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ABSTRACT: Video surveys are an essential tool for monitoring marine communities. Their use to
study elasmobranch populations has dramatically increased over the last decade. However, the
restricted field-of-view (FOV) of traditional cameras in these surveys may bias abundance esti-
mates in a number of ways, including saturation at high densities and low detection probability for
rare or cryptic species. This study investigated these potential biases using newly developed full-
spherical (FS) camera technology. A comparison of 35 Baited Remote Underwater Video surveys
(BRUVs), using both FS and traditional cameras, was conducted from July to August 2016 in shal-
low waters (0.4 to 8.5 m) of Tetiaroa, French Polynesia. Both blacktip reef Carcharhinus melano-
pterus and sicklefin lemon sharks Negaprion acutidens were quantified from traditional cameras
using MaxN and MeanCount methods. These estimates were then regressed against FS cameras
counts, which were assumed to more accurately represent site abundance, to test for gear satura-
tion. Detection probabilities of the traditional and FS cameras were assessed using a Bayesian
binomial model, with uninformed-uniform priors. Results indicated a significant effect of gear sat-
uration for standard BRUVs as counts on FS cameras increased, regardless of the metric used.
Furthermore, traditional cameras had a significantly lower detection probability (mean + 2 SD:
69.88 +0.008 %) than FS cameras (81.20 + 0.007 %). Our findings show that traditional cameras are
unlikely to adequately discriminate differences in shark relative abundance at high densities.
Therefore, standard BRUV techniques that use restricted FOV cameras are likely limited in their
ability to provide accurate information to managers once populations have reached particular
thresholds of abundance.
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INTRODUCTION

Over the last few decades many elasmobranch
populations have experienced dramatic population
declines (Ferretti et al. 2010, Worm et al. 2013, Dulvy
et al. 2014). Though the magnitude of these declines
varies considerably across species and ecosystems,
an increasing number of shark and ray populations
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are in need of conservation and management actions
(Dulvy et al. 2014, 2017). Effective elasmobranch
conservation efforts rely on our ability to assess spa-
tial and temporal variation in the abundance of pop-
ulations, which is critical for identifying conservation
priorities and assessing the progress of current
recovery efforts (Cortés et al. 2015). Unfortunately,
nearly half of all known elasmobranch species
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remains ‘Data Deficient’ (Dulvy et al. 2014), posing a
significant obstacle to their future conservation. Tra-
ditionally, elasmobranch population data have been
gathered through a combination of fisheries-inde-
pendent and dependent sources, employing gears
such as longlines, gill nets, and trawls from which
catch per unit of effort (CPUE) data is used to esti-
mate relative abundance. Though useful tools, these
methods have limitations, including an inability to
survey high complexity habitats such as coral reefs
(Williams et al. 2010), high levels of physiological
stress (Mandelman & Skomal 2009, Kneebone et al.
2013, Gallagher et al. 2014) and increased post-
release mortality for a number of species (Morgan &
Carlson 2010, Dapp et al. 2017, Kilfoil et al. 2017).
Video surveys have emerged as a potential way to
address the deficiencies of traditional sampling
methods, while also reducing current data gaps.
Video surveys have been increasingly used to
assess the diversity and relative abundance of mar-
ine species across the globe (Whitmarsh et al. 2017).
They are particularly suitable for the study of elasmo-
branchs because of their non-extractive nature
(Cappo et al. 2007) and ability to sample previously
‘inaccessible’ environments (Whitmarsh et al. 2017).
Though gathering data on sex, size, and individual
recapture rates is more difficult with these methods
than with traditional fishing gears, they provide a
number of advantages including a permanent record
of the data (Harvey et al. 2013), insights on species
behavior and habitat use (Langlois et al. 2010,
Bacheler et al. 2013), and reduced issues with size
(Wells et al. 2008) and species (Bacheler et al. 2013)
selectivity to fishing gears. For elasmobranchs, one
of the most common video survey approaches is
the use of Baited Remote Underwater Video surveys
(BRUVs; e.g. Bond et al. 2012, Clarke et al. 2012,
Santana-Garcon et al. 2014). A BRUV consists of a
single, aka. mono, camera deployed behind a bait
source, and provides stationary point counts for spe-
cies of interest that swim into the camera's field-of-
view (FOV) over a specified duration. To eliminate
multiple counting of fishes swimming in and out of
the FOV, 1 of 2 relative abundance metrics are often
used: MaxN (Ellis & DeMartini 1995) or MeanCount
(Conn 2011). MaxN is defined as the maximum num-
ber of a species observed on any frame of a video
(Ellis & DeMartini 1995), whereas MeanCount pro-
vides an average count of the species observed over
a sub-sample of video frames (Conn 2011). Although
widely used (e.g. Willis & Babcock 2000, Stoner et al.
2008, Schobernd et al. 2014), these metrics have
recently been criticized due to their inability to

account for non-uniform spatial distributions of spe-
cies around the camera (Campbell et al. 2015), and
they may also result in biased estimates in high den-
sity environments because of issues stemming from
FOV saturation.

A fundamental assumption required to use in-
dices of relative abundance (I) to monitor popula-
tions is that they be linearly related to the true site
abundance (IN) given a constant catchability coeffi-
cient (q):

I=gN (1)

If this assumption is violated or invalid, the metric
of relative abundance may overestimate (hyper-
stable) or underestimate (hyperdepleted) abun-
dance, resulting in imprecise indices which in turn
will compromise the integrity of management deci-
sions (Cooke & Beddington 1984). In the case of
video surveys, simulation work has shown that this
fundamental assumption may not hold true for teleost
fishes due to limited FOVs failing to capture the non-
uniform spatial distribution of fishes around the cam-
era (Campbell et al. 2015). However, no work has
addressed this issue specifically for elasmobranchs.
For large-bodied fishes, including many elasmo-
branchs, a further hindrance may be the saturation of
cameras in high density environments. Under these
conditions, cameras may not be able to detect in-
creases in abundance beyond some maximum ob-
servable threshold, resulting in a hyperstable rela-
tionship whereby catchability decreases as true site
abundance increases. Furthermore, cameras with a
restricted FOV may reduce detection probabilities
for elasmobranchs, which will in turn impact stan-
dardized indices of relative abundance through
inflated zero counts (Campbell et al. 2015, Cortés et
al. 2015). Given that one of the greatest challenges
currently facing elasmobranch stock assessments is
generating accurate and precise indices of relative
abundance (Cortés et al. 2015), these issues must be
resolved if video surveys are to be used to monitor
these populations. Recently developed full-spherical
(FS) underwater video platforms may offer a means
to test these concerns regarding the use of video sur-
veys to monitor elasmobranchs. In this paper, we
used this newly developed technology to conduct the
first FS video survey of elasmobranchs. Specifically,
our objectives were to determine (1) if the catchabil-
ity (i.e. q) of reduced FOV (mono) cameras derived
from estimates of MaxN and MeanCount is constant
across a range of site densities as estimated from FS
cameras; and (2) the detection probability for mono
and FS cameras.
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MATERIALS AND METHODS
Data collection

All video data were collected from 17 July to 8
August 2016, in Tetiaroa; a small French Polynesian
atoll in the Society Archipelago. Sampling locations
were chosen haphazardly throughout the atoll's
inner lagoon at depths ranging from 0.4 to 8.5 m. All
deployments were conducted on sandy sediment,
with a single BRUV deployed at any one time. At
each sampling site, a small aluminum frame was de-
ployed with approximately 1 kg of crushed sardines
inside a wire mesh container that was attached to a
bait arm (Fig. 1). The aluminum frame (hereafter
referred to as BRUV™), was equipped with both a sin-
gle GoPro camera (hereafter referred to as the ‘mono
camera’') as well as 6 GoPro cameras mounted above
the frame in a GoPro Freedom360 (F360)™ housing
(collectively referred to as a FS camera). To correct
for light refraction underwater, dome port lenses
were applied to all cameras in the F360. Although
mono and FS cameras were set at 30 frames s7!, FS
cameras had additional setting requirements needed
to synchronize and stitch FS videos correctly (see the
Appendix and an example 360° video in the Supple-
ment at www.int-res.com/articles/suppl/m585p113_
supp/). To ensure units were not deployed on top of

live reef habitat, they were set by snorkelers who
could visually confirm the location and orientation of
the frame for each deployment. Once settled on the
sea floor, cameras soaked for approximately 60 min.
Following deployment, depth and GPS coordinates
of each site were recorded. Following video synchro-
nization and stitching of video files, FS and mono
videos were reviewed and annotated by trained,
independent observers who estimated MaxN as well
as MeanCount (derived from images sequenced
every 10 s) beginning once the frame was securely on
the sea floor. To reduce issues with observer bias,
MaxN and MeanCount were estimated by different
individuals for each video.

Relationship between video counts
and site abundance

Two metrics were used to enumerate elasmo-
branchs from video data: MaxN and MeanCount.
To examine the relationship between counts de-
rived from mono cameras and site density, we
assumed that the corresponding estimates derived
from FS cameras (both MaxN and MeanCount)
represented a site's true abundance (as the abun-
dance of each site could not be independently esti-
mated), and that the volume of area sampled did

not change between sites. Given

Fig. 1. Baited Remote Underwater Video full-spherical (BRUV™) array de-

ployed in Tetiaroa, French Polynesia (17 July to 8 August 2017). Red inset de-

picts GoPro F360 mounting used to later generate full-spherical videos, with

its location on the BRUV'™ highlighted with a red square. Orange inset depicts

the single Hero4 GoPro used as the mono camera comparison, with its location
on the BRUV® highlighted with a corresponding orange square

these assumptions, and substituting
for Eq. (1):

Monogg = g x FSgq (2.1)
which, when rearranged, gives:
q = (Monogg)/(FSgq) (2.2)

where g denotes the catchability coef-
ficient, Monog represents the count
derived from the mono camera, and
FSgg is the FS camera estimate. Under
the assumption that estimates derived
from mono cameras exhibit a consis-
tent linear relationship to true site
abundance over a range of site densi-
ties, we would expect g to remain rela-
tively constant. To test this assumption,
q of each estimate was plotted against
the FS estimate, and a linear model
was developed to test for any relation-
ship between q (response variable) and
site abundance (predictor variable)
using the base 'Im' function in R (R
Core Team 2015).


http://www.int-res.com/articles/suppl/m585p113_supp/
http://www.int-res.com/articles/suppl/m585p113_supp/

116 Mar Ecol Prog Ser 585: 113-121, 2017

Detection probability

To estimate the detection probability for both
mono and FS cameras, we examined the probability
of detection at 2 scales: (1) a single image, and (2)
the video as a whole. At the single image scale,
detection histories for each camera type were cate-
gorized for every image as either both detected an
elasmobranch (1,1), the mono camera detected an
elasmobranch whereas the FS camera did not (1,0),
the mono camera did not detect an elasmobranch
but the FS camera did (0,1), or neither camera
detected an elasmobranch (0,0). For each image, a
‘true presence’ was determined based on these
catch histories, with (0,0) indicating absence and
any other indicating presence. For each video, data
were aggregated to elucidate the total number of
images, the number of images in which a shark was
present, the number of images in which a shark was
detected by the FS camera, and the number of
images in which a shark was detected by the mono
camera. Detection probability for each camera was
then estimated within a Bayesian framework using
the ‘rjags’ package (Plummer 2013) in R (R Core
Team 2015). Under this Bayesian framework, rather
than assuming that a catch history of (0,0) is always
indicative of true absence, we modeled the proba-
bility of occurrence as a Bernoulli process with an
uninformed-uniform prior between 0 and 1. The
detection probabilities of the mono and FS cameras
were modeled using a binomial distribution, also
using uninformed-uniform priors between 0 and 1.
Models were run for 100 000 iterations, with the first
10000 iterations disregarded. To examine detection
probability for the video as a whole, similar catch
histories were developed as previously described
(e.g. [0,1] indicates a shark was observed on the FS
but not on the mono camera), but from the entire
video rather than an individual image. Again, a spe-
cies was considered absent only for a catch history
of (0,0). The probability of a false negative (report-
ing a catch of 0, when it was truly present) was then
calculated for both camera types and all observed
elasmobranch species by summing their respective
catch histories, divided by the total number of
videos in which the species was present.

RESULTS

We deployed the BRUV'™ platform 43 times at a
variety of locations throughout Tetiaroa, French
Polynesia. During those deployments, turbidity

ranged from a scale of 1 (clear) to 5 (visibility < 1 m).
Eight deployments had camera issues and or short
recording times (<40 min) and were thus excluded
from analyses, resulting in a total of 35 samples.
Although a large diversity of reef fish species was
observed on the collected videos, only 2 shark spe-
cies were detected: blacktip reef Carcharhinus
melanopterus and sicklefin lemon sharks Negaprion
acutidens. Accordingly, all MaxN (maximum count
on any 1 frame) analyses pertaining to video data
focused on these 2 species separately. However,
resulting sequenced images had a number of partial
sharks present (i.e. only snout or portion of the cau-
dal fin visible), which reduced the ability of observers
to distinguish between these 2 species. To account
for this limitation, all counts of shark species present
on a particular image were aggregated for subse-
quent analyses pertaining to MeanCount (average
count over a sub-sample of frames). Slight differ-
ences in recording times between sets resulted in
small variations in MeanCount sample sizes (mean =+
SD: 395.49 + 139.01). Average MaxN estimates from
mono cameras for blacktip reef (5.06 + 4.17) and sick-
lefin lemons (1.94 + 2.42) were lower than those pro-
vided by FS cameras (blacktip reef: 6.62 + 6.04; sick-
lefin lemon: 2.03 + 2.64). Similarly, MeanCount
estimates were lower on mono cameras (1.40 = 1.65)
than FS cameras (3.25 + 3.69). Furthermore, a higher
rate of images with zero counts was observed on the
mono camera (n = 3930) compared to the FS camera
(n =2120).

Relationship between catchability and true site
abundance

FS cameras provided a substantial increase in
FOV, which often resulted in higher shark counts
compared to the standard mono camera (Fig. 2).
Regardless of the relative abundance metric used,
catchability of mono cameras decreased linearly as
abundance on the FS camera increased (Fig. 3). For
estimates of MaxN, this relationship held true for
both sicklefin lemon and blacktip reef sharks (p <
0.05 for both species; Fig. 3A). However, for sick-
lefin lemon sharks, which were detected in lower
abundances, the negative correlation between catch-
ability and site abundance was heavily influenced
by 2 data points, with all others showing no rela-
tionship. Consistent with these findings, catchability
derived from MeanCount estimates also showed a
significant negative relationship with site abundance
(p < 0.001; Fig. 3B).
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Fig. 2. Still images extracted from stitched full-spherical (left panel) and mono (right panel) Baited Remote Underwater Video
(BRUV) deployments in Tetiaroa, French Polynesia (August 2016). Red dots: elasmobranch individuals that could be identified
(left panel, n = 8; right panel, n = 2) at the same point in time

Detection probability

Results from the Bayesian binomial model indi-
cated a significant difference between detection
probabilities for FS (81.20 + 0.007 %) and mono cam-
eras (69.88 + 0.008%). Despite this disparity, there
was no difference between the 2 cameras in their
probability of false negatives on the entire video
(reporting a species as absent, when it is truly pres-
ent), with neither detecting a shark when the other
did not.

DISCUSSION

By simultaneously sampling with FS and mono
cameras, we were able to demonstrate how limited
FOVs may reduce the effectiveness of these optical
technologies in monitoring shark populations, partic-
ularly in regions where abundances are relatively
high. Our field sampling efforts revealed that catcha-
bility estimates derived from MaxN had a significant
negative correlation with site abundance. These
findings support previous simulation efforts, which
revealed MaxN to be non-linearly related to site
abundance (Schobernd et al. 2014, Campbell et al.
2015). MaxN's hyperstable relationship with site
abundance is believed to be due to its basis as a max-
imum order statistic, whereby only the maximum
count is considered. This limitation may result in esti-
mates reaching a maximum threshold, at which they
plateau due to camera saturation or issues with the
spatial distribution of sharks around the cameras,
while true site abundance continues to increase. For
these reasons, Schobernd et al. (2014) postulated that
estimates of larger predators from video data (which
are often less aggregated and found in lower densi-

ties than other reef fishes) would be less influenced
by issues of hyperstability. While this may be true for
certain species and locations, our results do not sup-
port this hypothesis, as site density frequently ex-
ceeded the catchability threshold of mono cameras
for both blacktip reef and sicklefin lemon sharks.
Furthermore, whereas previous works found using
MeanCount may resolve issues with hyperstability
(Conn 2011, Schobernd et al. 2014, Campbell et al.
2015), we also observed a significant linear decline in
catchability derived from MeanCount as site abun-
dance increased. It is possible that the large size of
our focal species coupled with densities higher than
would occur naturally, as well as the presence of bait
could have driven these results.

In addition to concerns surrounding catchability,
mono cameras were found to have a significantly
lower probability of detecting sharks than FS cam-
eras at any given point in time. Namely, changing the
cameras' FOV from mono to FS improved the proba-
bility of shark detection by nearly 12%. However, it
should be noted that neither the mono (70 %) nor the
FS camera (81%) had a 100% estimated detection
probability based on the modeled probability of
occurrence, which is often assumed in ecological
studies (Yoccoz et al. 2001, Kellner & Swihart 2014,
Monk 2014). Failure to account for this imperfect
detection can result in biased and inaccurate esti-
mates of species distributions (Chen et al. 2013),
environmental drivers of these distributions (Gu &
Swihart 2004), and trends in population dynamics
(Kery & Schmidt 2008, Buckland et al. 2011).

The results of this study have several implications
for the use of video surveys to monitor elasmobranch
populations. Indices of relative abundance, particu-
larly for elasmobranchs, are frequently generated us-
ing zero-inflated models (i.e. delta-generalized linear
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Fig. 3. (A) Relationship between site abundance (N, assumed to be equivalent to the full-spherical [FS] count) and estimates of
MaxN from mono camera (upper panel), as well as catchability (q) of the mono camera (lower panel). Blacktip reef sharks Car-
charhinus melanopterus are represented by black ‘x' marks, whereas sicklefin lemon sharks Negaprion acutidens are repre-
sented by open grey squares. Data points with both ‘x' and open grey squares represent both sicklefin lemon and blacktip reef
sharks. Dashed lines represent the relationship that would be typically assumed for MaxNN (upper panel; y = x), and catchabil-
ity (lower panel; g = 1.0). Solid lines represent the fit of the linear model for each species. (B) Relationship between site abun-
dance (assumed to be equivalent to FS count) and estimates of MeanCount from mono camera (upper panel), as well as catch-
ability (q) of the mono camera (lower panel). Data are aggregated across both sicklefin lemon and blacktip reef sharks and
represented by open circles. Dashed lines represent the relationship that would be typically assumed for MeanCount (upper
panel; y = x), and catchability (lower panel; g = 1.0). Solid line represents the fit of the linear model

models; Bonfil 2005, Cortés 2011, Cortés et al. 2015).
These types of models rely on the ability to accurately
predict if a species will be present at a particular sam-
pling location (i.e. binomial presence/absence data),
as well as providing accurate counts if a species is
present (i.e. Poisson presence-only data). If either
component is imprecise, the resultant index of re-
lative abundance derived from these models is also
imprecise. Results from this study reveal issues sur-
rounding both factors derived from traditional mono
camera video surveys for elasmobranchs. Estimates of
MaxN appear to be saturated around 6 or 7 individuals
for the 2 shark species we examined. This hyperstable
relationship between MaxN and true site abundance
may hinder detection of changes in local population
sizes through time. Imagine, for example, that a re-
gion's true site density is 12 sharks per unit area sam-
pled by BRUVs. Given issues with saturation, as evi-
dent in this study, the estimated MaxN for this region

would most likely be around 6. If this population then
experience marked declines over some time period
(e.g. a 50% decrease over 5 yr), estimates of MaxN
would appear unchanged over this time interval,
leading to the incorrect assessment that the population
is relatively stable. Similarly, this saturation issue may
prevent one from detecting spatial differences in rela-
tive abundance (e.g. Site 1 has a true density of 15
sharks area”!, Site 2 has true density of 7 sharks
area!, but both have a MaxN estimate of 7).
However, it should be noted that the results of this
study indicate these issues will likely only be of im-
portance once a site density exceeds a certain thresh-
old (i.e. 6 or 7 sharks for the focal species observed in
this study). For species that occur at lower densities
(and are thus likely below any threshold value), sur-
vey results from FS and mono cameras will not likely
differ significantly. Although MeanCount has been
shown to reduce hyperstability for teleost fishes
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(Conn 2011, Schobernd et al. 2014, Campbell et al.
2015), we did not find this benefit to be true for our fo-
cal elasmobranchs. Furthermore, detection probability
on any given image was relatively low for the mono
camera. This low detection probability likely drove
the hyperstable relationship with true site abundance
by highly inflating zero counts. This in turn would also
affect the binomial component (presence/absence) of
any delta model approach used to create an index of
relative abundance. However, the probability of a
false negative for the video as a whole did not appear
to be affected by the FOV of the camera. It should be
noted, however, that the probability of occurrence for
the entire video was not modeled, and thus catch his-
tories of (0, 0) were considered as a species being truly
absent, when it is possible a species was present and
simply not detected by either camera. Although this
may bias our estimates of absolute detection probabil-
ity, this bias would impact each gear type equally, and
thus does not influence our resulting comparisons.
When determining whether to use MaxN or Mean-
Count to enumerate elasmobranchs, researchers
should also take into account species-specific consid-
erations such as movement patterns and behaviors
(e.g. slow moving species that have an affinity for the
substrate may stay in front of the camera longer, and
thus increase MeanCount estimates) that may influ-
ence which metric is more appropriate.

Despite the problems with mono cameras high-
lighted above, video surveys remain a viable tool for
monitoring elasmobranch populations if limitations
of restricted FOVs can be reduced or removed. By
increasing the FOV to FS, we were able to greatly
increase our instantaneous detection probability for
elasmobranchs. Furthermore, increasing FOV re-
duced the effects of gear saturation at higher densi-
ties, and thus likely reduced the hyperstable rela-
tionship between counts derived from cameras and a
site's true abundance. This issue may be particularly
important for larger species of sharks, for which
mono cameras would become saturated with rela-
tively few individuals in the camera's FOV. Critically,
these results demonstrate the influence of FOV on
resulting video survey abundance estimates cur-
rently used by conservation managers to monitor
elasmobranch populations. However, a major as-
sumption of this study (as well as in previous work),
is that FS cameras represent the true site abundance.
FS cameras also likely experience deviations from
linearity with true site abundance due to density,
environmental (e.g. poor visibility), and species-
specific considerations (e.g. cryptic behavior). These
issues, however, should be reduced compared to

standard video. Future research needs to be con-
ducted for a variety of species, and across multiple
systems to investigate the potential for regional,
environmental, physical, and species-specific consid-
erations that may influence resulting estimates. Fol-
lowing these efforts, it may be possible to develop a
correction factor so that researchers can convert esti-
mates of relative abundance from mono cameras to
an equivalent FS estimate (e.g. with a linear model
allowing for an asymptotic effect), and thus provide a
method to incorporate historic data with estimates
derived from emerging FS technology. FS camera
technology continues to develop, including recent
advances reducing the number of cameras required
(i.e. BoxFish 360 VR; https://www.boxfish-research.
com/products) as well as now allowing for stereo-
camera length estimates of fishes (M. D. Campbell
pers. obs.). As technology continues to advance, and
the associated costs continue to decline, it is likely
that FS video surveys will become the new norm for
video surveys of elasmobranchs and teleost fishes.
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Appendix. Rendering full-spherical videos

Camera setting requirements for full-spherical cameras

Although both mono and full-spherical (FS) cameras
were set to record at 30 frames s~!, FS cameras had addi-
tional setting requirements needed to stitch FS videos
correctly, including: white balance set to the temperature
scale of 5500 K (outdoor), maximum ISO set to 400,
sharpness set to medium, color set to ‘flat’, auto low light
disabled, a wide angle, and a resolution of 1440p to allow
for the minimum 4:3 aspect ratio.

Video stitching and synchronization

GoPro cameras split recordings into bins no larger
than 4 GB, which translates to approximately 15 to
20 min of footage bin~!. As such, videos taken for this
study were split into multiple video files for each de-
ployment. For both the mono and FS cameras, these
separate video files were merged using MPEG Stream-

clip (Squared 5 srl). Although the mono camera required
no further stitching, each individual camera in the F360
had to be stitched together to generate an integrated FS
video. Two allied programs were used to stitch the FS
videos: Kolor Autopano Giga 4.0 and Autopano Video
Pro 2.0 (Kolor SAS). All 6 videos of the FS array were
first imported into Autopano Video and then stitched
using either the automated motion or sound syncing
feature. To ensure proper synchronization, all videos
were checked against a strobe flash used on deploy-
ment, with each video advanced frame-by-frame to the
first frame when the flash was observed. Once synchro-
nization was complete, all 6 videos were stitched using
the calibration file provided by the F360 housing. Once
the stitched file was generated, the video was then ren-
dered using Autopano Video Pro at 2K resolution for
viewing. To ensure an accurate comparison between the
mono and FS cameras, each video was trimmed to the
same starting point by advancing, frame-by-frame, to
the start of the audio/visual synchronization point (i.e.
third clap from the setter in each video).
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