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ABSTRACT: Flying fish scales were recovered from ornithogenic sediments at 3 coral islands in
Qilian Yu, Xisha Islands, South China Sea, and identified based on species-specific morphological
structures. Stable isotope analyses indicated insignificant changes in the ratio of 1*C to 2C (83C)
and the ratio of 1*N to N (§'°N) in scales dating from the period ~1000 to 1850 AD, reflecting the
stability of avian community structures and feeding habits of tropical seabirds on Qilian Yu where
they have consistently preyed on flying fish. Compared with data from modern flying fish sam-
ples, we found §'°N did not change, while 33C declined by about 1.9 %, from historical times to the
present, but this change can be associated with the Suess effect (decrease of atmospheric §°C
caused by fossil-fuel burning). A strong negative correlation was found between §*C and 8°N in
the historical flying fish scales, which was attributed to the natural spawning behavior of the fish,
i.e. adult fish move to inshore areas to spawn; the weak positive correlation previously observed
in modern samples is a result of larger sampling areas and possible human disturbances.
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INTRODUCTION able attention (Erwin & Congdon 2007, Xu et al.

2014, Wu et al. 2017a). Here we focus on the South

Paleoecological studies of seabirds, including nest-
ing and feeding habits (e.g. Emslie & Patterson 2007,
Huang et al. 2013, Tavares et al. 2016, Eerkes-
Medrano et al. 2017) are valuable because seabirds
often play a key role in the development of ecosys-
tems in remote regions (e.g. Finney et al. 2000,
Michelutti et al. 2010, Nie et al. 2012). Dietary char-
acteristics of tropical seabirds, which can transfer
nutrients to coral island ecosystems (Allaway & Ash-
ford 1984, Xu et al. 2011), have received consider-
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China Sea, which is located in a tropical region
where there are numerous coral islands (Wang 2011).
Many tropical seabirds, among which the red-footed
booby Sula sula is the most important, inhabit the
Xisha Islands, South China Sea (Exploration Group
of Xisha Islands of Institute of Soil Science of Chinese
Academy of Sciences 1977, Cao et al. 2007). Like
tropical seabirds living in other regions in the world,
they predominantly feed on flying fish (e.g. Exocoe-
tus volitans in this study) and squid (e.g. Loligo chi-
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nensis) from the surrounding waters (Cherel et al.
2008, Young et al. 2010, Xu et al. 2014). Cao (2009)
completed a detailed study on the diet of red-footed
boobies at Dongdao Island, Xisha Islands, through
field observations. Xu et al. (2014) and Wu et al.
(2017a) proposed that, in the past millennium, when
seabirds were more abundant, they likely fed prima-
rily on squid, in contrast to the situation today where
they feed largely on flying fish. However, other than
the relative proportion of modern prey, the past diet
of tropical seabirds on the Xisha Islands has not been
previously investigated, but it is worthy of study
since it might reflect potential changes in the com-
munity structure of prey or a predator's population
size.

Flying fish are recognized as an important food
source for many tropical seabirds and can make up a
larger part of the diet than alternative taxa such as
squid (Villanueva 2000, Sukramongkol et al. 2007).
However, flying fish have not been well studied. Fly-
ing fish are widely distributed in the South China Sea
and are especially abundant around the Xisha
Islands. They are important in the diet of not only
tropical seabirds, but also epipelagic piscivorous fish
(Wang 2011). Although we can collect fresh flying
fish samples for analysis, we cannot obtain muscle
samples from the fossil record due to the lack of
preservation; hence, alternative materials are neces-
sary. Fortunately, a large number of fish scales
(residue buried after seabird feedings) were recov-
ered from coral-sand ornithogenic sediments at the
Xisha Islands (Xu et al. 2011, 2016). Prey are taken
by adult birds from the ocean surface and brought to
colonial tree and shrub nesting sites on the islands
to consume or feed to their young (Cao 2005). The
remains of flying fish, including scales buried in the
ornithogenic sediments below nesting sites, provide
an opportunity to investigate the paleoecology of fly-
ing fish and historical feeding habits of tropical sea-
birds on these islands.

Stable isotope analysis is a useful tool for conduct-
ing ecological and food-web research (Martinez et al.
2014, da Silva et al. 2016). The ratio of >N to N
(8°N) is typically used to provide information on
consumer trophic level (DeNiro & Epstein 1981, Van-
der Zanden et al. 1997, Post 2002) or the size of
organisms (e.g. Olsson et al. 2000), and the ratio of
13C to '2C (8'3C) can be used to infer habitat use and
source of primary production (DeNiro & Epstein
1978, Cherel & Hobson 2007, Ronconi et al. 2014). In
a previous study, we affirmed that flying fish scales
act as an alternative to muscle samples, as in many
other studies (e.g. Pruell et al. 2003, Kelly et al. 2006,

Roussel et al. 2014), and attributed variation in §'°N
to changing fish mass with age, while §°C varies
with geographic location (Wu et al. 2017b). These
results indicate that historical flying fish scales can
provide valuable information about past ecosystems.

Before conducting stable isotope analyses of the
fish scales, it is important to verify that identification
to species is possible. We compared historical and
modern scales to validate this study and found that
additional information on fish size and geographic
distributions of flying fish also can be investigated
with these data.

MATERIALS AND METHODS
Sampling

The South China Sea (3°00'-23°37'N, 99°10'-
122°10'E), predominantly located in the tropics, is
the third-largest marginal sea in the world, and is
mainly surrounded by mainland, islands, and penin-
sulas. The Xisha Islands (15°47'-17°08'N, 110°
10'-112°55"E), most of which are coral islands, are
situated in the northwest South China Sea (Fig. 1A),
and have a tropical marine climate with year-round
high temperatures and heavy rains. These natural
conditions have allowed the Xisha Islands to develop
a unique landscape. Trees (Pisonia grandis and
Guettarda speciosa), bordered by shrubs (Scaevola
sericea), cover the center area of some islands, pro-
viding habitat for more than 60 species of birds in
historical times (Exploration Group of Xisha Islands
of Institute of Soil Science of Chinese Academy of
Sciences 1977, Cao et al. 2007).

The sampling methods used in this study are de-
scribed in our earlier study (Xu et al. 2016). Profiles
ZS2 (16°58'39.9"N, 112°16'15.5"E), BD1 (16°57'
45.0"N, 112°18'38.5"E), and ND1 (16°56'47.7" N,
112°20'3.9"E) were sampled at Zhaoshu, Beidao,
and Nandao islands, Qilian Yu Islands (Fig. 1B), in
2015, respectively (Fig. 1C), and were all located
beneath thick shrubs of S. sericea. PVC plastic
pipes (11 cm diameter) were inserted into the soft
substrate and the sediments were then excavated
around the pipes to retrieve sample cores. At the
same time, a coarse fraction of sediment sample
from an adjacent duplicate pit (about 1 x 1 m
square) was separated at intervals of 1 or 2 cm using
a 10-mesh stainless steel sieve in situ to obtain suffi-
cient sub-fossils, including bird and fish bones, bird
guano, eggshells, and fish scales for analysis. Fish
scales were then sorted from the coarse fraction of
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Fig. 1. (A) Location of study area in the South China Sea. (B) Qilian Yu Islands. Profiles ZS2, BD1, and ND1 were collected
from Zhaoshu, Beidao, and Nandao islands, respectively. The grey area indicates submerged reefs. (C) Sampling sites on
the 3 islands

sediment samples in the laboratory. Chronology of
the profiles was determined by 2'°Pb and AMS
(accelerator mass spectrometry) *C dating, and the
results were reported in detail by Xu et al. (2016).
For comparative studies and to verify identifications
to species, a total of 82 samples of modern flying
fish of different masses were collected from the
South China Sea (9°-19°N, 111°-115°E) near the
islands in this study, and the results of stable isotope
analyses were reported in our previous study (Wu et
al. 2017b).

Species identification

A typical teleost scale comprises 2 portions: a hard
upper, well-mineralized layer (the external layer)
composed of calcium phosphate, similar to the min-
eral apatite, overlying a poorly mineralized layer,
known as the basal or fibrillar plate, which is com-
posed largely of collagen (Hutchinson & Trueman
2006). Scales of bony fish have consistent morpholog-

ical structures that are species specific, and can also
be used to age individual fish (Poulet et al. 2005,
Huang et al. 2015). Flying fish have never been iden-
tified using this method, but comparative analysis
revealed that scale focus is apparent in the tail scale
of flying fish (Fig. 2). Uniformly distributed around
the scale focus, circuli are distinct, varying from fine
to thick in the lateral field. There are 2-8 radii in the
anterior field, radiating from the focus to the margin
of the anterior field, with no radii in the lateral or pos-
terior field. Only one or no minor radii appear
between 2 major radii. The partition of fields is not
obvious. Based on these features, more than 300 fly-
ing fish scales were recovered and identified from
the 3 profiles. AMS C dating of both bird and fish
bones (Xu et al. 2016) indicated that they were
almost all deposited after 1000 AD and before
1950 AD, with few human disturbances. Here, 103
scales (35 from BD1, 37 from ND1, and 31 from ZS2;
94 before 1850 AD) with different ages and depths in
the sediments were selected for stable isotope analy-
sis and are hereafter referred to as historical scales.
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Fig. 2. Scales of (A,B) historical flying fish, (C) historical sample but not flying fish, and (D) modern flying fish, as viewed with
an optical microscope

Stable isotope analysis

The pretreatment of historical fish scale samples fol-
lowed the methods of Estep & Vigg (1985) and Sin-
natamby et al. (2007). They were all treated with 1.2 N
HCI for 2 min to remove carbonate before being air
dried. Well-treated samples and standards were fully
combusted at 1000°C using a FLASH 2000 HT Ele-
mental Analyzer (Thermo Fisher), the carbon and ni-
trogen contents were measured, and then the gases
were separated by a ‘purge and trap' adsorption col-
umn and sent to an isotope ratio mass spectrometry
(IRMS MAT 253) for isotope analysis. Stable isotope
abundances were expressed in d notation as the devi-
ation from standards in parts per thousand (%o): 81°C =
[(Rsample/ Rstandara) — 1] x 1000, where R refers to the ra-
tio 13C/2C and the Ryanqarq Value is based on Vienna
PeeDee Belemnite (VPDB); 8N = [(Ryampie/Rstandara)
—1] x 1000, where R represents the ratio >N/N and
the Rgandara Value is based on atmospheric nitrogen

(N,-atm). Analytical precision (the standard deviation)
for '3C and 8'°N was less than +0.1 %o and +0.2 %o, Te-
spectively. Stable isotope analyses were determined
at the State Key Laboratory of Atmospheric Boundary
Layer Physics and Atmospheric Chemistry (LAPC),
Institute of Atmospheric Physics, Chinese Academy of
Sciences (Beijing, China). Both the pretreatment and
isotopic test methods (Tieszen et al. 1983) were fol-
lowed for the stable isotope analysis of modern flying
fish scale samples (Wu et al. 2017b).

RESULTS

313C and §'°N stable isotopes in flying fish scales
recovered from the 3 profiles BD1, ND1, and ZS2
versus their buried ages (year of burial) are shown in
Fig. 3, with related statistics in Tables 1 & 2. We ana-
lyzed data from each profile and for different ages
separately, but also pooled data from all 3 profiles for
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Fig. 3. 8'°C and 8N in historical flying fish scales versus

corresponding buried ages for profiles BD1, ND1, and ZS2.

The results of modern samples are from Wu et al. (2017b).

The black lines are the results of linear fitting for historical
samples over time

historical samples. For comparison and further analy-
sis, we collected published data on modern flying
fish from the South China Sea (Wu et al. 2017b). C/N
ratios of samples are also presented in Table 1 with
those of modern samples from Wu et al. (2017a). For
815N, the small discrepancy between the 2 averages
for historical (5.6 + 0.8%0, mean + SD, n = 103) and
modern (6.3 + 0.8 %o, n = 82) samples is likely due to a
higher mass in modern fish (for 8'°N in historical and
modern samples, 1-way ANOVA, F, 1353 = 31.66, p <
0.001; for 8N in historical samples from different

time bins before 1850 AD, 1-way ANOVA, Fgg; =
1.65, p = 0.144). However, §'*C in the historical scales
ranged from -15.2%. to —12.5%0, with an average of
-13.7 £ 0.6 %o (n = 103), and obviously differed from
modern fish scales §'*C (—17.5%o to —14.2 %o, with an
average of —15.6 + 0.8%o; for 8!3C in historical and
modern samples, 1-way ANOVA, F, 153 = 454.56, p <
0.001; for 8'3C in historical samples from different
time bins before 1850 AD, 1-way ANOVA, Fgg; =
1.05, p = 0.399), although there was no difference in
313C or 8N among the samples of BD1, ND1, and
ZS2 (for 813C, 1-way ANOVA, F, 199 = 0.60, p = 0.551;
for 8'°N, 1-way ANOVA, F, 149 = 1.42, p = 0.246).

For historical scale samples from the 3 profiles, the
C/N ratios were similar (Table 1) with a mean of 2.90
+0.10 (n = 103), close to that of modern scale samples
2.87 £ 0.05 (n = 25; Table 1, 1-way ANOVA, F; 154 =
0.53, p = 0.660). These results indicate that the histor-
ical scales are well preserved and diagenetic pro-
cesses in the soil did not affect the values of §!3C and
315N,

DISCUSSION

Isotope characteristics of historical flying
fish scales

Our previous study showed that flying fish scale
8N co-varies with individual size, while §!3C reflects
the marine habitat, such as shallow neritic versus off-
shore pelagic (Wu et al. 2017b). As Beidao, Nandao,

Table 1. Statistics of §'°C and §'°N and C/N in flying fish scales. Note: the §'3C and §'°N values in modern samples are from Wu
et al. (2017b), and the C/N values of modern samples are from Wu et al. (2017a)

313C (%) BN (%) ———— C/N
Min Max Mean+SD Min Max Mean+SD
BD1 -14.6 -12.7 -13.6x0.5 (n 35) 4.2 71 57x0.7 (n=2395) 2.92+£0.09 (n 35)
ND1 -14.8 -12.5 -13.6+0.5 (n=3%) 4.1 72 54+09 (n=237 2.90+0.12 (n = 37)
ZS2 -152 -12.9 -13.7+0.5 (n=31) 4.2 7.1 54+0.8(n=31) 2.90+0.10 (n = 31)
Historical samples -152 -12.5 -13.7+0.6 (n= 103) 4.1 72 56+0.8((n=103) 2.90+0.10 (n = 103)
Modern samples -17.5 -142 -156+0.8 (n=82) 3.8 9.2 6.3+0.8 (n=282) 2.87+0.05 (n =295)

Table 2. Statistical results (%o, mean + SD) for §°C and §!°N in the historical (before 1850 AD) flying fish scale samples in
different time bins

900-1300 1300-1400 1400-1500 1500-1600 1600-1700 1700-1800 1800-1850

st -13.7+£0.3 -13.8+0.6 -13.6+0.6 -13.4+04 -13.6+0.4 -13.6 0.5 -13.7+0.4
n=7%) (n=29) (n=28) (n=21) (n=28) (n=18) n=7)
31N 56+0.9 56+09 59+0.8 51x0.6 55+0.8 5.7+0.9 58+0.5
n=7%) (n=29) (n=28) (n=21) (n=28) (n=18) n=17%)




(1-way ANOVA, F, 190 = 1.42, p = 0.246,
Fig. 3, Table 1), indicating no evident
changes in seabird ecology for the 3
islands during the past 1000 yr. 8°N in the
historical scales ranged from 4.1%. to
7.2%o, nearly equal to the range of modern
fish scales except for several individuals
with a higher mass and higher §'°N (Wu et
al. 2017b). According to a field survey
(Cao 2005), 71 % of flying fish that are prey
of seabirds are less than 100 g, but only
54 % of our modern samples are in this cat-
egory. Thus, it is likely that the historical
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Fig. 4. Relationship between §'°N and §!3C in historical (before 1850 AD)
and modern flying fish scales. The results for '*C and 8'°N in modern

samples are from Wu et al. (2017b)

and Zhaoshu islands are representative of Qilian Yu
and contribute the majority of the vegetation cover
there, both 8'°C and 8°N in historical flying fish
scales showed little change with age in profiles BD1,
ND1, and ZS2 (Fig. 3, Table 2). Furthermore, ANOVA
indicated that there was no statistical difference in
either 8!°C or §'°N for the historical fish scale samples
among the different time bins prior to 1850 AD
(Table 2). This result indicates that the size and geo-
graphical distribution of flying fish have not varied
over time, which is in agreement with a previous
study on Guangjin Island, also in the Xisha Islands
(Wu et al. 2017a). It is likely that the diversity of trop-
ical seabird species there also had no major changes
as different tropical seabird species might differ
slightly in feeding preferences (Diamond 1978),
although seabird population size in Qilian Yu has evi-
dently fluctuated over the past 1000 yr (Xu et al.
2016). An additional study showed that tropical sea-
birds may change their diet and prey to include more
squid than flying fish when there is a larger seabird
population size (Wu et al. 2017a). Compared with the
size of certain food sources (mostly flying fish), tropi-
cal seabirds tend to alter their diet composition when
their population size changes, an important strategy
for adapting to major ecological and environment
changes.

Differences between historical and modern
isotope values

There was no evident difference in 8N among
the historical scale samples from BD1, ND1, and ZS2

flying fish had a relatively lower mass than
our modern samples. There is no differ-
ence between historical and modern fish
scale §'°N even after the effect of fish mass
is eliminated, as also found in the sea
around Guangjin Island (Wu et al. 2017a).
The difference between 8'3C in modern and histori-
cal fish scales is A3'3C = —1.9%o, nearly equal to the
local atmospheric 13C Suess effect of —1.8 %o (in 2014),
caused by fossil fuel combustion and carbon emis-
sions with fewer *C isotopes, and —1.8%. is calcu-
lated using a model from Schelske & Hodell (1995)
and Jia et al. (2013). Thus, we believe the atmos-
pheric 3C Suess effect is reflected in our historical
and modern flying fish scale samples.

Relationship between §'°C and §'°N in
historical scales

When we examined the relationship between §°C
and 8N in historical flying fish scales before
1850 AD, we found a strong negative correlation, i.e.
33Ccates (%0) = —0.28 x 8Nyeaies (%0)—11.99 (R? =
0.253, n = 94, p < 0.01). This result is quite different
from that of modern flying fish, which have a weak
positive relationship: 8®Cqcqies (%0) = 0.20 x 8" Nicates
(%0)—16.84 (R? = 0.053, n = 82, p < 0.05; Wu et al.
2017b) (Fig. 4). Comparing the 2 groups, there are 2
differences between modern and historical scales,
i.e. historical flying fish were all derived from waters
close to Qilian Yu, as scales were retrieved from the 3
coral-sand ornithogenic sediments collected in Bei-
dao, Nandao, and Zhaoshu islands, while modern
flying fish samples were collected across a greater
geographical range —the Xisha Sea around Yongx-
ing Island, Southern Hainan Sea, and within the
western South China Sea. Additionally, flying fish
from the historical record were all captured by sea-
birds living at the 3 islands, but some modern flying
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fish were likely not potential prey for modern sea-
birds due to the long distance from Qilian Yu.
Previous research may help us understand the dis-
crepancy between past and present stable isotope
values. Xu et al. (2014) reported a significant nega-
tive correlation between fossil collagen §'°C and §'°N
of tropical seabirds on Ganquan Island, and attrib-
uted this to variation in trophic levels and foraging
areas. It is known that some migratory birds exhibit
feather isotope values, indicating exploitation of both
marine and freshwater ecosystems (Kline et al. 1998,
Lott et al. 2003). As shown by Wu et al. (2017b), we
associate variations in 8'°N with changes in fish mass
with size and variations in 8*C with geographical
location. In this case, we assume that the strong neg-
ative relationship between 8'*C and §'°N in historical
scales is related to the spawning habitat of flying fish,
in that adult fish schools move to inshore areas and
spawn on seaweed and suspended matter, then for-
age separately and return to open waters (Zhang
1956). Also, as juvenile fish gradually move to open
waters as they age, 8'°N of fish scales will evidently
increase during this time (Wu et al. 2017b), and §'3C
of fish scales will increasingly reflect a more pelagic
habitat based more on offshore plankton and less on
inshore plankton. In addition, 8'3C of eupelagic
plankton is typically much lower than that of coastal
species (Hobson 1999, Kaehler et al. 2000), so 8'3C of
fish will decrease as they age and move to more open
waters. Thus, as flying fish age and move from Qilian
Yu coastal waters to the outer open sea, 83C and
8N values will decrease and increase in their scales,
respectively, as indicated by those recovered from
the coral-sand ornithogenic sediments collected at
Qilian Yu Islands. However, more research is needed
to support this observation, including stable isotope
analysis of plankton collected near the islands.
Qilian Yu, the Yongle Islands, and Yongxing Island
have all been inhabited historically by seabirds
(Exploration Group of Xisha Islands of Institute of
Soil Science of Chinese Academy of Sciences 1977,
Cao et al. 2007). Dongdao Island is located ca. 50 km
southeastward of Qilian Yu, and is still occupied by
thousands of tropical seabirds, especially red-footed
boobies (Cao 2005). Weimerskirch et al. (2005)
reported that red-footed boobies breeding on Europa
Island in the Mozambique Channel have a maximum
foraging range of ca. 150 km. We assume there is no
great difference in foraging range of seabirds breed-
ing on Europa Island and Xisha Islands as well (Cao
2005). It is inferred that seabirds on Qilian Yu mainly
prey on food derived from its northern, northwestern,
and northeastern ocean areas, where there are no

islands within several hundreds of kilometers and
thus less competition with other seabird colonies.
Seabirds preferentially prey on flying fish coastally
and with appropriate mass and size, but they must
prey on fish with larger weight and high §'°N and
low 8C in the open waters since inshore food
sources are not sufficient for them. The likelihood of
whether individual birds capture small inshore flying
fish with low 8!°N and high §'3C or offshore ones with
high 8'°N and low 83C depends on the age of the
individual.

As for modern flying fish, they were collected from
larger regions, including the Xisha Sea, Southern
Hainan Sea, and within the western South China
Sea. A negative correlation between fish §°C and
815N reflects a pristine state because of similar repro-
ductive behaviors of these flying fish, but it must be
in a small region with consistent background values
of 3N and 8'3C. Flying fish in the South China Sea
likely have many different localized spawning habi-
tats resulting in different background values for §!3C
(for example, latitude effect, Goericke & Fry 1994)
and 8N values (Somes et al. 2010). Any negative
correlation between §!°C and §*°N will be weakened
if flying fish are collected from different spawning
habitats. However, human disturbances may help
disrupt this pattern to some extent and §'3C or §'°N
could change under human interference. The *C
Suess effect has decreased 8!°C in atmosphere car-
bon dioxide and in marine organisms (for Qilian Yu,
it is =1.9%o0), but the amount varies in different re-
gions (Sonnerup et al. 1999, Swart et al. 2010). Tens
of millions of tons of chemical fertilizers are produced
and discharged into the environment every year in
the world, probably altering natural stable isotope
composition as they have different 3N values
(Peterson & Fry 1987). Although our results here
show that the sea area around Qilian Yu has been
little impacted by pollution, the entire South China
Sea has. Such human impacts may also have an
effect on flying fish §°C and 8N, but this requires
additional investigation.

CONCLUSION

Size and geographical distributions of flying fish
depredated by tropical seabirds from Qilian Yu
exhibited no obvious changes over historical time.
There was no difference between historical and mod-
ern flying fish §'°N, but 3'3C declined 1.9 %o from the
past to present, likely reflecting the Suess effect. A
strong negative correlation between historical flying
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fish scale 8N and §'C is attributed here to their
spawning behavior, probably resulting from adult
fish schooling in inshore areas where they also
spawn and juvenile fish moving to outer open waters
as they age, accompanied by a decrease in §*C and
increase in §!°N. Seabirds inhabiting the islands can
prey on inshore young fish with high §'3C and low
815N, or relatively large fish far from the islands with
low 83C and high §!°N. The weak positive correla-
tion for modern flying fish scales implies that flying
fish in the South China Sea have many different
spawning habitats and the sea around Qilian Yu is
just one of them. The increase in modern human dis-
turbances in the South China Sea may contribute to
these fluctuations in flying fish ecology.
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