho (range: 0.52 to 0.71) was lower than
He (range: 0.75 to 0.79) for all reefs. There were signifi-
cant deviations from HWE in 155 of the 352 compar-
isons (44%) after using a Bonferroni correction for
multiple tests, and these deviations were largely at-
tributed to homozygote excess, which was observed in
75% of comparisons. Homozygote excess can be in-
dicative of high levels of inbreeding or the presence of
null alleles. The ubiquity of homozygote excess in all
reefs and across 19 of the 22 loci indicated potentially
high levels of inbreeding, rather than the presence of

null alleles. All sites had significant FIS estimates
(Table 1) and, within each reef, FIS estimates were sig-
nificant for 16 or more loci (Table S1 in the Sup -
plement; www. int-res. com/ articles/ suppl/ m584 p079 _
supp. pdf). A global test for the presence of null alleles
in MICROCHECKER (Clarke & Gorley 2006) revealed that
15 of the 22 loci showed potential evidence of null alle-
les, although the frequency of null alleles at each locus
tended to be low (0.3−5%). Further, we found no rela-
tionship between the proportion of missing data and
deviations from HWE across loci and reefs (r2 = 0.01, p
= 0.1). Calculation of Weir’s FST in FreeNA (Weir &
Cockerham 1984) also revealed no bias between the
data set potentially harboring null alleles and that of
the data set in which alleles were generated where
nulls were expected. As such, we report all analyses
using our original data. Of the 3696 of tests for LD, 356
(9.6%) were significant after correcting for multiple
tests, but no specific patterns were found across reefs
or loci. The 3 sites with the highest LD were also those
with the highest mean kinship values; furthermore, we
found a significant positive correlation between mean
LD and mean kinship across sites (r2 = 0.3, p < 0.05),
suggesting that kinship might be driving patterns of
LD (see ‘Kinship analyses’ below).

Spatial analyses

The global AMOVA revealed extremely slight, but
significant, structure among sites, although almost all
the genetic variation (99.25%) occurred among indi-
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Area                                 Site         Reef type        n           A             AR             FIS                   Ho             He     % loci in LD       k

Middle Marsh               MMP1         Patch           50        15.2         13.7           0.16           0.65           0.77           1.73          0.002
                                      MMP2         Patch           48        14.7         13.3           0.21           0.62           0.78         11.26         0.000
                                      MMF1         Fringe         48        14.1         12.9           0.21           0.63           0.79         13.85         0.002
                                      MMF2         Fringe         34        11.4         11.6           0.14           0.68           0.78         33.33         0.004

Hewlett’s Creek            HCP1          Patch           54        13.8         12.6           0.31           0.53           0.75         20.35         0.005
                                      HCP2          Patch           60        15.6         13.6           0.22           0.60           0.76           4.76          0.001
                                      HCF1         Fringe         71        16.2         13.7           0.32           0.52           0.75         14.72         0.007
                                      HCF2         Fringe         64        16.4         14.3           0.27           0.56           0.76           5.63          0.004

Masonboro Sound         MSP1          Patch           63        16.0         13.9           0.17           0.63           0.76           5.63          0.004
                                      MSP2          Patch           67        16.3         13.7           0.18           0.63           0.77           0.43          0.001
                                      MSF1         Fringe         58        15.8         13.7           0.14           0.68           0.79           3.46          0.002
                                      MSF2         Fringe         68        16.3         13.9           0.11           0.71           0.79           0.43          0.002

Lockwood Folly             LFP1           Patch           65        16.3         14.0           0.16           0.65           0.77           6.06          0.003
                                        LFP2           Patch           64        17.0         14.5           0.11           0.69           0.77         11.69         0.004
                                        LFF1          Fringe         69        15.8         13.5           0.22           0.59           0.78           6.49          0.004
                                        LFF2          Fringe         67        16.1         13.5           0.22           0.59           0.75         14.29         0.004

Table 1. Summary statistics for each Crassostrea virginica reef averaged over all 22 microsatellites. Observations include:
sample size (n), mean number of alleles per locus (A), mean allelic richness (AR), mean inbreeding coefficient (FIS), observed
heterozygosity (Ho), expected heterozygosity (He), percentage of loci pairs in linkage disequilibrium (LD), and mean kinship 

coefficient (k). Bold: significant at p < 0.05

http://www.int-res.com/articles/suppl/m584p079_supp.pdf
http://www.int-res.com/articles/suppl/m584p079_supp.pdf
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viduals within reefs (Table 2). Of the 120 pairwise
comparisons of genetic differentiation, 26 (22.2%)
were significant, only 1 of which occurred within a
site (Table 3). We found no correlation between geo-
graphic distance and FST (r2 = 0.03, p > 0.05) when all
16 reefs were included. When only considering
within-site comparisons, we found a significant posi-
tive correlation between geographic and genetic dis-
tance (r2 = 0.15, p < 0.05), suggesting that distance
between reefs might be important at local scales,
despite broad mixing across regional geographic
scales.

Kinship analyses

Overall, kinship coefficients within reefs ranged
from −0.143 to 0.236, with an overall mean kinship of
0.002. However, the mean kinship among oysters
within reefs (n = 16) was 0.003 ± 0.002, which was
higher than the mean kinship among oysters located

on different reefs (−0.0002 ± 0.002). Indeed, kinship
coefficients were significantly greater for within-
reef than among-reef comparisons (pseudo-F15, 934 =
1.443, p < 0.001), supporting the observation that the
majority of kin comparisons were between oysters
located on the same reef (Fig. 2). There were signifi-
cantly more kin groupings than expected by chance
in all but 1 reef (MMF1). For example, 9 of the 16
reefs showed a greater proportion of half siblings
than expected by chance (Fig. 3). Mean within-reef
kinship values were significantly positively corre-
lated with the inbreeding coefficient (r2 = 0.26, p <
0.05). At a regional scale, within-site (n = 4) kinship
coefficients were also significantly greater than those
among sites (pseudo-F3, 946 = 2.424, p = 0.0001).

DISCUSSION

Across species with intermediate larval durations
(1−60 d), there is accumulating evidence that larvae
rarely reach their full dispersal potential, contradict-
ing the assumption that most marine populations are
genetically homogeneous across broad geographic
scales (Jones et al. 1999, Swearer et al. 1999, 2002,
Mora & Sale 2002, Grantham et al. 2003, Taylor &
Hellberg 2003, Marko 2004, Cowen et al. 2006,
Becker et al. 2007, Lopez-Duarte et al. 2012, Iacchei
et al. 2013, Ottmann et al. 2016). However, with a lar-
val duration of 14−25 d (Haase et al. 2012), Crass-
ostrea virginica shows limited spatial genetic struc-
ture and weak population differentiation among 4
sites spanning 200 km of coastline, suggesting a pat-
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Source of variation Variance % of p-value
components variation

Among sites 0.03 0.32 <0.01
Among reefs within 0.04 0.42 <0.01
sites

Within reefs 8.47 99.26 <0.01

Table 2. Crassostrea virginica. Global hierarchical analysis
of molecular variance (AMOVA) as a weighted average over 

all loci

              MMP1 MMP2 MMF1 MMF2   HCP1   HCP2   HCF1   HCF2   MSP1   MSP2   MSF1   MSF2   LFP1     LFP2     LFF1     LFF2

MMP1                 0.042    0.044    0.056    126.2    126.2    126.3    126.3    125.9    126.0    126.1    126.1    169.3    169.4    169.5    169.3
MMP2   −0.003               0.063     0.04     126.2    126.2    126.3    126.3    126.0    126.0    126.1    126.1    169.3    169.4    169.5    169.3
MMF1   −0.009  −0.003               0.043    126.3    126.3    126.3    126.3    126.0    126.1    126.2    126.1    169.4    169.4    169.5    169.4
MMF2   −0.004  −0.007  −0.006               126.3    126.3    126.3    126.3    126.0    126.1    126.2    126.1    169.4    169.4    169.5    169.4
HCP1     −0.005   0.000   −0.003   0.003                 0.038    0.108    0.058    1.189    1.225    1.198    1.113    43.87    43.94    44.07    43.85
HCP2     0.002   −0.009  −0.014  −0.008  −0.011               0.146    0.097    1.152    1.188    1.161    1.076    43.87    43.94    44.07    43.86
HCF1     0.006    0.002   −0.002   0.001   −0.005   0.001                 0.05     1.295     1.33      1.30     1.217    43.84    43.91    44.04    43.83
HCF2     0.004   −0.003  −0.010  −0.005  −0.011   0.001   −0.001               1.246    1.281    1.252    1.168    43.85    43.92    44.05    43.84
MSP1     0.000   −0.007  −0.017  −0.004  −0.010   0.001    0.006    0.001                   0.09     0.191    0.149    43.92    43.99    44.12    43.91
MSP2     0.004   −0.007  −0.020  −0.010  −0.011   0.001    0.004    0.004   −0.001               0.114    0.123    43.84    43.91    44.04    43.83
MSF1     0.005    0.002   −0.010  −0.009   0.003    0.008    0.014    0.012    0.002    0.000                 0.101    43.73     43.8     43.93    43.72
MSF2     0.000   −0.007  −0.017  −0.014  −0.005   0.004    0.007    0.008    0.000    0.002    0.001                 43.79    43.86    43.99    43.78
LFP1       0.003   −0.005  −0.010  −0.001   0.000    0.002    0.011    0.007    0.002    0.000    0.001    0.000                 0.092    0.225    0.160
LFP2       0.004   −0.004  −0.013  −0.001   0.001    0.004    0.009    0.007    0.003    0.000    0.000    0.003    0.001                 0.137    0.236
LFF1       0.006   −0.004  −0.006   0.001   −0.001   0.002    0.008    0.006    0.005    0.001    0.008    0.005    0.005    0.003                 0.339
LFF2       0.001   −0.002   0.000    0.006    0.002   −0.003   0.004   −0.003  −0.002  −0.005   0.002   −0.001   0.004    0.001    0.001

Table 3. Crassostrea virginica. Matrix of geographic distance (km) above diagonal, and pairwise genetic distance (FST) below 
diagonal. Within-site comparisons in bold; significant values in italics. See Fig. 1 for site abbreviations
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tern of genetic homogeneity, at least
over a broad regional scale. Hierarchi-
cal analyses of variance revealed that
<1% of genetic variation could be
explained by differences among sites;
almost all the genetic variation
occurred among individuals within
reefs. This mirrored the isolation-by-
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distance analyses which showed no relationship of
increasing genetic dissimilarity with increasing dis-
tance. Further, the majority of significant FST values
included comparisons with reefs located in Hewlett’s
Creek. This site, located in the headwaters of the
creek, might experience more limited tidal excur-
sions leading to reduced larval dispersal into the sur-
rounding waters.

Our results differ from previous studies of genetic
structure among C. virginica populations which have
shown discontinuity in genetic homogeneity across
broad spatial scales in the Chesapeake Bay and
along the Texas and Florida coasts (Hare & Avise
1996, Rose et al. 2006, Anderson et al. 2014). Along
the eastern Florida coastline, analyses of mitochondr-
ial and nuclear loci revealed a stepped genetic cline
in the transition zone between populations of oysters
collected from sites located approximately 40 km
apart (Hare & Avise 1996). Further studies of this
genetic cline indicate that larval dispersal along the
coast should be sufficient to homogenize popula-
tions, making limitations to dispersal unlikely and
local adaptation a possible contributor to the
observed genetic differentiation (Zhang & Hare
2012). Indeed, a reciprocal translocation experiment
revealed that local adaptation is a major mechanism
in promoting the maintenance of this step cline, with
oysters displaying better fitness in their natal envi-
ronments (Burford et al. 2014).

Importantly, our analyses of genetic structure
within and among individual reefs revealed far more
significant patterns of genetic differentiation. Across
all sites, oysters were more closely related within
than between reefs and, for the majority of reefs, we
found significantly greater than expected levels of
kinship between adult oysters. The close association
between mean reef-kinship and reef-specific FIS val-
ues supports the idea that stable aggregations of kin
could be driving fine-scale genetic structure in C. vir-
ginica. This suggests 2 possible mechanisms that
could be driving this pattern: (1) retention of a signif-
icant proportion of kin on their natal reefs, or (2) col-
lective dispersal (Yearsley et al. 2013), whereby
closely related larvae travel in ‘packets’ and settle
together (Finelli & Wethey 2003, Siegel et al. 2008,
Ottmann et al. 2016). An increasing number of stud-
ies support the idea that self-recruitment and limited
dispersal are some of the major drivers of genetic
structure in marine populations (Cowen & Sponaugle
2009, Ottmann et al. 2016). Local retention can also
be prevalent despite high levels of gene flow, if pools
of larvae released from a local breeding group do not
diffuse randomly, but instead remain aggregated

during dispersal and settlement (Bernardi et al. 2012,
Iacchei et al. 2013, Yearsley et al. 2013). In a recent
study of the effects of larval swimming behavior on
dispersal and settlement in C. virginica, hydrody-
namic and larval behavior models were used to
demonstrate that the probability of settlement
depends on the local hydrodynamic environment
and swimming behavior (Hubbard & Reidenbach
2015). Importantly, their simulations of dispersal indi-
cate that most larvae do not settle very far from their
original spawning locations, and that reefs in areas
characterized by low flow velocities (bays and more
sheltered areas) were more likely to show self-colo-
nization than reefs in those areas characterized by
high flow velocities, such as deep channels con-
nected to inlets (Hubbard & Reidenbach 2015). Given
the relatively sheltered nature of our study sites, low
flow velocities could potentially be contributing to
high levels of larval retention and self-recruitment.

Alternatively, in marine species with high fecun-
dity and highly variable reproductive or recruitment
success, extremely skewed differential reproductive
success, in which only a small proportion of individu-
als within a population actually reproduce, may fos-
ter ‘sweepstakes-like chances’ of larval survival and
settlement success (Johnson & Black 1982, 1984,
Christie et al. 2010, Hedgecock & Pudovkin 2011).
These effects tend to lead to temporary kin structure,
with higher than expected relatedness within cohorts
of recruits declining as subsequent cohorts settle
over time (Allendorf & Phelps 1981, Hedgecock 1994,
Herbinger et al. 1997, Selkoe et al. 2006, Hedgecock
et al. 2007, Christie et al. 2010, Hedgecock &
Pudovkin 2011). Although these results may reflect
sweepstakes effects, the reef-specific patterns of kin
structure seen in our study argue strongly in favor of
sibling cohesiveness, where siblings are more likely
to settle together than disperse across sites (Bernardi
et al. 2012, Iacchei et al. 2013). This implies that some
pelagic assemblages of sibling larvae remain more-
or-less intact as they disperse from their natal site,
despite the potential for admixture during the plank-
tonic phase (Veliz et al. 2006, Iacchei et al. 2013).

Another intriguing possibility is that, given that the
intertidal zone is characterized by strong environ-
mental gradients, local adaptation might be an
important driver of the underlying patterns of genetic
structure (Sanford & Kelly 2011). Environmental het-
erogeneity can produce genetic differentiation
across small spatial scales, even among populations
that lack physical barriers to gene flow. For example,
Tobler et al. (2008) observed phenotypic divergence,
high levels of population differentiation, and low
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rates of migration in the Atlantic molly Poecilia mex-
icana across habitat types characterized by differ-
ences in hydrogen sulfide content and light. Adapta-
tion to a spatially varying environment might result
in non-random post-settlement mortality, with larvae
surviving better on their natal reef types, leading to
the observed patterns of kin structure. We know that
fringing reefs differ from seaward reefs in a number
of biotic and abiotic factors, including tidal elevation,
emersion time, sediment load, salinity, and predation
pressure (Shumway 1996, Lenihan 1999, Lenihan et
al. 1999). However, links to environmental differ-
ences and their influence on patterns of post-settle-
ment mortality in C. virginica remain untested.

While understanding the processes generating
such patterns of genetic structure remains an open
question, the consequences of kin structure on local-
ized scales also warrant consideration. For example,
Hanley et al. (2016) showed that while in juvenile
oysters, cohort diversity and kinship were negatively
associated with long-term survivorship, kinship did
show a positive association with growth. Conversely,
Smee et al. (2013) found greater settlement of oyster
larvae on experimental assemblages of adult oysters
with high genetic diversity than on experimental
assemblages of adult oysters with low genetic diver-
sity. Given that oyster reefs have experienced a sig-
nificant global decline due to overharvesting, coastal
development, and environmental degradation, and
that oyster reef restoration has often produced equiv-
ocal results (Beck et al. 2011, Grabowski et al. 2012),
other factors such as kin genetic structure and
genetic diversity should be considered in efforts
aimed at population recovery.

Our kinship analyses show that across North Car-
olina, the majority of sampled reefs contain an excess
of closely related individuals, despite population-
level data showing limited regional differentiation or
isolation-by-distance patterns. This suggests that
either self-recruitment or coordinated larval delivery
is driving small-scale genetic differences in a species
with a moderately long larval duration, and comple-
ments the growing number of studies that show
genetic differentiation over small spatial scales in
marine populations (Veliz et al. 2006, Christie et al.
2010, Iacchei et al. 2013, Selwyn et al. 2016). The
small scale at which potential breaks in connectivity
are occurring in this system should thus be consid-
ered during the placement of constructed reef
reserves and the design of MPAs. Shorter dispersal
distances should favor the delineation of MPAs that
are closer to one another in order to facilitate connec-
tivity between reserves (Sunday et al. 2014). Connec-

tivity among populations of habitat-forming species
can determine levels of genetic variation that are
essential to the promotion of aspects associated with
population performance such as growth and biomass
(Kamel et al. 2012), persistence in the face of habitat
fragmentation and environmental alterations due to
climate change (Cowen & Sponaugle 2009), and bio-
diversity of facilitated species (Whitham et al. 2006).
Understanding the extent of connectivity between
populations, and how realized larval dispersal alters
connectivity and gene flow, will be essential to the
recovery and long-term sustainability of the eastern
oyster fishery.
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