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INTRODUCTION

Artificial structures are widespread in coastal
 environments throughout the world, providing infra -
structure for shipping, protection of shorelines, and
enhanced tourism and fisheries (Bombace 1989, Mon-
teiro et al. 1994, Baine & Side 2003, Kheawwongjan &
Kim 2012). Artificial structures can be comprised of
artificial and natural materials (e.g. steel, concrete,
rock and wood) and are deployed in a range of depths,
from intertidal seawalls, to offshore oil rigs in deep
water (Bulleri & Chapman 2010, Macreadie et al.
2011). Irrespective of the myriad of ways in which
artificial structures differ, they have long been recog-
nised as places where fish and other marine biota live

or congregate (Bohnsack & Sutherland 1985, Ambrose
& Swarbrick 1989, DeMartini et al. 1989, Pickering &
Whitmarsh 1997).

In Australia and other developed nations, artificial
reefs are increasingly being created to provide en -
hanced recreational fishing opportunities (Milon
1989b, McGlennon & Branden 1994, Baine 2001,
Folpp et al. 2013). The repeated observations of
higher density, diversity and biomass of fish at artifi-
cial structures compared to nearby sediment habitats
(Bohnsack 1989, Fabi & Fiorentini 1994) is the pri-
mary reason for their deployment for fisheries en -
hancement objectives (Milon 1989a). Artificial reefs
deployed for recreational fisheries enhancement are
often small in scale compared to surrounding natural
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habitat and artificial reefs designed for commercial
fisheries enhancement (Santos & Monteiro 1998).
However, they may enhance recreational fisheries by
increasing local production, diversity and aggrega-
tion of fish, resulting in localised increases in catch
rates and angler satisfaction (Bohnsack 1989, Lind-
berg 1997).

Irrespective of the relative contributions that attrac-
tion, production and increased diversity make to fish-
eries enhancement (Lindberg 1997, Brickhill et al.
2005), the ongoing deployment of artificial struc-
tures, particularly in smaller sheltered bays and estu-
aries where natural reef may be sparse, clearly has
implications for local fish assemblages and ecological
interactions (Waltham & Sheaves 2015). Implications
are likely to be viewed as positive, such as enhancing
regional biomass and biodiversity (Bohnsack et al.
1997, Carr & Hixon 1997, Pickering & Whitmarsh
1997), or negative, such as increased ‘fish harvesting’
due to the concentration of target species at greater
densities than those occurring naturally (McGlennon
& Branden 1994). Other risks may include the at -
traction of reef fish from nearby natural reef habi-
tats, thereby impacting natural reef assemblages
and altering adjacent sediment assemblages due to
increased predation and competition (Bohnsack 1989,
Grossman et al. 1997, Powers et al. 2003).

Studies have shown that fish assemblages associ-
ated with artificial structures are generally different
to nearby natural reef and sediment habitats (Ed -
wards & Smith 2005, Clynick et al. 2008, Folpp et al.
2013, Lowry et al. 2014). Many of these studies have
used replicate artificial habitats for comparisons with
nearby natural habitats (Alevizon et al. 1985, Am -
brose & Swarbrick 1989, McGlennon & Branden
1994, Carr & Hixon 1997, Santos & Monteiro 1998,
2007, Sánchez-Jerez & Ramos-Esplá 2000, Burt et al.
2009), and some have included both sediment con-
trols and natural reef comparison sites (Bohnsack et
al. 1994, Folpp et al. 2013, Lowry et al. 2014). How-
ever, studies of fish assemblage response to addition
of artificial structures have rarely used formal before-
after-control-impact (BACI) designs, or sampled
 multiple habitats over multiple climatic seasons
and years (Bergström et al. 2013). The BACI design
allows changes detected at the artificial reef deploy-
ment sites to be differentiated from more general
changes that might be occurring in the region of the
study and are not due to reef deployment. Conduct-
ing before sampling at control and reef deployment
sites also ensures conclusions are not confounded by
pre-existing differences between the reef deploy-
ment sites and the controls or the seasons/years in

which comparisons are made. Additionally, if the
goal is to use artificial structures to restore lost or
damaged natural habitat, or to compensate for loss of
angler access to natural reefs, natural reef compari-
son sites are also important.

Obtaining a comprehensive picture of fish assem-
blages will most often require multiple survey ap -
proaches due to the different behaviour of species and
survey environments, particularly levels of  crypsis,
avoidance of divers and visibility (Colton & Swearer
2010, Lowry et al. 2012). Baited remote underwater
video (BRUV) has been shown to detect mobile pred-
ators and recreational fishery species with increased
frequency compared to underwater visual census
(UVC) (Colton & Swearer 2010, Lowry et al. 2012),
while UVC records more species, particularly cryptic
species (Colton & Swearer 2010, Lowry et al. 2012).
While some artificial reef studies have focussed on
UVC (Burchmore et al. 1985, Bohnsack et al. 1994,
Edwards & Smith 2005, Cenci et al. 2011) and others
on BRUV (Caselle et al. 2002, Folpp et al. 2011) as the
primary techniques to sample fish assemblages, few
have combined the 2 methods to achieve a more
complete picture of how an artificial reef alters fish
assemblage composition (Seaman et al. 1989, Lowry
et al. 2014).

Sparidae species are frequently recorded on artifi-
cial structures, often in numbers exceeding nearby
natural reefs (Clynick et al. 2008, Lowry et al. 2014).
Port Phillip Bay is the centre of the snapper Chryso -
phrys auratus fishery in Victoria. Adult snapper
(>40 cm) form spawning aggregations in the deeper
silt/clay bottom waters of Port Phillip Bay in spring
and summer (October to January) where they are tar-
geted by both commercial and recreational fishers
(Coutin et al. 2003). Smaller sub-adult (<40 cm) snap-
per are also targeted by recreational anglers on shal-
low natural reefs, mostly in autumn (February to
May) (Grixti et al. 2010). There is limited natural reef
habitat in Port Phillip Bay (<1% of the sub-tidal sub-
strate, Hamer et al. 2011). The deployment of artifi-
cial reefs has the potential to increase the reef habitat
area for young snapper. While the main impetus for
creation of artificial reefs in Port Phillip Bay is to pro-
vide habitat for recreational species such as snapper,
no artificial reefs have been deployed in Port Phillip
Bay since the late 1960s to early 1970s (Beinssen
1976), and these earlier reef deployments were not
formally assessed for fish community responses.

Recent deployment of artificial reefs in Australia
have used Reef Balls® arranged as a continuous
structure (Folpp et al. 2013). In this study, we used
clusters of 2 to 5 Reef Balls®, arranged in a regular
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patchwork array to increase the overall
footprint of each reef and provide a
larger sediment to reef edge ratio. The
design is considered suitable for spe-
cies such as snapper, as they utilise
both sediment and reef habitat (Ross et
al. 2007). Additionally, we wanted to
create artificial reefs that would poten-
tially increase snapper abundance and
species diversity, but not at the ex -
pense of displacing local sediment spe-
cies that provide prey for piscivores
and are targeted by re creational anglers.

This project was designed to evalu-
ate the impacts of small-scale artificial
patch reefs on fish community as -
semblages, including fishery target
species. We used a BACI design, with
sediment control and natural reef com-
parison sites, and a combination of
UVC and BRUV sampling methods to
(1) determine the impact of small-scale
artificial patch reef deployments on
existing fish assemblages, (2) identify
fish species that characterise com -
munity differences between artificial
reef, sediment controls and reference
 natural reef habitats, and (3) identify
changes in the abundance of key spe-
cies, including fishery species, in re -
sponse to artificial patch reef de ployment. The out-
comes provide baseline information that can inform
consideration of a broader program of artificial reef
creation.

MATERIALS AND METHODS

Study area and artificial reef structure

This study took place in Port Phillip Bay, south-
east Australia (Fig. 1). Site selection for artificial
reef deployments was initially guided by a con-
straint mapping exercise to identify suitable areas
that were free of existing marine assets and or other
uses or habitats that would conflict with the deploy-
ment of artificial reefs. The constraint mapping
identified Carrum Bight, a large area of inter -
mediate diversity sands (Cohen et al. 2000) on the
eastern side of Port Phillip Bay (−38.071523° S,
145.093713° E), as free of conflicts and highly suit-
able for artificial reef de ployment. Once this area
was identified, consultation with recreational angler

stakeholders determined that the reefs should be
placed in locations directly accessible to boat ramps,
and not shallower than 10 m, as anglers mainly tar-
get Chrysophrys au ratus in intermediate depth
water. This further constrained the area in which
the artificial reefs could be de ployed. Field investi-
gations within the area identified that the depth
zone of 10 to 12 m provided a  stable firm substrate
for the artificial reefs, with low risk of burial or sub-
sidence of the reef structures.

Six sediment and 3 natural reef locations were cho-
sen in Carrum Bight. Three of the 6 sediment sites
were randomly chosen to have artificial reefs de -
ployed and were paired with 3 sediment control sites.
Each artificial reef deployment site was approxi-
mately 1.5 km from a sediment control site at a simi-
lar depth of 10 to 12 m and located approximately
2 km offshore from boat launching facilities. The 3
artificial reef−sediment control pairs were placed
with approximately 8 km separating the pair in the
north of the bight from the pair in the middle, which
was approximately 7 km from the pair to the south
(Fig. 1). The nearest 3 natural reef sites were chosen
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southeast Australia. The 5 and 10 m depth contours are shown. (Locations are 
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as comparison sites. However, natural reefs
do not occur deeper than 9 m in this area of
Port Phillip Bay or immediately adjacent to
the artificial reef−sediment pairs, therefore
natural reefs could not be matched to the
other habitat treatment pairs. Two natural
reefs in the north of the bight (approximately
4 to 5 km from the nearest artificial reef–
sediment pair) and 1 natural reef in the
south (approximately 2 to 3 km from the near-
est artificial reef−sediment pair) were used
(Fig. 1). In summary, there were 3 habitat
treatments each with 3 replicates: pre- and
post-artificial reef sites and the control sedi-
ments, which were paired at 3 locations, and
the unpaired natural reef comparison sites.

Artificial reef design and materials

Each artificial patch reef consisted of 96
Reef Balls®, comprised of 16 Pallet Balls
(0.88 m high × 1.22 m diameter, ~750 kg), 56
Bay Balls (0.61 m high × 0.91 m diameter,
~200 kg), and 24 Mini-Bay Balls (0.53 m high
× 0.76 m diameter, ~120 kg). Because snap-
per move freely between reefs and sediments
and are common along reef margins (Ross et
al. 2007), the reef balls were laid out in a reg-
ular patchwork array instead of clumping
them together to form a contiguous structure
(Folpp et al. 2013). This increased the ratio of
structure to sand with clusters placed over a
square area of 50 × 50 m (Fig. 2). The reefs
were all deployed in May 2009.

Survey methods

Fish assemblages were surveyed using BRUV and
UVC. BRUV systems were constructed based on the
design of Cappo et al. (2004), and 4 systems were
used to allow all sites of all habitat treatments to be
sampled in 1 d. Each BRUV unit consisted of an un-
derwater housing fixed to an aluminium frame, with a
wooden bait pole that had a plastic mesh bait cage
fixed at 1.2 m from the face of the camera housing. A
standardised bait consisting of a mixture of 200 g
chicken feed pellets, 200 g crushed pilchards Sar -
dinops sagax (family Clupeidae) and 100 ml tuna oil
was placed within the bait cage. Two small strips of
squid Nototodarus gouldi (family Ommastrephidae,
ca. 2 × 5 cm) were attached to the outside of the bait

cage to attract individual fish closer to the camera
to assist with identification. BRUVs were lowered
into the central region of each reef complex and the
sediment controls and natural reef sites. Footage
was recorded using a high definition video camera
(Canon HF100) with a Canon ×0.7 wide-angle lens.
The focus was manually set to infinity to maximise the
distance fish remain in focus and ensure consistent
 focus across all recordings, and 60 min of footage was
recorded per drop. Footage was analysed by the same
person in Pinnacle Studio 12® using a time code
 overlay. Species were identified using Gomon et al.
(2008) and the index of relative abundance (MaxN)
was recorded. MaxN is the maximum number of indi-
viduals of a species recorded in the frame at any one
time during the 60 min recording period and is con-
sidered a conservative estimation of a species relative
abundance (Willis et al. 2000, Cappo et al. 2004).
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Fig. 2. Layout of artificial reefs. BB: Bay Ball; MB: Mini-Bay Ball; PB:
Pallet Ball. Individual balls were numbered to aid diver navigation of 

the artificial reef
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UVC of fish assemblages involved three 50-m tran-
sects at each location. At the sediment, natural reef
and artificial reef sites prior to reef deployment, a
shot line was lowered from a boat at a fixed GPS
point (adjacent to a corner of the reef [for the artificial
reefs]). Each transect started at approximately 5 m
from the shot line on a random bearing, with sub -
sequent transects at bearings of approximately 90°
intervals from each other to avoid transects over -
lapping. After artificial reef deployment, individual
transects were allocated to 3 randomly selected
 parallel rows of reef balls (each row covering 50 m
length and 18 modules) at each artificial reef site. For
each 50 m UVC transect, a diver swam out deploying
a transect tape and counting larger mobile benthic
and water column fish approximately 3 m either side
of the tape to obtain density per 300 m2. On the re -
turn swim along the transect tape, the diver counted
cryptic and smaller benthic fish associated with reef
balls, and sediments/natural reef 1 m to one side of
the tape for 5 × 5 m segments each separated by 5 m
intervals (i.e. counts were done at 50−45, 40−35,
30−25, 20−15 and 10−5 m) to obtain density per
25 m2. To prevent variable diver biases, the same
person conducted all UVC fish counts throughout the
project.

Mean daily sea surface water temperatures were
derived from satellite remote sensing data sup -
plied by the Commonwealth Scientific and Industrial
Research Organisation (CSIRO) for the central region
of Port Phillip Bay.

Sampling design

BRUV and UVC surveys were done twice before
artificial reef deployment and 6 times after reef
deployment. In a single year, sampling was allocated
to 3 × 2 mo periods based on annual water tempera-
ture regimes and prior knowledge of seasonality of
fish assemblages in the Port Phillip Bay (Jenkins et
al. 1997, Jenkins & Wheatley 1998). These were sum-
mer: November to December (typical temperature
range 18 to 21°C, increasing), autumn: February
to March (typical temperature range 21 to 19°C,
decreasing) and winter: June to July (typical temper-
ature range 9 to 12°C, bottom of annual cycle). All
locations were sampled in the period of peak fish
abundance in November to December 2008 and
 February to March 2009, prior to the reefs being
deployed in May 2009. After deployment, 6 sample
periods were completed: June to July 2009, Novem-
ber to December 2009, February to March 2010, June

to July 2010, November to December 2010 and
 February to March 2011.

For each survey period, UVC was done once at each
site for a total of 72 samples and BRUV was done 4
times with approximately 2 wk between each BRUV
sampling event for a total of 288 samples. Sampling
times within a sampling day were randomised among
sites and all were completed between 09:00 and 16:00 h
(full daylight) to reduce bias from natural diurnal
changes in fish behaviour (Willis et al. 2006) and tidal
influence (Taylor et al. 2013). BRUV and UVC surveys
were completed at least 1 wk apart.

Data analysis

Species richness

To provide a comprehensive picture of the species
found at each habitat, data from the BRUV and UVC
sampling were combined at each site and converted
to presence/absence for each location at each time of
sampling. To show the detection of new species at
each habitat over time, the cumulative number of
species was plotted over time.

Statistical analysis of species richness and fish as-
semblage composition only used data from No vember
to December and February to March, as there was no
sampling in July to August before the artificial reefs
were installed (July to August results are presented
graphically). Two separate linear models were re-
quired due to the paired set up for artificial reefs and
sediment controls with separate randomly arranged
natural reef comparison locations. The interaction be-
tween habitat and before versus after reef deployment
is the key test for this type of BACI design.

Surface water temperature was plotted for compar-
ison with temporal variation in fish species numbers.

Model 1: Artificial reefs vs. sediments

In this model, location was a blocking factor for the
comparison of artificial reefs and sediments. Habitat
treatments (artificial reefs, sediment controls) and
time were analysed as fixed factors crossed with
location as a random effect.

Model 2: Artificial reefs vs. natural reefs

In this model, location was nested for the compari-
son of artificial reefs and natural reefs. Habitat treat-
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ments (artificial reefs, natural reefs) and time were
analysed as fixed factors with location as a random
effect nested within habitat treatment.

To reduce the likelihood of a Type I error, statistical
tests were only done on specific contrasts to test the
BACI interactions between habitat treatment and
before vs. after (Year 1), and habitat treatment and
before vs. after (Year 2). For both models, data were
checked using visual inspections of boxplots for as -
sumptions of linear models with no transformation
required. Paired comparisons were done for sig -
nificant interactions. Analysis was done in R 3.3.1
(R Core Team 2016).

Fish assemblage composition

BRUV and UVC data were analysed separately
because each method samples species differently.
The results from each method were compared to
investigate the impact of artificial reef deployment
on fish assemblages. All data were fourth-root trans-
formed to downweigh the contributions of quantita-
tively dominant species (Clarke & Warwick 2001)
and were analysed using a distance-based permuta-
tional multivariate analysis of variance (PERM-
ANOVA) applied to a Bray-Curtis similarity matrix
(Anderson 2001). To test for differences in fish as -
semblages between habitats and over time, the  linear
models used for species richness were applied, as were
the specific contrasts that tested the inter actions be -
tween treatment and before vs. after (Year 1) and
before vs. after (Year 2). Significant contrasts were
investigated further using pairwise tests comparing
times before vs. after (Year 1) and before vs. after
(Year 2) separately for each habitat. Interpretation of
the pairwise tests used Monte Carlo p-values, as
there were not enough possible permutations of the
raw data to make statistical inferences at a signifi-
cance level of 0.05 (Anderson & Gorley 2008).

Differences in fish assemblages identified by PER -
MANOVA between habitats over time for BRUV and
UVC were visualised using multi-dimensional scal-
ing (MDS) of fourth-root transformed data (Anderson
2001, Clarke & Warwick 2001). For the MDS plots,
the centroids of the replicate samples within each
2 mo sampling period were plotted for each location
of each habitat treatment. To highlight species re -
sponsible for differences between habitats, a canoni-
cal analysis of principal coordinates (CAP, Anderson
& Willis 2003) was used. Individual species likely to
be responsible for observed differences between
habitats were determined by examining Pearson cor-

relations between abundance data and canonical
axes. A correlation of r > 0.8 was used to identify
strong relationships between individual species and
the canonical axis (Anderson & Gorley 2008).

Individual species

Individual species identified by CAP as likely to
be responsible for the observed differences between
habitats were plotted over time.

RESULTS

Species richness

The combined BRUV and UVC surveys across the
entire survey period recorded 70 fish species, 56 spe-
cies were recorded in the 288 BRUV samples and
53 species in the 72 UVC samples (Table A1 in the
Appendix). Of these, 42 species were recorded by
both methods, 13 species were only recorded by
BRUV and 15 species were only recorded by UVC. A
cumulative total of 56 species (42 families) were
recorded on natural reefs, 53 species (38 families) on
artificial reefs and 29  species (29 families) on sedi-
ments. Thirteen species were recorded only on natu-
ral reefs: Seriola lalandi (family Carangidae), Girella
zebra (family Girellidae), Tilodon sexfasciatum (fam-
ily Microcanthidae), Scorpis lineolata (family Kypho -
sidae), Enoplosus ar matus (family Enoplosidae),
Cheilodactylus nigripes (family Cheilodactylidae),
Parma victoriae (family Pomacentridae), Notolabrus
tetricus, Pictilabrus laticlavius (family Labridae),
Sphyraena novaehollandiae (family Sphyraenidae),
Thyrsites atun (family Gempylidae), Meuschenia
flaviolineata and M. hippocrepis (family Monocan-
thidae). With the exception of Thyrsites atun, Sphy -
raena novaehollandiae and Seriola lalandi, these are
all considered reef-obligate species (Norman & Jones
1984, Barrett 1995, Shepherd & Clarkson 2001, Con-
nell 2002, Ross et al. 2007, Gomon et al. 2008, Fergu-
son et al. 2016). Nine  species were re corded only on
the artificial reefs: Noo rynchus cepedianus (family
Hexanchidae), Geny pterus tigerinus (family Ophidi-
iae), Atherinason spp. (family Ather inidae), Cyttus
australis (family Cyttidae), Maxillocosta scabriceps,
Nesosebastes scorpa enoides (family Neobastidae),
Nemadactylus macro pterus (family Cheilodactyli-
dae), Seriolella brama (family Carangidae) and Tham -
naconus degeni  (family Monocanthidae). Of these,
only 4 species were detected more than once:
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Nemadactylus macro pterus, Thamnaconus degeni,
Genypterus tigerinus and Nesosebastes scorpaen o -
ides. Four species were unique to sediment controls:
Mustelus antarticus (family Heterodontus), Hypo -
rhamphus melnochir (family Hemiramphidae), Pega-
sus lancifer (family Pagasidae) and unidentified
Plueronectiformes (order Plueronectiformes). Of these
species, only the cryptic sediment dwelling Pegasus
lancifer was recorded more than once.

The detection of new species (i.e. cumulative spe-
cies number) followed a similar trajectory on natural
reef and sediment controls, albeit with considerably
more species on natural reefs (Fig. 3a). On artificial
reefs, there was a rapid increase in new species
detected during the first year after reef deployment

(17),  followed by a plateauing in the subsequent year,
similar to natural reefs with only 4 new species
detected in both habitats in the last year of the study
(Fig. 3a). The cumulative number of species re corded
at artificial reefs did not exceed that of natural reefs
by the end of the study period (Fig. 3a).

Seasonal variation of species richness was consis-
tent among all habitats. There was a decline in spe-
cies richness recorded during winter (June to July),
except for the artificial reef treatment immediately
following reef deployment when the number of spe-
cies was increasing (Fig. 3b).

Artificial reefs vs. sediments

The linear model for artificial reefs and sediment
controls showed a significant interaction between
habitat treatment × before vs after (Year 1) (F(1,10) =
30.08, p < 0.001) and before vs. after (Year 2) (F(1,10) =
18.75, p < 0.01). Interactions were driven by an
increase in species richness at the artificial reef
 locations (before vs. after 1: p < 0.001, before vs.  after
2: p < 0.001). Species richness did not change at sed-
iment controls (before vs. after 1: p = 0.81, before vs.
after 2: p = 0.87). Fig. 3b clearly shows an increase in
species richness at both times (Year 1 and Year 2)
after artificial reef deployment compared to before
the artificial reefs were deployed. Artificial reef
treatments were similar to sediments before artificial
reef deployment, whereas after artificial reef deploy-
ment, a higher number of species were detected on
artificial reefs at all times while species richness on
sediments showed comparatively less variation
(Fig. 3b).

Artificial reefs vs. natural reefs

The linear model for artificial reefs and natural
reefs showed a significant interaction between habi-
tat treatment × before vs. after (Year 1) (F(1,20) = 77,
p < 0.01) and before vs. after (Year 2) (F(1,20) = 77, p <
0.01). Interactions were mostly driven by an increase
in species richness at the artificial reef locations fol-
lowing artificial reef deployment (Fig. 3b, before vs.
after 1: p < 0.001, before vs. after 2: p < 0.001). Spe-
cies richness increased significantly at natural reefs
in the first year post artificial reef deployment
(Fig. 3b, before vs. after 1: p < 0.01) but not in the
 second year (before vs. after 2: p = 0.20). Species rich-
ness at artificial reefs was lower than natural reefs at
all times except during winter (Fig. 3b).
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deployment in May 2009 is indicated by the vertical dashed line



Mar Ecol Prog Ser 585: 155–173, 2017

Fish assemblage composition

Artificial reefs vs. sediments

The PERMANOVA for BRUV comparing artificial
reefs to sediments showed a significant habitat treat-
ment × before vs. after (Year 1) interaction (pseudo-
F(1,2) = 6.5373, p = 0.026) and a significant habitat
treatment × before vs. after (Year 2) interaction
(pseudo-F(1,2) = 4.8823, p = 0.044). Pairwise compar-
isons within the level of habitat for time found signif-
icant differences for sediments (before vs. after 1: p =
0.009 and before vs. after 2: p = 0.02) and artificial
reefs (before vs. after 1: p = 0.021 and before vs. after
2: p = 0.006).

For UVC, the comparison was significant for both
habitat treatment × before vs. after (Year 1) inter -
actions (pseudo-F(1,4) = 13.001, p = 0.002) and habitat
treatment × before vs. after (Year 2) interactions
(pseudo-F(1,4) = 16.862, p = 0.001). Pairwise compar-
isons found significant differences at artificial reefs
(before vs. after 1: p = 0.002 and before vs. after 2: p =
0.002). Sediments were not significantly different for
the first comparison (before vs. after 1: p = 0.5526),
but were for the second (before vs. after 2: p = 0.0423).

The MDS for both survey techniques illustrated the
divergence of the artificial reef sites after reef deploy-
ment to form their own unique assemblage (Fig. 4a,b).
The stress for both survey methods was however rela-
tively high, 0.14 and 0.13 for BRUV and UVC, respec-
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tively (Fig. 4a,b). Pearson’s correlation of CAP vari-
ables (r > 0.8) for BRUV indicated that Chrysophrys
auratus (family Sparidae), Parequula mel bournensis
(family Gerridae), Upenichthys vla mingii (family Mull-
idae) and Scobinichthys granu latus (family Monacan-
thidae) were positively correlated with artificial reefs
(Fig. 4c). Except for P. melbournensis, the above spe-
cies were also identified using UVC. In addition,
Diodon nicthemerus (family Diodontidae) and Vin-
centia conspersa (family Apogonidae) were also posi-
tively correlated with artificial reefs using UVC
(Fig. 4d). Gobiidae (family Gobiidae) were found to be
more closely associated with sediments, while Neo -
odax balteatus (family Labridae) was between sedi-
ments and artificial reefs (Fig. 4d).

Artificial reefs vs. natural reefs

For BRUV, the comparison of artificial reefs to
 natural reefs was significant for both interactions:
habitat treatment × before vs. after (Year 1) (pseudo-
F(1,4) = 4.0985, p = 0.025) and habitat treatment × be-
fore vs. after (Year 2) (pseudo-F(1,4) = 4.0303, p = 0.016).
Pairwise comparisons found that this was driven by
significant differences at artificial reefs (before vs. af-
ter 1: p = 0.01 and before vs. after 2: p = 0.011). Natural
reefs were not significantly different (before vs. after
1: p = 0.056 and before vs. after 2: p = 0.147).

For UVC, habitat treatment × before vs. after (Year 1)
(pseudo-F(1,4) = 8.3289, p = 0.003) and habitat treat-
ment × before vs. after (Year 2) (pseudo-F(1,4) = 7.9978,
p = 0.007) interactions were significant for artificial
reef and natural reef comparisons. Pairwise compar-
isons found that this was driven by significant differ-
ences at artificial reefs (before vs. after 1: p = 0.004
and before vs. after 2: p = 0.001). Natural reefs were
not significantly different (before vs. after 1: p = 0.176
and before vs. after 2: p = 0.651).

The MDS for BRUV and UVC shows that the artifi-
cial reef sites after reef deployment are more like nat-
ural reefs (Fig. 5a,b). The pattern was more  evident
for UVC than BRUV, with BRUV having a higher stress
of 0.14 (Fig. 5a) compared to 0.05 for UVC (Fig. 5b).
Pearson’s correlation of CAP variables ( r >0.8) for
BRUV indicated U. vlamingii (family Mullidae) and
Platycephalus spp. (family Platycepha lidae) were as-
sociated with artificial reefs (Fig. 5c). Trachinops
caudimaculatus (family Plesiopidae) and Meuschenia
hippocrepis (family Monocanthidae) were strongly
associated with natural reefs (Fig. 5c). S. granulatus
was between artificial and natural reefs (Fig. 5c). Pear-
son’s correlation of CAP variables (|r| > 0.8) for UVC

identified T. caudimaculatus, Parma victoriae (family,
Pomacentridae) and Trinorfolkia spp. (family Triptery-
giidae) were strongly associated with natural reefs
(Fig. 5d). V. conspersa and U. vlamingii were between
artificial and natural reefs, with no species found to be
strongly associated with artificial reefs (Fig. 5d).

Individual species

Chrysophrys auratus. C. auratus, the main fishery
species, were observed mostly as juveniles (esti-
mated <30 cm total length, data not shown) and were
detected at all times/seasons on the natural reef and
artificial reef habitats, but were only detected on sed-
iments during the summer and autumn periods using
BRUV (Fig. 6a). C. auratus were observed in higher
abundances at the artificial reef sites compared to
sediments both before and after artificial reefs were
deployed, but the differences were more pronounced
after deployment (Fig. 6a). UVC recorded more C.
auratus at artificial reefs compared to both sediments
and natural reefs from the first summer after artificial
reef deployment until the end of the study (Fig. 6b).

Platycephalus spp. Platycephalus spp. were gener-
ally recorded in higher average abundances using
BRUV than UVC, with very few detections on natural
reefs (Fig. 6c). With BRUV, Platycephalus spp. abun-
dances decreased at artificial reefs compared to sed-
iments for the last 4 sample times (Fig. 6c). However,
the relative abundance of Platycephalus spp. at arti-
ficial reefs and sediments detected using UVC varied
across time (Fig. 6d).

Upenichthys vlamingii. Both methods detected U.
vlamingii in higher abundances at the artificial reef
sites following reef deployment compared to sedi-
ments and natural reefs, with UVC detecting higher
numbers than BRUV (Fig. 6e,f). The number of U.
vlamingii detected by BRUV on artificial reefs was
always larger than sediment controls and increased
after artificial reef deployment (Fig. 6e,f). UVC con-
sistently detected more U. vlamingii on artificial reef
locations from the first summer after reef deployment
until the end of the study.

Scobinichthys granulatus. S. granulatus were de -
tected by BRUV and UVC at the artificial reef sites
only after reef deployment (Fig. 6g,h). For BRUV, S.
granulatus were detected at the artificial reefs post
reef deployment in abundances similar to natural
reefs. More S. granulatus were detected in autumn in
both years after reef deployment than on sediments
(Fig. 6g). Using UVC, low numbers of S. granulatus
were detected until February to March 2010 when
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more S. granulatus were recorded at artificial reefs
than natural reefs and sediments. The numbers of S.
granulatus remained higher at artificial reefs for the
remainder of the study (Fig. 6h).

Neoodax balteatus. N. balteatus were detected in
higher abundances at natural reefs than sediments
or artificial reefs using BRUV, with no consistent
 pattern of increase after artificial reef deployment
(Fig. 6i). Using UVC, N. balteatus were mostly de -
tected in higher abundances at natural reefs than
artificial reefs or soft sediments (Fig. 6j). Abundances
of N. balteatus remained similar between sediment
and artificial reefs throughout the study (Fig. 6j).

Vincentia conspersa. Using BRUV, V. conspersa
were only detected on natural reefs and in low num-
bers (Fig. 6k). V. conspersa were detected at artificial

reefs following reef deployment in numbers similar
to natural reefs using UVC (Fig. 6l). V. conspersa
were only detected on sediment at the last sampling
occasion (Fig. 6l).

Trinorfolkia spp. Trinorfolkia spp. were not de -
tected using BRUV (Fig. 6m). Using UVC, Trinorfolkia
spp. were detected at all times on natural reefs and
on 2 occasions on artificial reefs following reef de -
ployment (Fig. 6n).

Diodon nicthemerus. D. nicthemerus were detected
in similar numbers in all habitats using BRUV (Fig. 6o).
The abundance of D. nicthemerus detected using
UVC on artificial reefs increased after reef deploy-
ment and remained similar to natural reefs for the re -
mainder of the study (Fig. 6p). D. nicthemerus were
rarely detected on sediments using UVC (Fig. 6p).
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Parequula melbournensis. P. melbournensis were
mostly detected on artificial reefs after artificial reef
deployment (Fig. 6q,r). More P. melbournensis were

recorded at artificial reefs on the last 3 sampling
times using BRUV (Fig. 6q) and on 3 of the last 4 sam-
pling times using UVC (Fig. 6r). No P. melbournensis
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were detected on sediments and natural reefs using
UVC and only a few were observed at the natural
reefs using BRUV (Fig. 6q,r).

Trachinops caudimaculatus. Using BRUV, T. caudi -
maculatus were only detected on natural reefs
(Fig. 6s). Using UVC, however, T. caudimaculatus were
also detected on artificial reefs, although in lower
numbers than natural reefs with persistent popula-
tions failing to establish on the artificial reefs (Fig. 6t).

Gobiidae. Using BRUV, Gobiidae were only de -
tected in small numbers during the survey. Numbers
decreased at artificial reef sites following reef de -
ployment, with none being detected in the last 5 sam-
pling periods (Fig. 6u). UVC showed similar patterns

of abundance of Gobiidae on artificial reefs and
 sediments with a large recruitment event occurring
in both habitats in November to December 2009
(Fig. 6v). Gobiidae were rarely detected on natural
reefs using either method (Fig. 6v).

DISCUSSION

The deployment of patchwork artificial reefs on
sandy substrate in Port Phillip Bay resulted in major
increases in fish abundance and species numbers
over the first 6 mo post-deployment. Species richness
at artificial reefs was similar to natural reefs after
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10 mo, with the detection rate of new species on arti-
ficial reefs plateauing 2 yr after deployment. The fish
assemblages that developed on the artificial reefs
were different to those found on sediment controls
and natural reef comparison sites. The patchwork
layout of the reefs facilitated an assemblage that was
intermediate between a natural reef and sediment
habitat. The patchwork artificial reefs were charac-
terised by species that favour the natural reef/sedi-
ment interface, e.g. Chrysophrys auratus and Upe -
nichthys vlamingii (Ross et al. 2007), and species that
used the artificial reef structures for shelter, e.g. Vin-
centia conspersa and Diodon nicthemerus, which
were mostly observed inside the reef balls or in small
cavities between the sediment and the reef ball bases.

Similar to many other studies, the patchwork arti -
ficial reefs in Port Phillip Bay supported elevated
abundances and diversity of fish compared to nearby
sediment controls (Bohnsack et al. 1994, Santos &
Monteiro 2007, Santos et al. 2011, Folpp et al. 2013,
Lowry et al. 2014). Parequula melbournensis, Sco bi -
nichthys granulatus, U. vlamingii and juvenile C. au-
ratus were positively associated with artificial reefs
and all derive most of their food from benthic sources
(Platell et al. 1997, Ross et al. 2007, Svane et al. 2007,
Currie & Sorokin 2010). The deployment of artificial
reefs would likely have opened up new, under -
exploited foraging areas and potentially in creased
foraging success (Bohnsack & Sutherland 1985). Ad-
ditionally, the numerically dominant C. au ratus and
U. vlamingii have been found to be more abundant in
areas of complex habitats (in this case a patchwork
of artificial reef), due to the provision of a balance of
food acquisition and refuge for predator avoidance
(Ross et al. 2007, Parsons et al. 2013, 2014).

There is minimal information on the impact of arti-
ficial reefs on the pre-existing sediment fish assem-
blages because artificial reefs studies have rarely
sampled before artificial reefs have been deployed
(the exception is Lowry et al. 2014 who only sampled
at the artificial reef deployment sites). Using a BACI
design, we found that the abundance of the 2 most
common sediment dwelling species, Platycephalus
spp. and Gobiidae spp., remained consistent with the
controls after artificial reef deployment. The patch-
work arrangement of the reefs provided enough
 sediment habitat for the local populations to persist.
The numerically dominant sediment-dwelling Gobi-
idae spp. are comprised of over 20 species in Port
Phillip Bay, including 3 introduced species (Hewitt et
al. 2004). Gobiidae spp. spawn most of the year with
peaks observed in winter and summer (Jenkins
1986), are generally small (60 to 140 mm) and are

known to have short life spans of 12 to 14 mo with
high adult mortality and annual survivorship of ≤2 to
3% (Hernaman & Munday 2005a,b). The fluctuations
in Gobiidae spp. abundance that we observed with
UVC can be attributed to their life history and
episodic recruitment rather than habitat type, with
1 successful recruitment event detected at artificial
reefs and sediments during the study. The different
pattern of abundance found for Gobiidae spp. using
BRUV is due to their small size and not being
attracted off the sea bed to the bait cage. Individual
fish were difficult to detect unless close to the cam-
era, and interspecies interactions associated with the
presence of bait potentially kept Gobiidae spp. out-
side the field of view (Lowry et al. 2012).

Unlike recent studies on the east coast of Australia
(Edwards & Smith 2005, Folpp et al. 2013, Lowry et al.
2014) and elsewhere (Ambrose & Swarbrick 1989,
Bohnsack et al. 1994, Carr & Hixon 1997, Clark & Ed-
wards 1999, Burt et al. 2009, Granneman & Steele
2015), artificial reefs in our study did not support more
species than nearby natural reefs. Possible  reasons for
the difference in species numbers are topographic
complexity, proximity to natural reefs, age, fouling as-
semblages and depth between study sites (Burchmore
et al. 1985, Thanner et al. 2006). In our study, the lack
of structural complexity (ledges, crevices, small holes,
etc.) provided by the reef balls and the limited algal
growth on them due to their depth and the water clar-
ity were likely to have af fected the uptake and reten-
tion of cryptic and/or  herbivorous reef obligate species
(Charbonnel et al. 2002, Sherman et al. 2002). This is
highlighted by the large number of highly site at-
tached Trachinops caudimaculatus (Ford & Swearer
2013) that recruited and then subsequently almost
completely disappeared from artificial reefs. Insuffi-
cient habitat availability and structure can negatively
affect the survival of prey species on artificial reefs
(Hixon & Beets 1993). The lack of cryptic refuge af-
forded by the reef balls may have resulted in high
predation rates of T. caudimaculatus (Ford & Swearer
2013). Additionally, 9 reef-obligate species detected
on natural reefs were not observed on the artificial
reefs, indicating that for some species there was little
movement or recruitment from natural reefs. This
may be due to the  isolation of the reefs from natural
reefs and the non-contiguous design of the patch reefs
being unable to sustain a population of reef-obligate
species (Walsh 1985, Bohnsack et al. 1994).

C. auratus in Port Phillip Bay support the state’s
largest marine recreational fishery (Hamer & Jenkins
2004, Hamer et al. 2005). Sexually mature C. auratus
(6+ yr old) spawn during the warmer months (No v -
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ember to February) in Port Phillip Bay, with success-
ful recruits settling to the sediment after 3 to 4 wk in
the water column (Hamer & Jenkins 2004, Hamer
et al. 2005). Newly settled recruits and juvenile (1 to
2 yr old) C. auratus rapidly colonised the artificial
reefs in our study (K.A. Mills unpubl. data). Sparids
have been frequently observed around artificial
structures in higher numbers than natural reefs
(Clynick et al. 2008, Folpp et al. 2013, Lowry et al.
2014), with the increased access to food afforded by
the larger ‘edge-to-area’ ratio (amount of sand/reef
interface) suggested as a possible reason (Folpp et al.
2013). The patch reef design used in our study pro-
vided a greater edge-to-area ratio than placing the
reef balls closer together. Additionally, structured
habitat is known to be preferred by recently settled
C. auratus and juveniles during this critical life stage
(Ross et al. 2007, Parsons et al. 2014). It is during this
critical life stage that artificial reefs may potentially
increase survival of juveniles through the provision
of additional habitat and food resources.

The combination of BRUV and UVC provided a
comprehensive picture of spatial and temporal varia-
tion in species assemblages (Lowry et al. 2014). The
use of BRUV on artificial reefs has been found to
complement UVC by providing increased coverage
of species known to be diver averse (Lowry et al.
2012), while UVC samples cryptic and territorial spe-
cies more effectively (Colton & Swearer 2010, Folpp
et al. 2013, Lowry et al. 2014). In this study, direct
comparisons of methods were not made due to the
inequality in sampling intensity, yet there are clear
benefits of a particular method when sampling some
species. For example, T. caudimaculatus were not
detected by BRUV at artificial reefs despite 100s re -
cruiting 6 mo after reef deployment, while C. auratus
were less frequently, and more variably, detected by
UVC. Studies on artificial reefs need to carefully con-
sider key species of interest before choosing a sam-
pling method, both to maximise cost-effectiveness of
sampling approaches and to detect important varia-
tions in abundance.

In our study, artificial reef deployment increased
fish diversity, but the resulting assemblage and
abundance dynamics were influenced by large scale
processes such as recruitment and migration. This
was evident in the seasonal fluctuations of species
numbers on natural and artificial reefs, as many spe-
cies migrate into Port Phillip Bay from coastal waters
during spring and summer, as the water warms, and
out again in autumn and winter as the water cools
(Parry et al. 1995). Further, the use of a BACI design
caters for the spatial and temporal variation which

can be high in fish assemblages, while the time frame
of 2 yr was sufficient to determine the impact of arti-
ficial reef deployment on species accumulation and
fish assemblages.

Artificial reefs are becoming increasingly popular
with anglers and fisheries agencies. Their continued
deployment should consider their potential impact on
existing assemblages. The results from our study
suggest that small patch reefs can be deployed with-
out negatively impacting existing sediment fish
assemblages while also increasing species diversity
and abundance on the artificial reefs. The contri -
bution that small-scale artificial reefs make to the
increased production of the key target species, snap-
per, that utilise reefs for components of their  life-
history and are not dependent on the structure ‘per
se’, may be difficult to measure and cannot simply be
inferred from higher abundances at the artificial reefs
than at the other habitats (Osenberg et al. 2002).
Indirect approaches to inferring production benefits
of reefs to snapper might involve measuring growth
rates, feeding success, and condition indices for small
juveniles that recruit to the reefs compared to sedi-
ment and natural reefs (Brickhill et al. 2005).

The increase in C. auratus numbers in our study due
to artificial reef deployment has the potential to in-
crease their catch rate and fishing-related mortality,
as anglers have been found to fish artificial reefs more
intensely than surrounding sediment areas (McGlen-
non & Branden 1994, Keller et al. 2016). As artificial
reefs are increasingly being built for recreational
 angling, future research needs to be directed at con-
structing artificial reefs that benefit individual species
of interest, whether to improve survival and growth of
species or enhance fisheries. It should be remembered
that any enhancement of fisheries through increasing
catch rates or making species easier to target may
negatively impact the population and this needs to be
incorporated into the management of the species.
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Family BRUV UVC

Heterodontus *
Hexanchidae
Rhinobatidae
Urolophidae

*

Dasyatidae
Myliobatidae

**

*

*

*
*

*
* *
*

Ophidiidae
Atherinidae
Hemiramphidae
Zeidae
Syngnathidae
Pegasidae
Scorpaenidae
Neosebastidae

* *Tetrarogidae
Triglidae
Platycephalidae
Serranidae
Plesiopidae
Apogonidae

Dinolestidae *
Sillaginidae
Carangidae

*

*

*

Gerreidae
Sparidae
Mullidae
Arripidae
Girellidae
Microcanthidae
Scorpididae
Enoplosidae
Pentacerotidae
Cheilodactylidae

*
*

ARTIFICIAL REEFS 
BRUV UVC

NATURAL REEFSOFT SEDIMENT 
BRUV UVCSpecies

Heterodontus portjacksoni

Mustelus antarcticus

Notorynchus cepedianus

Trygonorrhina fasciata

Urolophidae sp.
Dasyatis brevicaudata

Myliobatis australis
Pseudophycis sp.
Genypterus tigerinus

Atherinason spp.
Hyporhamphus melanochir

Cyttus australis

Hippocampus bleekeri

Pegasus lancifer

Scorpaena papillosa

Maxillocosta scabriceps

Nesosebastes scorpaenoides

Gymnapistes marmoratus

Lepidotrigla mulhalli
Platycephalus spp.
Caesioerca rasor

Trachinops caudimaculatus

Siphamia cephalotes

Vincentia conspersa

Dinolestes lewini

Sillaginodes punctata

Pseudocarax dentex

Seriola lalandi

Trachurus novaezelandiae

Parequula melbournesis

Chrysophrys auratus

Upenichthys vlamingii

Arripis georgianus

Girella zebra

Tilodon sexfasciatum

Scorpis lineolata

Enoplosus armatus

Pentaceropsis recurvirostis

Cheilodactylus nigripes

Appendix. Table A1. Species sampled by baited remote underwater video (BRUV) and underwater 
visual census (UVC). *Species only detected once
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BRUV UVC

*

*

***
*

*
*

*
*

* *
*

*
*

* *

35 38 26 16 48 39

52 32 56

ARTIFICIAL REEFS 
BRUV UVC

NATURAL REEFSOFT SEDIMENT 
BRUV UVCFamily

Cheilodactylidae

Pomacentridae
Labridae

Odacidae
Tripterygiidae
Blenniidae
Clinidae
Bovichtidae
Gobiidae
Sphyraenidae
Gempylidae
Centrolophidae
Order Pleuronectiformes
Monacanthidae

Tetraodontidae

Engraulidae
Arripidae

Species

Nemadactylus macropterus

Dactylophora nigricans

Parma victoriae

Notolabrus tetricus

Pictolabrus laticlavius

Neoodax balteatus
Trinorfolkia spp.
Unidentified Blenniidae
Cristiceps spp.
Bovichtus angustifrons

Unidentified Gobiidae
Sphyraena novaehollandiae

Thyrsites atun

Seriolella brama

Unidentified Plueronectiformes
Acanthaluteres spilomelanurus

Acanthaluteres vittiger

Brachaluteres jacksonianus

Eubalichthys mosaicus

Meschenia flavolineata

Meschenia freycineti

Meschenia hippocrepis

Meschenia scaber

Nelusetta ayraudi

Scobinichthys granulatus

Thamnaconus dageni

Contusus brevicaudus

Tetractenos glaber

Diodon nicthemerus

Engraulis australis
Arripis sp.

Number of species

Total number of species

Appendix. Table A1 (continued)
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