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INTRODUCTION

Since the beginning of the Industrial Revolution,
human activities such as the burning of fossil fuels,
changes in land use and deforestation have led to
a considerable increase in carbon dioxide (CO2)
 concentrations in the atmosphere (Le Quéré et al.
2015), from pre-industrial levels of approximately
280 µatm, to 400 µatm today. Importantly, present
CO2 levels are above the upper limit of the last 2 mil-
lion years (Hönisch et al. 2009). This increase trans-

lates into a number of global-scale changes, such as
modifications in the carbon cycle and the rise of
global average temperature, with potential conse-
quences at the ecosystem level (IPCC 2014). The
ocean is the largest sink of carbon and heat, mitigat-
ing both the effects of anthropogenic CO2 rise in the
atmosphere (Sarmiento & Gruber 2002) and global
warming. During the past century, more than one-
third of the CO2 emitted into the atmosphere has
been absorbed by the ocean (Sabine et al. 2004),
causing unprecedented changes in seawater carbon-
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ABSTRACT: Greenhouse gas emissions, such as carbon dioxide (CO2), lead to enhanced atmos-
pheric and surface ocean temperatures. At the same time, CO2 equilibrates between the atmos-
phere and the surface ocean, resulting in lower seawater pH. The changes in physical and chem-
ical properties of the ocean potentially affect marine primary producers in various ways. A number
of researches have addressed the effects of ocean acidification on marine phytoplankton. How-
ever, phytoplankton responses to combined effects are still poorly understood. Here, we chose the
cosmopolitan chain-forming diatom Asterionellopsis glacialis to assess the combined effect of
ocean acidification and carbonation (~420 to 2800 µatm) and water motion on its physiological
rates. At current CO2 levels, we observed an increase in growth rates of A. glacialis accompanied
by a prevalence of longer chains (>6 cells) under enhanced water motion. However, at increasing
CO2 levels (up to ~2800 µatm) and decreasing pH values, enhanced water motion significantly
decreased growth rates, chain length and organic matter production of A. glacialis. Thus, our
study suggests that even though A. glacialis benefited from enhanced water motion at present
CO2 concentration, at higher CO2 levels, the more unstable environment magnified the stress
caused by acidification. If in the future the ocean surface layer will be more frequently exposed to
storm and wind events, then phytoplankton communities might be more sensitive to lower pH,
with potential consequences for community composition and productivity.
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ate chemistry (Pespeni et al. 2013). As a conse-
quence, dissolved inorganic carbon (DIC) and bicar-
bonate ions (HCO3

−) have increased in the surface
ocean while carbonate ions (CO3

2−) and pH (Wolf-
Gladrow et al. 1999) have decreased. In this respect,
surface ocean pH has already decreased by 0.1 units
since the Industrial Revolution (Rhein et al. 2013)
and, in a ‘business as usual’ CO2 emission scenario, is
projected to drop by an additional 0.4 units by the
year 2100 (Raupach et al. 2007, IPCC 2014), shifting
the carbonate equilibrium of the seawater towards
more acidic conditions, while CO2 is expected to reach
up to 1000 µatm (IPCC 2014).

At the same time, the increase in global average
temperature is having a number of effects on the
ocean. Heating of the ocean surface acts to enhance
stratification of surface waters, shoaling the upper
mixed layer (Doney 2006, Rost et al. 2008) and stabi-
lizing the water column. Concomitantly, the amount
of total atmospheric water vapor over the global
oceans has increased (Trenberth 2005). Enhanced
ocean temperatures and water vapor levels in the
atmosphere have been related to more intense tropi-
cal cyclone winds (Elsner et al. 2008), longer storm
lifetimes and greater storm intensities (Emanuel
2005). In fact, there has been an increase of at least
100% in tropical cyclone frequency during the last
century in the Atlantic area (Mann & Emanuel 2006,
Holland & Webster 2007); moreover, a significant cor-
relation between frequency and duration of hurri-
canes and increases in sea surface temperatures in
the North Atlantic have been reported by Webster et
al. (2005). Evidence of global increases in wind speed
and wave height in the past 25 yr were also recorded
by global satellites (Young et al. 2012, Bertin et al.
2013). Thus, the future surface ocean is expected to
be characterized by an overall water column stabi-
lization accompanied by an increase in destabiliza-
tion events (D’Asaro 2014), such as enhanced wave
height and shear turbulence in the very surface layer
(Moum & Smyth 2001). These changes in physical
properties of the ocean, caused by anthropogenic
disturbances, may interact with ocean acidification
and have the potential to affect community composi-
tion of marine phytoplankton assemblages with
potential feedbacks to marine biogeochemical ele-
ment cycling.

In the last decades, numerous experiments have
addressed potential responses of marine phyto-
plankton to elevated CO2 levels (e.g. Gao et al.
2012a).  Particularly, the potential influence of en -
hanced CO2 concentrations on calcifying phyto-
plankton (coccolithophores), which are thought to

be highly sensitive to ocean acidification, has been
investigated intensively (Meyer & Riebesell 2015).
Furthermore, a number of studies have assessed the
physiological response of the silica-shielded phyto-
plankton, i.e. diatoms (i.e. Sarthou et al. 2005, Ro -
berts et al. 2007, Sobrino et al. 2008, Tortell et al.
2008, Trimborn et al. 2009, Gao & Campbell 2014,
Hennon et al. 2014, King et al. 2015, Wu et al. 2015,
Clement et al. 2016), which contribute up to 40% of
marine primary production in the ocean and are
responsible for a large portion of organic carbon
export to the deep ocean (Ducklow et al. 2001, Scott
2005, Hopkinson et al. 2011). Under present-day
carbonate chemistry, growth of diatom species can
be limited by the availability of inorganic carbon
(Gao & Campbell 2014). To circumvent or reduce
this limitation, diatoms have developed active car-
bon concentrating mechanisms (CCMs), which in -
clude carbonic anhydrase and pu ta tive bicarbonate
transporters (Hopkinson et al. 2016). CCMs elevate
the CO2 concentration at the site of Rubisco (the
enzyme responsible for the first step of photosynthe-
sis) and account for a significant part of cellular
energy expenditure (Raven 1991, Beardall & Gior-
dano 2002, Crawfurd et al. 2011, Hopkinson et al.
2013, Johnson et al. 2013, Gao et al. 2014, Raven et
al. 2014, Matsuda et al. 2017). Thus, increasing CO2

availability may be beneficial for diatoms which can
down-regulate the CCM capacity (Giordano et al.
2005, Hopkinson et al. 2011) and save energy to
reallocate for growth and carbon fixation (Hein &
Sand-Jensen 1997, Wu et al. 2010). On the other
hand, the reduction in pH associated with the rise of
CO2 levels might negatively affect cell physiology,
namely by increasing energy requirements to coun-
terbalance the external pH decrease (Wu et al.
2010). Specifically, the increase of H+ concentrations
may affect intracellular pH, membrane potential,
energy portioning and enzyme activity (Beardall &
Raven 2004, Riebesell 2004, Giordano et al. 2005),
with consequences for growth rates and photosyn-
thesis. In terms of increased growth and carbon fix-
ation rates, and photosynthetic efficiency, responses
of diatoms to varying CO2 levels range from positive
(Chen & Gao 2003, 2004, Wu et al. 2010, McCarthy
et al. 2012, Barcelos e Ramos et al. 2014) to absent
or negative (Burkhardt et al. 1999, Crawfurd et al.
2011), even under comparable ex perimental condi-
tions. However, most of these studies focused on the
response of diatoms within a narrow range of CO2

concentrations, but higher levels might be useful to
understand their physiological thresholds (Barry et
al. 2010).
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As outlined above, in the future ocean, phyto-
plankton will live in a shallower mixed layer, with in -
creased likelihood of destabilization events (D’Asaro
et al. 2014) caused by increased frequency and inten-
sity of storms. However, the effects of these destabi-
lizations of the surface ocean on phytoplankton have
been poorly investigated (Garrison & Tang 2014).
Especially, most of the knowledge concerning the
effects of turbulent conditions on phytoplankton
have focused on phytoplankton communities (Estrada
et al. 1987, Peters & Marrasé 2000, Barton et al. 2014,
Zhou et al. 2015), with only a few studies investigat-
ing the response of individual species (Berdalet &
Estrada 1993, Berdalet et al. 2007, Garrison &
Tang 2014). Enhanced turbulence can benefit larger
phytoplankton cell size (lower surface to volume
ratio) by increasing nutrient flux to the cell surface,
since the water motion has the potential to overcome
the limits of diffusive transport of nutrients (Gavis
1976, Lazier & Mann 1989, Karp-Boss et al. 1996,
Peters et al. 2006, Guasto et al. 2012). Concomitantly,
disrupting the diffusive boundary layer that sur-
rounds the cells exposes them to the chemical condi-
tions of bulk seawater. As most field studies have dif-
ficulties in separating the effects of turbulence from
other variables, such as temperature, light or nutrient
concentrations, it is necessary to conduct controlled
laboratory experiments. Therefore, in order to better
understand the potential response of phytoplankton
to ocean turbulence, it is first necessary to assess the
response to constant levels of turbulence motions
(stationary in time and homogeneous in space by
means of orbital shakers or oscillating grid devices)
in the laboratory (Guadayol et al. 2009). In our study,
we chose the cosmopolitan chain-forming diatom
Asterionellopsis glacialis, to test the combined effects
of constant water motion and CO2 on the physiologi-
cal rates of this species in terms of cell growth,
organic matter production, cellular elemental quotas
and chain formation. Three CO2 levels were chosen
to range from present day to future projections (400,
780 and 1110 µatm) and 1 level at 2800 µatm was
added to assess potential physiological thresholds.

MATERIALS AND METHODS

Experimental set-up

Monospecific cultures of the cosmopolitan Aster-
ionellopsis glacialis (strain CCMMG_1 isolated in
2011 from offshore Terceira Island, Azores) were
grown in sterile filtered (0.2 µm) North Atlantic

seawater (salinity 35.9) enriched with approxi-
mately 4.5 µmol l−1 of phosphate, 64 µmol l−1 of
nitrate and silicate and trace metals and vitamins
found in the f/20 medium (Guillard & Ryther
1962). Dilute batch cultures were grown at 20°C
under constant light in tensity (incident photon flux
density of [range] ~170 ± 10 µmol m−2 s−1) and a
14:10 h light:dark cycle. A. glacialis was tested
under re pose (control treatment) and constant water
motion (enhanced turbulence treatment) conditions
and at 4 CO2 levels (ranging approximately from
420 to 2800 µatm, corresponding to pHT [total
scale] values between ~8.04 and 7.30), resulting in
a total of 8 treatments. All cultures were gently
rotated vertically (20 times) daily in order to avoid
sedimentation. Moreover, cultures grown in the
en hanced turbulence treatment were additionally
ex posed to constant mixing generated by an
orbital shaker with 220 rpm speed. Under this con-
dition, cells were kept in suspension at their posi-
tion while being exposed to constant water motion.
Before the start of the experiment, all cultures
were acclimated to the experimental conditions for
at least 18 generations, ensuring exponential growth
through out the experiment. Particularly, 2 consec-
utive di lute batch cultures (9 generations for each
with a difference in growth rate between the 2 con -
secutive batch cultures and the experiment always
lower than 10%) were maintained at low abundance
(average final concentration of <15 000 cells ml−1),
to avoid significant changes in seawater carbonate
chemistry spe ciation (DIC consumption <5% as re -
commended by La Roche et al. 2011). All 8 ex -
perimental treatment levels (4 CO2 levels × 2 water
motion regimes) were conducted in triplicate (for
more details, see Table 1).

Cell numbers and growth rates

The abundance of A. glacialis and the number of
cells in each chain were determined from Lugol-
fixed samples (2% final concentration) by means of
an inverted microscope (Nikon Eclipse TS100, 200×
magnification). Cells were harvested during the
exponential phase of growth, and cellular growth
rates (μ) were determined following Levasseur et al.
(1993) as:

μ =  ln (C f/C i)/Δt (1)

where C f and C i represent the final and the initial
cell concentrations, respectively, and Δt corresponds
to the growth period in days.
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Carbonate chemistry manipulation, measurements
and calculations

The carbonate system manipulation of sterile fil-
tered North Atlantic seawater was done by combined
additions of HCl and NaHCO3 (Gattuso et al. 2010),
to maintain constant total alkalinity (Schulz et al.
2009). Carbonate chemistry of the media and of the
cultures was calculated with the software CO2SYS
(Lewis & Wallace 1998), using measured total alka-
linity, pHT, temperature, salinity, phosphate and
 silicate, and the equilibrium constants determined by
Mehrbach et al. (1973) as refitted by Dickson &
Millero (1987). The pHT was measured with an elec-
trode cell (WTW 340i pH meter) and calibrated with
a Tris sea water buffer (provided by A. Dickson)
according to Dickson et al. (2007). Total alkalinity
was measured by potentiometric titration according

to Dickson et al. (2003) using a Metrohm 848 Titrino
Plus equipped with Metrohm 869 Compact Sample
changer. Total alkalinity measurements were cor-
rected with certified reference material (Dickson
2010) at about 20 µmol kg−1 accuracy and 2 µmol kg−1

precision. Measured (total alkalinity, pHT, tempera-
ture, salinity, phosphate and silicate) and calculated
(pCO2, HCO3

−, CO3
2−, CO2 and DIC) parameters are

expressed in Table 1 at the beginning and the end of
the experiment (time of the harvesting) and as an
average of both, which represents each treatment
throughout the experiment.

Cellular element quotas and production rates

At the end of the experiment, samples for cellular
particulate organic carbon (POC), nitrogen (PON)

36

Treatment CO2 pCO2 Avg pCO2 TA pHT
a HCO3

− CO3
2− CO2 DIC DIC draw-

treatment (µatm)b (µatm)b (µmol kg−1)a (µmol kg−1)b (µmol kg−1)b (µmol kg−1)b (µmol kg−1)b down (%)b

Initial 1 512 2357 7.960 1946 164 16 2127
2 1007 2355 7.701 2108 98 32 2238
3 1435 2356 7.560 2171 73 46 2290
4 3845 2362 7.154 2283 30 123 2467

Final control 1 330 421 2382 8.123 1823 224 11 2057 3.3
1 328 420 2375 8.134 1816 224 11 2050 3.6
1 325 419 2375 8.127 1813 225 10 2048 3.7
1 308 410 2378 8.146 1797 233 10 2039 4.1
2 544 775 2376 7.941 1977 160 17 2154 3.8
2 521 764 2397 7.960 1980 167 17 2164 3.3
2 545 776 2375 7.940 1976 159 17 2153 3.8
2 484 746 2372 7.983 1940 172 16 2182 4.9
3 825 1130 2366 7.781 2075 116 26 2217 3.2
3 863 1149 2369 7.764 2087 112 28 2227 2.8
3 789 1112 2367 7.798 2065 120 25 2211 3.5
3 852 1144 2369 7.769 2084 113 27 2225 2.8
4 1960 2903 2379 7.428 2235 57 63 2354 3.4
4 1848 2846 2355 7.448 2206 59 59 2324 4.1
4 1763 2804 2376 7.471 2219 62 63 2337 3.6
4 1975 2909 2376 7.424 2231 56 59 2350 4.2

Final enhanced 1 337 424 2378 8.115 1828 221 11 2059 3.2
turbulence 1 347 429 2362 8.102 1827 214 11 2052 3.5

1 328 420 2372 8.124 1814 223 11 2048 3.7
2 648 828 2365 7.873 2016 139 21 2176 2.8
2 717 862 2370 7.836 2045 130 23 2198 1.8
2 600 804 2369 7.903 1999 148 19 2166 3.2
3 805 1120 2376 7.792 2077 119 26 2222 3.0
3 782 1109 2375 7.803 2069 122 25 2216 3.2
3 800 1118 2379 7.795 2078 120 26 2223 2.9
4 1718 2782 2384 7.492 2222 64 55 2341 3.9
4 1736 2790 2373 7.486 2214 63 56 2332 4.3
4 1711 2778 2374 7.492 2212 64 55 2331 4.3

Table 1. Carbonate chemistry parameters at the beginning and end of the experiment and their averages. Superscripts ‘a’ and ‘b’ indicate
measured parameters and calculated values, respectively. TA: total alkalinity, pHT: pH on a total scale, DIC: dissolved inorganic carbon
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and phosphorus (POP) were gently filtered (200
mbar) onto pre-combusted GF/F filters (6 h, 450°C)
and stored at −20°C until analyses. POC and PON
 filters were then dried at 60°C for 4 h, packed in tin
boats and analyzed following Sharp (1974) using an
elemental analyzer (Thermo Flash EA) coupled to
an isotope ratio mass spectrometer (Thermo Delta V
Plus) via a Thermo  Conflo V manifold. POP filters
were oxidized to dissolved inorganic phosphorus
with potassium peroxydisulfate and measured colori-
metrically by means of a spectrophotometer (Cary
50) following Hansen & Koroleff (1999). POC, PON
and POP production rates were calculated by multi-
plying cellular quotas with the corresponding growth
rates (μ).

Dissolved inorganic phosphate and silicate

Samples for the determination of dissolved inor-
ganic phosphate and silicate concentrations were
taken at the beginning and at the end of the experi-
ment. Samples were filtered through 0.2 µm poly-
ethersulfone syringe filters and stored at −20°C until
analysis. Concentrations of dissolved inorganic sili-
cate and phosphate were  determined spectrophoto-
metrically (Cary 50 Probe, Varian) following Hansen
& Koroleff (1999) and used in the calculation of the
carbonate chemistry.

Statistical analysis and growth rate 
fitting procedures

Statistical significance was assessed by means of 
1-way analysis of variance (ANOVA) with the pro-
gram SigmaPlot 11.5, and values of p < 0.01
by Tukey test were considered to be sig -
nificant.

RESULTS

The diatom Asterionellopsis glacialis was
grown at increasing CO2 concentrations
under relatively stable and enhanced turbu-
lence conditions. The carbonate chemistry
data are presented in Table 1. For simplicity
and clarity, the CO2 treatments are repre-
sented in the graphs by the average of the
initial and the final values of calculated
pCO2 as values representative of each
treatment throughout the experiment.

Growth rate (μ)

Under stable conditions (control treatment), growth
rates of A. glacialis peaked at a CO2 level of
~780 µatm. Particularly, we observed a significant
(p < 0.001) 26% increase from ~420 to ~780 µatm,
followed by a 40 and 22% decrease between
~780 and ~1110 µatm and ~1110 and ~2800 µatm,
respectively. When ex posed to constant water mo -
tion (enhanced turbulence treatment), A. glacialis
appeared to shift the optimum growth rate towards
lower CO2 concen trations. Growth rates decreased
by 25% from CO2 levels of ~420 to ~780 µatm, fol-
lowed by a further decrease of 48 and 21% from
~780 to 1110 µatm and from ~1110 to ~2800 µatm,
respectively. When comparing the control with
enhanced turbulence treatments, we observed that
at present-day CO2 concentrations, growth rate was
29% lower (p < 0.01) under control conditions. At
enhanced CO2 levels, however, cell division rates
of A. glacialis were higher under control (19, 41
and 44% at CO2 concentrations of 780, 1100 and
2800 µatm, respectively) than under en hanced tur-
bulence conditions (Fig. 1).

Cell quotas and organic matter production

In the control treatment, cellular element quotas
for POC, PON and POP were not significantly (p >
0.01) affected by increasing CO2 levels from ~420 to
~780 µatm (Fig. 2). However, when CO2 rose from
approximately 780 to ~1110 µatm, cellular element
quotas were significantly increased (p < 0.01).
This increase of cellular element quotas was not sus-
tained and decreased to the initial values from ~1110
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Fig. 1. Growth rates (μ) of Asterionellopsis glacialis at increasing CO2

 levels (pCO2) for the control (grey bars) and enhanced turbulence 
(black bars) treatments with standard deviation
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to ~2850 µatm. Cells in the enhanced turbulence
treatment decreased their cellular element quotas
linearly with increasing CO2 levels. Comparing the
control with the enhanced turbulence treatment, we
observed that at CO2 levels higher than ~780 µatm,
cellular element quotas were significantly reduced
by turbulence (reduction of 32, 35 and 48% of POC,
PON and POP quotas, respectively, at CO2 levels
of ~1110 µatm and a reduction of ~58% POC, PON
and POP quotas at CO2 levels of ~2800 µatm, p <
0.01; Fig. 2).

Carbon, nitrogen and phosphorus production rates
of the particulate organic matter followed the trends
of growth rates (Fig. 3). In the control treatment,
carbon and nitrogen production rates peaked at a
CO2 concentration of ~780 µatm and phosphorus
production rates at ~1110 µatm. When A. glacialis
was exposed to constant water motion (enhanced
turbulence treatment), the organic matter produc-
tion rates were highest at present-day CO2 levels
(~420 µatm). Thus, within similar CO2 concentra-
tions, the constant water motion appeared beneficial
only at present-day CO2, while at higher CO2 levels,
organic matter production rates were negatively
affected (Fig. 3).

Particulate organic matter ratios (C:N, N:P, C:P)
were not significantly affected by varying CO2 levels
nor by turbulence (p > 0.01; Fig. 4).

Relative number of cells per chain

The relative number of cells chain−1 was strongly
influenced by both increasing CO2 levels and
enhanced turbulence (Fig. 5). Under control condi-
tions, the relative abundance of colonies with more
than 6 cells increased from 7% at ~420 µatm to 60%
at ~2850 µatm, at the expense of chains composed
of 1 to 3 cells, which decreased linearly from 67%
in the same CO2 interval to 15%; meanwhile no
change in the abundance of chains comprising 4 to
6 cells was observed. However, the opposite trend
was observed upon exposure to enhanced turbu-
lence. In fact, the relative abundance of short chains
(<3 cells) increased significantly (p < 0.01) with in -
creasing CO2 concentrations from 2% at ~420 µatm
to 98% at ~2850 µatm; furthermore, chains with
>6 cells were only observed at CO2 levels of ~420
and ~780 µatm, decreasing from 83 to 22%. The
observed trends in colony size were not related to
cell size, since no remarkable difference in cell size
(frustule size) was found between treatments (data
not shown).
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DISCUSSION

Influence of CO2 and turbulence on growth rates

At present-day CO2 concentrations, phytoplankton
can be limited by the availability of DIC (Raven et al.
2014), meaning that diffusive CO2 supply (Miller et
al. 1991, Rotatore et al. 1995, Li & Canvin 1998,
Burkhardt et al. 2001) and active uptake of DIC are
not sufficient to support maximum photosynthetic
rates (Riebesell et al. 1993, Morel et al. 2002). In the
enhanced turbulence treatment, the effects of con-
stant water motion near the cells might disrupt or
eliminate the diffusive boundary layer, increasing
dissolved inorganic nutrients and carbon concentra-
tions at the cell surface during daytime. As a conse-
quence, the diffusion and the uptake of CO2 and
HCO3

− are likely enhanced when compared to cells
grown under more stable conditions. Cells exposed
to constant water motion could therefore  down-

regulate the CCMs, saving energy, which potentially
could be reallocated to growth or other energy-
demanding processes. Here, it seems that Asterionel-
lopsis glacialis used the excess energy to enhance C,
N and P production rates and growth, reaching
 values significantly higher than under more stable
conditions.

At CO2 concentrations of ~800 µatm, A. glacialis
exposed to stable conditions showed a peak in
growth rate likely due to a compromise between
increasing carbon availability and less favorable pH
conditions. Stimulation of growth rate (Kim et al.
2006, Wu et al. 2010, Gao et al. 2012a, McCarthy et
al. 2012, Yang & Gao 2012, Barcelos e Ramos et al.
2014) and/or photosynthesis (Sun et al. 2011, Yang &
Gao 2012, Gao et al. 2014) have been reported for
some species of diatoms grown at similar CO2 con-
centrations, although some species might be more
sensitive as reported for Chaetoceros muelleri (Ihnken
et al. 2011). Furthermore, it has been suggested that
doubling of ambient CO2 concentrations could re -
duce the energy spent with CCM operation in sev-
eral species of diatoms by up to 20%, decreasing the
total energy used for carbon fixation by 3 to 6%
(Hopkinson et al. 2011). However, in the enhanced
turbulence treatment, growth rates continuously
decreased from ambient to increased CO2 conditions,
due to a shift of optimum growth towards lower
CO2 concentrations. This might be a consequence of
higher energy demand for maintaining intracellular
pH than energy savings with CCM operation at a
 disrupted boundary layer (Berdalet & Estrada 2005).
Hence, the concomitantly mixed environment might
alleviate potential inorganic carbon limitation at low
CO2 concentrations while at the same time exposing
the cells to unfavorably low pH conditions earlier on.

At CO2 concentrations higher than 1000 µatm (as
expected for the year 2100), cell division rates of A.
glacialis significantly decreased in the control and
enhanced turbulence treatments, though more
noticeably in the latter. This is most likely related to
the decrease in sea water pH associated with the rise
in CO2 levels. In coccolithophores, intracellular pH
regulation is mediated by voltage-gated H+ channels
(Hv channels) placed in the plasma membrane which
dispose of excess protons (Taylor et al. 2012). At
extracellular pH above 8.2, the H+ efflux across the
Hv channels occurs passively, making the process
energetically favorable. However, at lower pH con-
centrations, the membrane potential changes and the
H+ efflux becomes an energy-demanding process. In
order to guarantee cellular homeostasis, cells are
forced to invest energy with the operation of the Hv
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channels to cope with the external pH decrease.
Indeed, acidified environments can compromise the
diffusive boundary layer (Flynn et al. 2012) and the
intracellular enzyme and protein structure and activ-
ities (Beardall et al. 2009, Berge et al. 2010, Lu et al.
2011). Particularly, the activity of extracellular car-
bonic anhydrase is inhibited by low pH levels
(Aizawa & Miyachi 1986, Sultemeyer 1998, Bozzo &
Colman 2000, Gao et al. 2012b, Hopkinson et al.
2013).

Influence of enhanced CO2 and turbulence on
chain length and cell physiology

Under control conditions, we observed a linear
increase in chain length with rising CO2 concentra-
tions. Shorter chains (1 to 3 cells chain−1) have thin-
ner boundary layers which decrease limitation of
inorganic carbon near the cells (Barcelos e Ramos et
al. 2014). Thus, cells in these chains could save
energy by down-regulating the CCM. In agreement,
Tchernov & Lipschultz (2008) found that in larger
colonies of Trichodesmium spp., the diffusion of CO2

into the cells is limited. When exposed to constant
water motion, the presence of longer chains of A.
glacialis decreased as CO2 concentrations were en -
hanced. Similar behavior has been observed in the
diatoms Chaetoceros spp. and Pseudo-nitzschia spp.,
which showed longer chains in turbulent environ-
ments (Arin et al. 2002).

Increasing CO2 levels triggered opposing trends
in the control and enhanced turbulence treatments.
The increase in chain length with enhanced CO2,
observed under stable conditions, might elevate the
pH in the interior of the colonies and protect the cells
from the acidified environment as seen previously
(Barcelos e Ramos et al. 2014). However, in the case
of Skeletonema costatum, the optimum chain length
was associated with favorable CO2 growth conditions
and high growth rates (Takabayashi et al. 2006). In
contrast, in the enhanced turbulence treatment at
increased CO2 levels, we observed a reduction in the
number of cells per chain associated with decreased
growth rates, cellular elemental quotas and organic
matter production. The reason for this may be related
to a disrupted and reduced boundary layer which
directly exposes the cells to lower pH levels. There-
fore, cells must reallocate energy to regulate intra-
cellular pH and cellular processes such as nutrient
uptake or production of organic matter, and extracel-
lular polysaccharides which bind adjacent cells are
compromised.

Particulate organic ratios

The bonds between cells of A. glacialis are made of
mucilage polysaccharide pads associated with high
C:N and C:P ratios (Beardall et al. 2009, Barcelos e
Ramos et al. 2014). However, in agreement with pre-
vious studies conducted on A. glacialis (Barcelos e
Ramos et al. 2014), T. pseudonana (McCarthy et al.
2012) and E. huxleyi (Borchard et al. 2011, McCarthy
et al. 2012), no changes were observed in the C:N
and C:P ratios across the experimental CO2 range.

CONCLUSIONS

This study showed that constant water motion can
impact the CO2 response of A. glacialis. At CO2 con-
centrations comparable to present day, A. glacialis
benefited from constant water motion. This might be
related to a reduction in the diffusive boundary layer
and the consequent increase in inorganic carbon and
nutrient availability near the cell. As a consequence,
this could allow for down-regulating CCM operation,
and the energy saved could have been invested in
other energy-demanding processes. Under enhanced
CO2 levels, the costs of intracellular pH regulation
outweighed the benefits of increased CO2 concentra-
tions. Thus, under enhanced turbulence and CO2 con -
 centrations, cells probably had to increase the energy
investment in cellular homeostasis while growth and
organic matter production rates were re duced. Con-
sequently, even though A. glacialis benefited from
constant water motion at present-day CO2, under
future CO2 scenarios, it might be negatively affected,
with potential consequences for the phytoplankton
community composition.
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