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INTRODUCTION

Useful environmental variables collected near the
seabed during survey trawling are crucial for
investigating environmental effects on catch rates.
In the northern Benguela (off the coast of Namibia),
the National Marine Information and Research
Centre (NatMIRC) of the Ministry of Fisheries and
Marine Resources (MFMR) conducts annual bottom
trawl surveys to estimate the abundance and bio-
mass distribution of hake populations in Namibian
waters. Survey biomass, together with commercial
catch per unit effort (CPUE), are part of the stock
assessment model for determining management

measures such as total allowable catches (TAC).
Survey biomass estimations show that shallow-
water Cape hake Merluccius capensis is more
abundant in Namibian waters than deep-water
Cape hake Merluccius paradoxus, which is pre-
dominantly found in the southern part of the survey
area (Burmeister 2005, Kainge et al. 2017). The 2
species have depth-related distri butions; more than
75% of M. capensis are found shallower than 300 m
while the same proportion of M. paradoxus are
found deeper than 300 m depth (Bur meister 2001,
Kainge et al. 2015).

The northern Benguela ecosystem is very produc-
tive due to high upwelling intensity (Hutchings et al.
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2009). It was overfished in the 1970s and 1980s, al -
though reduced biomass of key ecological species
has also been attributed to the Benguela Niño that oc -
cur red in 1995 (Heymans et al. 2004). Following these
changes, the ecosystem moved into a new  stable state
(Heymans & Tomczak 2016), where population-level
shifts in demersal fish communities were detected
(Kirk man et al. 2015). One of the key features of this
productive system are seasonal phyto plankton
blooms, characterized by chloro phyll a (chl a) con-
centration as a measure of phytoplankton biomass
(Bartholomae & van der Plas 2007, Louw et al. 2016).
Surface chl a has a species-specific regional effect on
body condition of gadoids (Rueda et al. 2015).

Several factors affect the reliability of bottom
trawl surveys for the estimation of demersal fish
abundance, and the efficiency of trawl surveys de -
pends on the availability of target species (Godø
1994, Kotwicki et al. 2015). Time of day has an
effect on the availability of the hakes captured in
the bottom trawl, thereby affecting the survey catch
rates. The most pronounced effect is for M. capensis,
for which catch rates decline drastically after sunset
(Kainge et al. 2015). Other environmental variables
such as temperature and oxygen content (which
both vary with depth), and in particular, latitude,
have been found to affect hake catch rates and
abundance distribution in Namibian waters (Hamu -
kuaya et al. 1998, Gordoa et al. 2000, Monteiro et al.
2008, Kainge et al. 2017). Bottom water conditions
in the area around the central Namibian shelf are
hypoxic (<0.5 ml l−1) (Bailey 1991, Hamukuaya et al.
1998). The extent of bottom hypoxia varies tempo-
rally and spatially and is be lieved to play a very
important role in the dynamics of hake, especially
M. capensis, which occupies this habitat (Hamu -
kuaya et al. 1998, Bartholomae & van der Plas 2007,
Monteiro et al. 2008).

The distribution of nutrients and surface chloro-
phyll concentrations have been used as a proxy for
food availability, as well as successful recruitment for
hake (Hutchings et al. 2009, Druon et al. 2015). In the
southern Benguela, high catch rates of shallow- and
deep-water hake were recorded outside the surface
layer chlorophyll concentrations while very low catch
rates were observed at all levels of surface layer
chlorophyll (Wieland et al. 2013), which could be evi-
dence that the catches are not affected by dense
chlorophyll concentrations (‘green water’). Kainge et
al. (2017) observed that depth, bottom layer temper-
ature or bottom layer dissolved oxygen affect the dis-
tribution of hakes, but found no effect of time of day
on catch rates. However, anecdotal information from

fishermen suggests that hakes stay on the bottom if
the sun shines brightly but lift off the bottom if the
sky is cloud covered (Paterson & Kainge 2014), and
green water may have the same effect on hake be -
havior as cloud cover. Furthermore, the study by
Kainge et al. (2017) was limited, because in the
majority of the years very few CTD data were col-
lected at trawl stations and chlorophyll was not
measured at all.

This paper therefore aims at testing some of the
hypotheses resulting from Kainge et al. (2015, 2017),
now using in situ data collected by a trawl-mounted
instrument package (memory CTD with additional
sensors) which allows data collection simultaneously
with the catches (Wieland et al. 2014a). The trawl-
mounted instrument package was equipped with a
sensor for fluorescence, and hence surface chloro-
phyll concentration was added as an additional co -
variate in the analysis.

MATERIALS AND METHODS

Fish data, gear and methodology

Data from the annual Namibian demersal survey
of January and February 2016 were used in this
study. The survey was, for the first time, carried out
with the new Namibian research vessel RV
‘Mirabilis’ but otherwise followed the same design,
methodology and gear as previous years, as de -
scribed in Axelsen & Johnsen (2015) and Kainge et
al. (2015, 2017). Trawl stations were selected along
fixed transects perpendicular to the coast (Fig. 1)
with at least 1 station in each depth zone (<100,
101–200, 201–300, 301–400, 401–500, 501–600 and
601–700 m). In general, fishing usually started in
the coast part of a transect in the morning and pro-
gressed into deeper water during the day. Fishing
at depths <400 m is usually restric ted to daylight
hours, as hake (especially shallow-water Cape
hake Merluccius capensis) are known to rise off the
bottom at night (Huse et al. 1998, Gordoa et al.
2006, Johnsen & Iilende 2007). During the 2016
survey, a total of 188 valid trawl stations were car-
ried out, of which 39 stations were outside the
07:00 to 19:00 h local time period (Fig. 1), and 7 of
these ‘night’ hauls were shallower than 400 m. The
survey lasted from 12 January to 20 February 2016
and extended over 12° in latitude and 12° in longi-
tude. Hence, sunrise and sunset at the sampling
stations ranged from 06:15 to 07:10 h and 19:44 to
20:05 h local time, respectively.
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Light level data

Solar zenith angles that are computed based on
local time, date and location (latitude, longitude) are
useful for interpreting survey catch rates for species
that have diel vertical migration patterns when nei-

ther the position of the sun nor the actual light level
are measured in the field (Jacobson et al. 2015). The
solar zenith angle lies between a line drawn straight
up from the center of the earth through the observer’s
position and a line drawn from the observer to the
center of the sun, providing a proxy for illumination
under average atmospheric and clear sky conditions
(Frouin et al. 1989). Solar zenith angles are prefer-
able to time of day because they account for differ-
ence in irradiance due to latitude and longitude as
well as day of the year. Calculations of solar zenith
angles were done using AstroCalc4R (Jacobson et al.
2011); the relationship with local time of day for the
Namibian hake survey data used in the present data-
set is illustrated in Fig. 2.

Trawl-mounted instrument package data

The trawl-mounted instrument package (Seabird
Seacat SBE-19plusV2 CTD with SBE 43 oxygen and
WetLabs fluorescence and turbidity sensors) was
deployed for the first time during the hake biomass
survey in 2016. Water samples were taken and
Wink ler titration was used to correct the oxygen
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Fig. 1. Study area along the coast of Namibia showing location of trawl stations (open circles: day; solid circles: night) with 
cruise track, CTD stations and aligned trawl/CTD stations conducted during 2016

Fig. 2. Solar zenith angle and time of day for the Namibian
Cape hake survey in 2016 (values for valid trawl stations
with instrument package data only; grey shaded area indi-

cates night time)
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measurements, but no in situ calibration of the fluo-
rescence sensor was carried out. Bottom layer va -
lues (deepest 1 m bins) were used for temperature,
salinity and dissolved oxygen, and chlorophyll con-
centration for the surface layer down to 50 m depth
was calculated from the fluorescence measurements
based on factory calibration and summing the
recordings from 1 m depth bins. Battery problems
were encountered at several stations, and in total
151 profiles with complete instrument package data
which matched valid trawl stations (Fig. 1) were
available for analysis.

Initial variable selection for model fitting

Correlations between covariates (zenith, tempera-
ture, oxygen, chlorophyll, depth, year and geograph-
ical position) were examined and variance inflation
factors (VIFs) were calculated to detect collinearity.
Environmental covariates for which Pearson’s corre-
lation coefficient (r) was greater or equal to 0.7 in
absolute value (Dormann et al. 2013) and a VIF value
greater than 3 were considered strongly correlated
and were treated in different competitive models to
minimize collinearity (Guisan et al. 2002, Wintle et al.
2005, Zuur et al. 2009, Dormann et al. 2013, Sagarese
et al. 2014).

Model selection, evaluation and statistical analysis

Generalized additive models (GAMs) (Hastie &
Tibshirani 1990, Zuur et al. 2009) were used to study
the relationships between total numbers of hake esti-
mated and environmental variables prevalent at
those specific stations. GAMs are nonparametric or
semi-parametric generalizations of multiple linear
regressions. GAMs have the advantage of being able
to model non-linearity in the relationship between
the response and predictor(s) by using non-paramet-
ric smoothing functions. The general form of a GAM
is based on the assumption that the mean response
(µ) is related to the predictor variables (X1, … ,XP) by
the following relationship:

(1)

where g(µ) is the link function defining the relation-
ship between the response and the additive predic-
tor, α the intercept term of the response when the
predictors are zero (no categorical variables used), ƒ
is the smoothing function for variable j and P is the

maximum number of variables listed below. The ƒj

values are estimated in a flexible manner and each of
them is a regression spline in the component Xj

(Hastie et al. 2001). ε is the error term representing
measurement error or any variation unexplained by
the model. Full models were:

(1) g(µil) ~ s(zenithil) + s(lonil, latil) + s(Btemil) +
s(Chl50il) + offset[log(SweptAreail)]

(2) g(µil) ~ s(zenithil) + s(lonil, latil) + s(Boxyil) +
s(Chl50il) + s(Depthil) + offset[log(SweptAreail)

where i denotes station, l denotes size group and the
expected response µ is the number of fish per haul for
the different size groups. Btem is bottom temperature,
Chl50 is chlorophyll in the upper 50 m and Boxy is bot-
tom oxygen. A negative binomial (NB) distribution
was used with a log link and log(swept area) as offset
assuming proportionality between catch in numbers
and effort. The interaction term s(lon, lat) was
included in order to account for possible spatial auto-
correlation (Wood 2006, Grüss et al. 2016), and longi-
tude and latitude were transformed to Universal
Transverse Mercator (UTM) coordinates to represent
real distances.

We used the NB distribution considering that the
data are counts which include a large number of zero
observations (zero-inflation) and that the variance
exceeds the mean (over-dispersion) (Wood 2006,
Zuur et al. 2009). Cubic regression splines were used
and we applied a maximum of 5 and 25 degrees of
freedom restrictions on the number of knots, k (i.e.
k = 5 for the 1D smoothers and k = 25 for the 2D
smoother) and a gamma of 1.4 to heavily penalize
each degree of freedom in order to avoid overfitting
(Zuur et al. 2009, Sagarese et al. 2014). The number
of knots determines the ‘wiggliness’ or smoothness of
the curve (Wood 2006, Zuur et al. 2009). A typical full
model was then formulated in R (R Core Team 2016)
as follows (example of model type 2):

Nh,l ~ s(zenithi, k = 5) + s(loni, lati, k = 25) + 
s(Boxyi, k = 5) + s(Chl50i, k = 5) + s(Depthi, k = 5) (2)

+ offset[log(SweptAreai)], family = NB(link  
= ‘log’),gamma = 1.4

where h denotes the hake species (either M. capensis
or M. paradoxus) and l is the length group (all,
<21 cm [juveniles], 21–42 cm [small], 42–57 cm
[medium] and >57 cm [large], based on commercial
sorting grades), i denotes station, and s are smooth-
ing splines.

From the summaries of the candidate models,
the deviance explained (R2) and Akaike’s informa-

(µ) ƒ ( )
1

g X
j

P

j j∑= α + + ε
=
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tion criterion corrected for low number of observa-
tions (AICc; Hurvich & Tsai 1989) were used to
measure and compare the goodness of fit and
complexity of the candidate models; the model
with the lowest AICc was chosen as having the
best variable combinations (Zuur et al. 2009,
Sagarese et al. 2014). This model selection was
performed independently for each of the 2 species
and length groups. To verify homogeneity and
normality, residuals of the best models were
explored visually (residuals vs. fitted, histograms
and quantile−quantile [QQ] plots), and plotted ver-
sus each covariate in the candidate models, includ-
ing those not significant and those that were cor-
related with each other to detect non-linearity,
unequal error variances and outliers (Zuur et al.
2009, Zuur & Ieno 2016). Furthermore, Pearson
residuals were also plotted against spatial coordi-
nates (variograms) in order to asses any spatial
auto-correlation or evidence of non-independence
of model residuals.

The GAM model was fitted using the ‘mgcv’ pack-
age (Wood 2011) while VIFs were calculated with
library files from the Highland Statistics LTD (Zuur et
al. 2009) of the programming and software develop-
ment environment R v.3.3.2 (R Core Team 2016). In
addition, Surfer® 13.0 was used for mapping.

RESULTS

Hydrographic conditions

Spatial distributions of bottom temperature, bottom
oxygen, bottom salinity and chlorophyll in the upper
50 m surface layer along the Namibian coast during
the 2016 demersal survey are shown in Fig. 3. Bottom
waters were warmer in the north (13 to 14°C), and
that warm water extended to the central areas,
although in a narrow band, up to 25°C (Fig. 3). The
salinity concentration followed the same pattern as
that of temperature. Inshore bottom waters contained
oxygen concentrations lower than 1 ml l−1, while high
oxygen concentrations (>3 ml l−1) were observed in
the offshore area, in particular south of 26° S (Fig. 3).
High chlorophyll concentrations (250 to 350 mg m−3)
were observed off Lüderitz (between 26 and 28° S),
as well as at 3 other areas at 24° S, off 22° S and off
Cape Frio to the north (at 19° S) (Fig. 3).

Horizontal distribution of hake

The spatial distribution of the 2 hake species by
length during the 2016 demersal survey in January
and February is shown in Fig. 4. During the 2016 sur-

Fig. 3. Spatial distributions of bottom temperature, bottom oxygen, bottom salinity and surface chlorophyll along the Namibian 
coast during the 2016 demersal survey
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Fig. 4. Spatial distribution of survey catch rates of different size groups of shallow- and deep-water Cape hake Merluccius spp. 
during 2016 (CPUE: catch per unit effort, in number per square nautical mile × 106)



Kainge & Wieland: Fine-scale environmental effects on hake survey catch rates

vey, juvenile (<21 cm) Merluccius capensis were
found closest to the coast in the central area (be -
tween 24 and 26° S), while small individuals (21–
42 cm) were most abundant in the south and the 2
larger size groups (43–57 and >57 cm) were most
dominant in the north close to the border with
Angola (Fig. 4). Juvenile Merluccius paradoxus were
restricted to the south-easternmost part of the survey
area and appeared to move northwards with in -
creasing sizes, and catch rates increased with depth
towards the offshore limit of the survey mainly for
the medium-size group (43–57 cm; Fig. 4). Large
(>57 cm) individuals of M. paradoxus were rare and
occurred only south of 24° S.

Correlation between variables

Strong and highly significant correlations were
found between some of the environmental variables,
e.g. bottom temperature and oxygen concentration,
bottom depth and bottom salinity (Table 1), and the r
and VIF analysis suggested that these variables be
kept apart in the models. The VIFs for the initial full
models were below the desired value of 3 in all cases,
ranging from 1.05 to 2.88 (Table 1).

Model fitting, evaluation and selection

No spatial auto-correlation or independence of the
model residuals was observed from the empirical
variograms, except for the juvenile M. paradoxus
(<21 cm) (Fig. 5). In general, the assessment of nor-
mality of the best model fits, the QQ plots, fitted val-
ues and frequency distributions of Pearson residuals
for both species showed no violation of model
assumptions, i.e. the covariates exhibited a linear re -
lationship and no patterns were observed in the

residuals (Fig. 6). However, the QQ plot of the best
model fit for juvenile M. capensis and the frequency
distributions of Pearson residuals for the juvenile,
small and largest size groups of M. capensis, as well
as for juvenile M. paradoxus were not as good as for
the other size groups of both species (Fig. 6). Never-
theless, there does not appear to be any remaining
structure in the residuals, as can be seen in the plots
of residuals versus all covariates (Figs. S1 & S2 in the
Supplement at www. int-res. com/ articles/ suppl/ m584
p185 _ supp. pdf), except for juvenile M. paradoxus
(<21 cm), which is likely caused by the presence of
very few positive hauls that were limited to the
southernmost part of the survey area.

The best models based on AICc were model type 2
for M. capensis of all size groups, and M. paradoxus
of small, medium and large size groups (Table 2).
Model type 1 was only best for juvenile M. para-
doxus. Based on the best models, depth and geo-
graphical position, oxygen and chlorophyll were the
most important explanatory variables, explaining
82.9, 85.9, 71.4 and 85.8% of the variability in
catches of M. capensis of all size groups, as well as
77.8, 92.7 and 82.6% in small, medium and large M.
paradoxus respectively (Table 2). Catches of juvenile
M. paradoxus were, however, influenced by geo-
graphical position and temperature, which explained
80.6% of the variability in catches (Table 2).

Effect of environmental variables on hake catches

The partial effects of the best model covariates on
the catch rates of the 2 hake species of different size
groups are shown in Fig. 7. In general, depth, geo-
graphical position, bottom oxygen and bottom tem-
perature had the most pronounced effect on the
catch rates of both hake species, whereas zenith and
chlorophyll appeared to be less important.
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Btem Bsal Boxy Depth Zenith Chl50 LonLat VIF VIF1 VIF2

Btem − <0.001 <0.001 <0.001 <0.001 ns ns 99.95 1.34 −
Bsal 0.98 − <0.001 <0.001 <0.001 ns 0.006 66.28 − −
Boxy −0.76 −0.80 − <0.001 <0.001 0.008 <0.001 3.89 − 2.76
Depth −0.92 −0.85 0.57 − <0.001 ns 0.04 12.42 − 2.36
Zenith −0.46 −0.42 0.30 0.46 − ns ns 1.37 1.35 1.32
Chl50 0.10 0.14 −0.22 0.04 0.13 − ns 1.11 1.07 1.10
LonLat 0.08 0.22 −0.44 0.17 0.11 0.15 − 2.88 1.05 1.84

Table 1. Correlation between covariates (Pearson’s correlation coefficient, lower left) and significance level for correlation (up-
per right; ns: not sig nificant). Btem: bottom temperature; Bsal: bottom salinity; Boxy: bottom oxygen; Chl50: upper 50 m chlorophyll; 

VIF: variance inflation factor (subscript 1,2 indicates model type)

http://www.int-res.com/articles/suppl/m584p185_supp.pdf
http://www.int-res.com/articles/suppl/m584p185_supp.pdf
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The response of the catch rates of juvenile
(<21 cm) and small (21–42 cm) M. capensis to bot-
tom oxygen shows an almost linear negative
decrease, whereas for medium (43–57 cm) and
large (>57 cm) M. capensis, a positive effect on the
catch rates was shown for bottom oxygen concen-
trations between 0 and 3 ml l−1 (Fig. 7a). Depth
appeared to be an im portant variable for all size
groups of M. capensis, showing a dome-shaped
response with a pronounced negative effect at
depths below 300 m (Fig. 7a). The distribution of
juvenile M. capensis was concentrated in the
inshore depths from the south to about 20° S in the
north, while smaller individuals were concentrated
in the southern part between 28 and 30° S. The
larger fish were more prevalent in the deeper areas,
with the medium sizes highly concentrated in the
south off Lüderitz and north (Fig. 7a), which closely
resembles the observed horizontal distribution (Fig. 4).
Zenith was only significant for small (21–42 cm)

M. capensis, indicating slightly higher catches with
increasing zenith angles (Fig. 7a). Model type 1,
which included bottom temperature, did not yield
the best fit for any of the 4 size groups of M. capen-
sis (Table 2), and thus the response of the catch
rates to bottom temperature is not shown here.
Chlorophyll was significant for all size groups but
had little effect on the catch rates when compared
to other co variates.

The catch rates of juvenile M. paradoxus respon -
ded negatively to bottom temperature when values
dropped below 10°C, indicating that they avoid the
deeper offshore areas (Fig. 7b). Catch rates of small
(21–42 cm) and medium-sized (43–57 cm) individu-
als responded negatively to bottom oxygen concen-
trations below 1.5 ml l−1 and to depths shallower than
300 m (Fig. 7b). Catch rates of large M. paradoxus
showed a similar response to depth but with an even
more pronounced preference for greater (>500 m)
depths. Chlorophyll played a minor role, being sig-
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Fig. 6. Quantile−quantile plots (deviance residuals vs. theoretical quantiles), Pearson residuals against fitted values and the re-
spective frequency distribution of residuals for the final best models for different size groups of (a) Merluccius capensis and 

(b) M. paradoxus

Fig. 5. Experimental variograms (points) of the residuals from the negative binomial generalized additive models (GAMs)
 fitted for different size groups of Merluccius capensis and M. paradoxus. Shaded areas: 95% envelope of the variograms 

simulated under the assumption of no spatial structure; solid line: fitted nugget variogram
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nificant only for the small size group (Table 2), but
with little effect on the catch rates at all (Fig. 7b). The
modelled response to geographical distribution
(Fig. 7b) closely reflected the observed horizontal
distribution (Fig. 4) for all size groups.

DISCUSSION

In this study, we investigated the fine-scale effect
of environmental variables associated with hake
habitat distribution, such as solar zenith angle, bot-
tom depth, geographic position, bottom temperature,
bottom oxygen, bottom salinity and surface layer
chlorophyll, for 4 size groups of the 2 Cape hake spe-
cies (Merluccius capensis and M. paradoxus) during
the Namibian hake trawl survey of 2016. Oceano-
graphic information was collected with a trawl-
mounted instrument package at the same time as the

catch data. This was done for the first time in Namib-
ian waters, and hence problems in matching catch
rates with environmental information on the same
spatial and temporal scale (which have been encoun-
tered in previous studies in the Benguela current
region; Kirkman et al. 2013, Kainge et al. 2017) could
be avoided.

We used GAMs, which have an advantage over lin-
ear models because they can accommodate non-
 linear relationships and have the ability to uncover
hidden structures in the data through the use of
smoothing functions (Wood 2006). Despite the rela-
tively low number of observations and many zero
catches, especially for the juveniles of both species
and large M. paradoxus, the models’ diagnostics
were satisfactory and reasonable model fits were
obtained. Results for juveniles (<21 cm) should be
interpreted with caution due to apparent spatial cor-
relation, which was likely caused by the presence of
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Size group Model Significance level of model terms (p) Deviance AICc

(cm) type Zenith LonLat Btem Boxy Chl50 Depth explained (%)

Merluccius capensis
<21 1 ns <0.001 <0.001 − 0.05 − 76.7 892.91

2 ns <0.001 − <0.001 0.001 <0.001 82.9 859.72

21−42 1 ns <0.001 <0.001 − 0.05 − 85.2 1291.51
2 0.01 0.01 − <0.001 0.01 <0.001 85.9 1281.67

43−57 1 ns 0.001 <0.001 − <0.001 − 56.9 821.50
2 ns <0.001 − <0.001 0.001 <0.001 71.4 801.99

>57 1 ns 0.001 <0.001 − 0.01 − 55.9 539.49
2 ns <0.001 − <0.001 0.01 <0.001 85.8 475.38

Merluccius paradoxus
<21 1 ns <0.001 0.001 − ns − 80.6 204.13

2 ns 0.01 − ns ns 0.05 79.7 218.90

21−42 1 ns <0.001 <0.001 − ns − 61.9 1322.14
2 ns <0.001 − <0.001 0.05 <0.001 77.8 1262.66

43−57 1 ns <0.001 <0.001 − ns − 86.7 889.34
2 ns <0.001 − <0.001 ns <0.001 92.7 826.75

>57 1 ns <0.001 0.01 − ns − 77.3 264.13
2 ns <0.001 − ns ns <0.001 82.6 248.05

Table 2. Model performance with significance level (p) of each covariate, deviance explained and corrected Akaike’s informa-
tion criterion (AICc) for the candidate models. The best models (according to the AICc value) for each size group are high-
lighted in bold. Lon: longitude; Lat: latitude; Btem: bottom temperature; Boxy: bottom oxygen; Chl50: upper 50 m chlorophyll; 

ns: not significant; (−) not included

Fig. 7. Response plots of the best models showing the partial effect of the significant smoothing functions on the catches of (a)
Merluccius capensis and (b) M. paradoxus for different size groups (solid lines). The y-axis represents the contribution of the
smoother to the fitted values, which is the effect of covariates on respective size group, except for the last panel where the
y-axis represents latitude (°S). Dotted lines: 95% confidence limits; the distribution of the raw observations is shown on the
x-axis. Empty boxes represent covariates that were not significant while missing boxes represent covariates that were not
 included to avoid collinearity problems. In the sixth panel, the surface and contour lines describe the spatial effect of 

a 2-D smoothing function on the catches (with darker shading representing higher catches)
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very few positive hauls that were limited to the
southernmost part of the survey area. However, this
should be expected as juvenile M. paradoxus are
only found in southern Namibia, because their nurs-
ery areas are located south of the Orange River
(Strømme et al. 2016).

A caveat existed when temperature was highly cor-
related with oxygen and depth, and hence these co-
variates could not be included in the same model. In
most cases the best models were not those which had
bottom temperature as the primary covariate (model
type 1) but that does not mean that temperature is ir-
relevant for the distribution of the 2 hake species.
However, the models with bottom oxygen concentra-
tion and depth (model type 2) together with geo-
graphical position had a higher explanatory power. It
is worth noting that a bivariate term (latitude−longi-
tude interaction) was used in the model in order to ac-
count for possible spatial autocorrelation, but may be
a confounding variable. However, when the model
was run without it, the best models remained the
same and the explained deviance was not reduced by
much — apart from large M. paradoxus, for which the
explained deviance reduced from 83 to 60%. Also
worth mentioning is the use of r and VIF in order to
assess correlation and detect collinearity. Although
these statistics are normally used for linear models,
they are also useful in GAMs (Guisan et al. 2002)
 because GAMs can be robust due to penalization of
parameters (Dormann et al. 2013).

The within-species trends towards greater depth,
lower bottom temperature and higher bottom oxygen
concentration with increasing size as well as the
between-species differences with respect to these
covariates are in line with those of Kainge et al.
(2017) for Namibian waters. They are also in accor-
dance with findings for the South African west coast
(Grüss et al. 2016), and reflect the general migration
and distribution patterns of the 2 hake species in the
Benguela upwelling system (Burmeister 2001, Gor-
doa et al. 2006, Wieland et al. 2014b, Jansen et al.
2016, Strømme et al. 2016).

Almost no diel effect on catch rate was found in
the present study. This is in contrast to observations
by Huse et al. (1998, 2001), Johnsen & Iilende (2007)
and Kainge et al. (2015). But similar to Kainge et al.
(2017), who found the same results, the dataset con-
tained very few stations which were sampled outside
the daylight period. Nonetheless, it appears advis-
able to restrict sampling, at least in the area shal-
lower than 400 m, to the period between ca. 15 min
past sunrise and 15 min before sunset for each loca-
tion rather than a fixed local time period, considering

the change of the length of the daylight period dur-
ing the course of the survey.

The area off Lüderitz is known for its low chloro-
phyll concentration due to its powerful upwelling cell
and the high associated turbulence (Bartholomae &
van der Plas 2007, Hutchings et al. 2009). The normal
high chlorophyll area north of Lüderitz (Bartholomae
& van der Plas 2007, Hutchings et al. 2009) was not
visible here because our sampling was a snapshot
(compared to e.g. weekly averages) and there were
also no stations in the area north of Lüderitz. How-
ever, a dedicated environmental survey along 26° S
has confirmed that extensive and dense phytoplank-
ton blooms developed in the Lüderitz bay and lasted
between the second half of January and mid-April
2016, after increased sea surface temperatures were
observed (K. Grobler unpubl. data), and phytoplank-
ton blooms are usually associated with warm water
(Schulien et al. 2017).

Chlorophyll concentration had little effect on the
catch rates, although it was significant for all M.
capensis size groups, as well as in the small-sized
group for M. paradoxus. Areas of high chlorophyll
concentrations, which could be linked to high pro-
ductive areas, were observed, and these are ex pec -
ted to result in hakes lifting off the bottom due to
reduced light levels (Wieland et al. 2013). During the
2016 survey, high catch rates of especially small-
sized fish (21 to 42 cm) of both species were, how-
ever, observed around the same areas of high chloro-
phyll concentration. This indicates that ‘green water’
has little or no effect on hake catch rates (Wieland et
al. 2013). The current version of the instrument pack-
age is unfortunately not equipped with a low-level
light sensor such as used by e.g. Kotwicki et al. (2009)
and Huse et al. (1998). Solar zenith angle does not
account for variability in cloud cover or foggy condi-
tions. Although vertical migration may persist des -
pite such variability (Neilson & Perry 1990), light
attenuation in the water column may be affected by
high chlorophyll concentrations in the surface layer
but the effect of low levels on hake catch rates could
not be demonstrated here.

Our results demonstrate that the use of a trawl-
mounted instrument package can collect useful and
reliable environmental data that can be used to
improve the understanding of variability in hake
catchability without requiring additional ship time.
This will enable quantification of environmental ef -
fects on scientific CPUE data and thereby correction
of survey time-series in order to produce reliable bio-
mass estimates for stock assessment and advice on
catch quota. We therefore encourage continuous use
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of the trawl-mounted instrument package on a per-
manent basis during routine monitoring of demersal
fish resources in Namibian waters.
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