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INTRODUCTION

Many recent reviews about jellyfish have similar
conclusions; specifically, that jellyfish seem to be
increasing, possibly due to deteriorating conditions
in the oceans through a combination of human activ-
ities (overfishing, eutrophication, transport of inva-
sive alien species, marine construction, and global
warming), and causing more problems for humans
(e.g. Purcell 2012 and references therein). Some sci-
entists request caution in interpreting the reported
jellification of the oceans because of the cyclic long-
term temporal patterns of blooms and the paucity of

data from most of the oceans (e.g. Purcell 2005, 2012,
Condon et al. 2013). Here, I review research on
Aequorea spp. to highlight what is known and not
known to suggest fruitful research opportunities for
the increasing number of scientists studying jellyfish.

I feature Aequorea spp. jellyfish for several rea-
sons. Foremost is that they illustrate many important
research directions for pelagic cnidarian and cteno -
phore species, the predaceous groups of gelatinous
zooplankton. Because of their large sizes and abun-
dance, their distributions can be documented from
fishery trawls and citizen science programs. The few
regions where data are available show that the spe-
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cies occur in unusually high abundances (blooms) in
some years. Aequorea victoria is important in the
ecosystem as a predator of fish eggs, fish larvae, zoo-
plankton, and other pelagic cnidarians and cteno -
phores. Therefore, I suggest that because they are
large, abundant, and predators and competitors of
fish, Aequorea spp. are of special interest to humans
in marine ecosystems. Despite the fact that the family
and genus are globally distributed, what is known
about these jellyfish is only from a few locations.
Therefore, I also update past methods with new tech-
niques that can further the study of Aequorea spp.
and other pelagic cnidarians and ctenophores.

AEQUOREA SPP. IDENTIFICATION

The family Aequoreidae in the order Hydrozoa is
comprised of about 30 recognized species. The in -
conspicuous attached hydroids are known for only 2
Aequorea species; therefore, the species in the genus
are distinguished based on characteristics of the
medusae, which are distinctive among hydrome-
dusae due to their large sizes, numerous radial canals
(10s up to 100), and large mouths (Fig. 1). The
medusae are very large (up to 40 cm) relative to most
of the other 800+ species of hydromedusae, which
generally are 1 cm or less in swimming bell width or
height (Bouillon & Boero 2000). The 5 recognized
genera (Aequorea, Aldersladia, Gangliostoma, Rha-
costoma, and Zygocanna) are distinguished by only
microscopic dif ferences of the radial canals (Bouillon

et al. 2006, Gershwin 2006; Fig. 1), suggesting that
even less-conspicuous features are required for dis-
crimination among species.

Because differentiation among Aequorea spp. is
difficult for non-experts, correct identification of
the medusae has been uncertain. For example,
Aequorea forskalea (formerly A. aequorea) has been
reported from all over the world (e.g. Bering Sea,
northeastern Pacific, Mediterranean Sea, South
Africa), but that name may have been applied with-
out correct identification (e.g. Purcell 2003). Molecu-
lar genetics of Aequorea spp. has been used in phy-
logenetic analyses (Collins et al. 2006, Maronna et al.
2016) and species identification (Zheng et al. 2008).
Molecular genetics has great promise to elucidate
the various species in the Aequoreidae and their dis-
tributions globally.

AEQUOREA SPP. POPULATION DYNAMICS

Reproduction

The life cycles of many medusae, including Aequo -
rea spp., alternate between a swimming medusa
stage and an attached polyp stage: hydroids of
hydro medusae, scyphistomae of scyphomedusae,
cubo polyps of cubomedusae. Mature medusae of all
jellyfish are sexually reproductive, yet little is known
about how sexual reproduction contributes to popu-
lation size. Only 2 scyphozoan species, Siphono -
phorae (>176 species) and Trachylinae (>101 spe-

cies) hydrozoan species, and pelagic
cteno phores (>190 species) are known to
have direct development in the water
(Jarms et al. 1999, Bouillon & Boero 2000,
Collins et al. 2006). In other scyphozoans
(>200 species), cubozoans (>37 species),
and most hydro medusans (>900 species),
the fertilized eggs develop into planulae
that attach to hard surfaces (Bouillon et
al. 2006, Bentlage et al. 2010). In those
species, the many factors affecting sur-
vival between sexual reproduction and
the next medusa generation make deter-
mining the importance of sexual repro-
duction extremely difficult.

Light may coordinate the sexual bio logy
of pelagic cnidarians and cteno phores,
but little information exists. Ovula tion
and sperm release in some hydro medusae
are stimulated by light (e.g. Genzano &
Kubota 2003 and references therein), as
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Fig. 1. Representatives from genera in the family Aequoreidae. G: gonad;
L: lip; P: papilla; T: tentacle. Assembled from Bouillon et al. (2006) and
reprinted with permission from ©Publications Scientifiques du Muséum 

national d’Histoire naturelle, Paris
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observed for Aequorea forskalea (V. L. Fuentes pers.
comm.). Al though A. victoria medu sae do not have
ocelli or any other conventional photoreceptors, they
appear at the surface near dawn in the Salish Sea
(semi-enclosed coastal waters of northwestern Wash-
ington, USA, and southwestern British Columbia,
Canada) and spawned about 4 h after dawn in the
laboratory (Mills 1983). Thus, A. victoria medusae
were concentrated near the surface when spawning,
which could increase fertilization success.

Larson (1986a) measured daily ova production in 6
species of hydromedusae in the Salish Sea. Unfed A.
victoria medusae produced 300 to 8600 eggs d−1

medusa−1 daily for 7 d (3% of medusa dry weight
d−1). Egg production for the 6 species ranged from 1
to 16% of medusa dry weight d−1. The dry weights of
gonads relative to the swimming bell of mature
medusae of 8 species ranged from 9 to 50%, exclud-
ing A. victoria with its narrow gonads on numerous
radial canals (Larson 1986a), which was comparable
to that (31%) of another hydromedusa, Olindias sam-
baquiensis, near shore in Argentina (Chiaverano et
al. 2004).

Although huge numbers of sexual products typi-
cally are produced by pelagic cnidarians, few studies
have examined the mortality rates of eggs or larvae.
Pennington (1990) found that Phialidium gregarium
(Clytia gregaria) hydromedusae ate A. victoria em -
bryos and planula larvae, but neither species fed on
C. gregaria or conspecific embryos or larvae.

Recruitment of conspicuous hydroids in nature is
relatively well studied (e.g. Migotto et al. 2001,
Wintzer et al. 2011, Martell et al. 2017) compared to
recruitment of scyphozoans or cubozoans, for which
virtually no information exists in situ. Concern about
damage to fish in aquaculture pens recently has
spurred studies on hydroid biofouling (Guenther et
al. 2009, Bosch-Belmar 2016).

The role of asexual reproduction in contributing
to blooms is poorly studied in hydromedusae. The
hydroid stage is known for about half of the de -
scribed hydromedusae species (Bouillon & Boero
2000). The hydroids of Aequorea spp. are very small
(~1 mm), cryptic, and seldom reported in nature (e.g.
Mills 1981, Migotto et al. 2001). Only a few studies
estimate the extents or reproductive capacities of
hydroid populations in nature that would contribute
to jellyfish blooms (e.g. Genzano et al. 2008, Bosch-
Belmar 2016). The hydromedusae also reproduce
asexually in some species (reviewed in Boero et al.
2002), including A. macrodactyla (in Stretch & King
1980), which would further increase medusa popula-
tion size.

Seasonal patterns of abundance

The ecology of A. victoria medusae has been ex -
tensively studied in the Salish Sea, where they
occurred throughout the year at the Friday Harbor
Laboratories (FHL), Washington, USA (Mills 1981).
Recruitment of young A. victoria medusae occurred
in early spring (Table 1), when biomass of medusae
peaked in June and ranked third among 33 species of
pelagic cnidarian and ctenophore species (Larson
1986b). A. victoria medusae also occurred throughout
the year in East Sound, Washington (Fig. 2A). New
medusae were produced between March and June,
with mean densities rapidly increasing to 52 medusae
m−3 in July 2004 (Fig. 2A). A. victoria medusa num-
bers were low in 2002 to 2003, when they averaged
only 11% of the 10 common pelagic cnidarian and
ctenophore species, but high in 2005 to 2006, when
they averaged 76% of the total. They maintained
high numbers (3 to 5 m−3) through the winter of 2005.
Aurelia labiata scyphomedusae also overwinter in
some years in East Sound. It is not known if individ-
ual medusae survive more than 1 yr.

Aequorea spp. medusae also occur in high abun-
dance in other locations (Table 1). In the Mexican
Caribbean Sea, A. aequorea (forskalea) constituted
83% of all medusae over the year and occurred in
all months, peaking in autumn (Segura-Puertas &
Damas- Romero 1997). Most Aequorea sp. medusae
in the California Current, USA, were caught in
spring; however, Chrysaora fuscescens medusae
were 10 times more abundant than Aequorea sp.,
with high numbers in summer and autumn (Suchman
et al. 2012). A. vitrina was present from mid-August
to mid-October after high-salinity water entered
Skive Fjord, Denmark, from the North Sea (Møller
& Riisgård 2007b). Aequorea spp. are considered
spring time species in the Yellow Sea, China (Zhang
et al. 2012), and in the Catalan Sea, Spain. Thus,
Aequorea species are reported mostly from cool
waters.

Individual and population growth rates

Growth rates of pelagic cnidarian and ctenophore
species are infrequently known, at least in part
because of methodological difficulties (but see sup-
plementary materials in Hirst & Forster 2013, Pitt et
al. 2013). Problems arise in the laboratory because
many species are large and difficult to collect, main-
tain in good condition, and feed a natural diet (e.g.
Purcell et al. 2013). Aequorea victoria medusae
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(0.6 mm diameter) were kept in ambient water
from the Salish Sea (10 to 13°C, 28 to 30 salinity)
and fed Artemia sp. nauplii supplemented with
other jellyfish and ctenophore species for 60 d
(Arai 1980). Specific growth rates decreased
from 14 to 2% d−1 as medusa size increased.
Growth efficiency of Aequorea victoria grown
for 28 d on known masses of ctenophores was
K = 19.3% of the ash-free dry weight (Arai 1980).

One of the remarkable abilities of pelagic
cnidarian and ctenophore species is to shrink
(degrow) when food is scarce and regrow when
food is restored. Al though degrowth has been
studied for few species other than Aequorea vic-
toria (in Arai 1986), Aurelia labiata (as Aurelia
aurita in Hamner & Jensen 1974), and Pelagia
noctiluca (in Lilley et al. 2014), it is generally
assumed to be true for pelagic cnidarian and
ctenophore species.
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Fig. 2. Mean densities of medusae in East Sound,
Washington, USA. (A) Annual pattern of Aequorea vic-
toria in 2004 to 2005 shows rapid increase in spring and
overwintering. Data are missing from September 2004.
(B) Densities of A. victoria and Aurelia labiata medusae
by year of sampling; note different scales for the 2 spe-

cies. (J. E. Purcell unpubl. data)

S
p

ec
ie

s
L

oc
at

io
n

D
u

ra
ti

on
M

et
h

od
 

A
b

u
n

d
an

ce
R

ef
er

en
ce

A
. v

ic
to

ri
a

S
aa

n
ic

h
 I

n
le

t,
 B

C
C

, S
S

15
 m

o 
19

80
−

19
81

25
 m

 v
er

ti
ca

l 
to

w
,

≤0
.8

 m
−

3
L

ar
so

n
 (

19
86

b
)

0.
2 

m
2

n
et

A
. v

ic
to

ri
a

K
u

ll
ee

t 
B

ay
 S

S
, n

or
th

 B
C

C
 c

oa
st

 
S

p
ri

n
g

H
or

iz
on

ta
l 

to
w

,
0.

00
6−

5.
1 

m
−

3
P

u
rc

el
l 

&
 A

ra
i 

(2
00

1
19

83
−

19
87

0.
8 

m
2

n
et

an
d

 r
ef

er
en

ce
s 

th
er

ei
n

)

A
. v

ic
to

ri
a

E
as

t 
S

ou
n

d
, W

A
, U

S
A

, S
S

60
 m

o
H

or
iz

on
ta

l 
to

w
,

≤5
2 

m
−

3
J.

 E
. P

u
rc

el
l 

(u
n

p
u

b
l.

)
20

02
−

20
06

0.
8 

m
2

n
et

A
eq

u
or

ea
sp

p
.

C
ar

ib
b

ea
n

 S
ea

, M
ex

ic
o 

A
p

r−
S

ep
H

or
iz

on
ta

l 
to

w
1.

8 
m

−
3

S
eg

u
ra

-P
u

er
ta

s 
&

 D
am

as
-R

om
er

o 
(1

99
7)

20
00

−
20

07
0.

13
 m

2
n

et

A
. f

or
sk

al
ea

N
 B

en
g

u
el

a 
C

u
rr

en
t,

 A
fr

ic
a

S
u

m
m

er
F

is
h

in
g

 t
ra

w
ls

≤2
 m

−
3

B
u

ec
h

er
 e

t 
al

. (
20

01
)

A
eq

u
or

ea
sp

.
N

 C
al

if
or

n
ia

 C
u

rr
en

t,
 U

S
A

Ju
n

, A
u

g
30

 m
 w

id
e 

tr
aw

l
1.

9−
11

.7
 1

00
0 

m
−

3
S

u
ch

m
an

 &
 B

ro
d

eu
r 

(2
00

5)
20

00
, 2

00
2

A
. a

eq
u

or
ea

(f
or

sk
al

ea
)

N
 C

al
if

or
n

ia
 C

u
rr

en
t,

 U
S

A
A

p
r−

S
ep

30
 m

 w
id

e 
tr

aw
l

~
40

0 
k

m
−

2
S

u
ch

m
an

 e
t 

al
. (

20
12

)
20

00
−

20
07

A
. f

or
sk

al
ea

S
k

iv
e 

F
jo

rd
, D

en
m

ar
k

20
03

−
20

05
0.

3 
m

2 ,
 1

.8
 m

2
n

et
s

0.
2−

2.
0 

m
−

3
M

øl
le

r 
&

 R
ii

sg
år

d
 (

20
07

c)

A
eq

u
or

ea
sp

.
S

 A
rg

en
ti

n
e 

S
ea

Ju
n

 2
00

0
10

 m
2

tr
aw

l
21

00
 m

−
3

A
lv

ar
ez

-C
ol

om
b

o 
et

 a
l.

 (
20

03
)

A
. f

or
sk

al
ea

S
W

 B
er

in
g

 S
ea

, R
u

ss
ia

20
04

H
or

iz
on

ta
l 

tr
aw

ls
≤8

.6
 m

−
3

Z
av

ol
ok

in
 (

20
10

)

A
. f

or
sk

al
ea

W
 B

er
in

g
 S

ea
, R

u
ss

ia
S

u
m

m
er

 1
99

1−
20

11
H

or
iz

on
ta

l 
tr

aw
ls

52
.7

 k
g

 k
m

−2
(m

ea
n

)
D

ec
k

er
 e

t 
al

. (
20

14
)

A
. f

or
sk

al
ea

E
 B

er
in

g
 S

ea
, U

S
A

A
u

g
−

O
ct

 2
00

4−
20

07
S

u
rf

ac
e 

tr
aw

ls
≤8

0 
k

g
 k

m
−2

C
ie

ci
el

 e
t 

al
. (

20
09

)

A
. f

or
sk

al
ea

W
 B

er
in

g
 S

ea
, R

u
ss

ia
20

09
−

20
12

T
ra

w
ls

≤1
77

 k
g

 k
m

−
2

R
ad

ch
en

k
o 

(2
01

3)



Purcell: Successes and challenges in jellyfish research

Estimating growth in situ is problematic for ani-
mals that lack an internal or external skeleton to
measure, that shrink when food is scarce, that are
transported in the water, and that are difficult to tag
and to follow. Changes in medusa diameter or wet
mass in situ have been measured over time and
growth calculated mostly for scyphozoan populations
(e.g. Dong et al. 2009). For newly recruited Aequorea
victoria medusae in the Salish Sea, the changes in
mass over time (coefficient of population biomass
increase) averaged 0.14 d−1 during spring, which was
very similar to that of 10 other pelagic cnidarian and
ctenophore species (mean 0.11 d−1) (Larson 1986b).

In Denmark, Aequorea vitrina medusae and Aure-
lia aurita ephyrae were grown for 4 d and fed Arte -
mia sp. nauplii (Møller & Riisgård 2007a). Maximum
specific growth rates (~0.13 d−1) at 2 mg dry weight
decreased with size in both species to stabilize at
~0.05 d−1. The maximum specific growth (0.05 d−1) of
Aequorea vitrina in Skive Fjord corresponded to
maximum constant growth in the laboratory, indica-
ting that the growth potential was realized in situ
(Møller & Riisgård 2007a,b). Growth of Aequorea vit-
rina in situ in autumn was the same as growth of
Aurelia aurita and Sarsia tubulosa (means 0.05 d−1) in
spring. Thus, specific growth rates measured in the
laboratory and in situ and for the 3 species were very
similar.

Palomares & Pauly (2009) demonstrated use of the
von Bertalanffy growth equation with published size
frequency distributions to calculate growth in situ for
34 pelagic cnidarian and ctenophore species. For
example, diameters of Aequorea forskalea medusae
yielded the growth coefficient of K = 0.87 yr−1 in the
Benguela Current (Benguela); however, Buecher et
al. (2001) reported that only the central disc (56% of
the total diameter) remained after collection. It was
unclear if Palomares & Pauly (2009) corrected the
diameters, which could have affected their results.

Mortality

Although medusae in temperate latitudes gener-
ally have seasonal population cycles, few studies
address what ends the life of the medusae (reviewed
in Pitt et al. 2014). Most damage at FHL in the Salish
Sea was due to immature hyperiid amphipods (Para -
themisto pacifica), which infested the stomachs and
canal systems of A. victoria medusae, causing pits
and tunnels in the swimming bell in 52 to 78% of the
medusae by autumn (Mills 1993). The medusae
regenerated damaged tissue with food in the labora-

tory but seemed unable to recover when gut fullness
decreased in the autumn. Apparent infestation of A.
forskalea medusae by hyperiids (Hyperia medusa -
rum) in the Benguela was very low (3 of 2488
medusae), possibly because adults abandon their
host medusa when disturbed and because only the
firm central disk of the medusae remained after col-
lection in the fishing trawl (Buecher et al. 2001).
Infestations by hyperiid amphipods also are common
among scyphomedusae (e.g. Fleming et al. 2014) and
other pelagic cnidarian and ctenophore taxa (e.g.
Gasca et al. 2015), and their effects may be greater
than realized.

The main predators of A. victoria medusae at FHL
in the 1950s to 1960s probably were humans, who
harvested 100 000 to 200 000 medusae for their bio -
luminescent protein (aequorin) annually for 20 yr
(Mills 1983), which eventually led to a small local
population at FHL (Mills 2001). Fortunately, green
fluorescent protein (GFP) is synthesized now that A.
victoria is famous for its calcium-activated photo -
protein and GFP, which are used in living cells and
have revolutionized the fields of cellular and molecu-
lar biology and medicine (e.g. Graham et al. 2014).

Although Aequorea sp. was among the by-catch in
Vietnamese jellyfish fisheries, it was not processed
for food (Nishikawa et al. 2008). Aequorea spp. have
low percentages of carbon and nitrogen relative to
edible rhizostome medusae (Kogovšek et al. 2014)
and lack their desirable firm texture; therefore, these
medusae may be unsuitable as human food.

Spatial and vertical distributions

Species of Aequoreidae are found globally, except
in polar waters (Purcell et al. 2015a, Nogueira et al.
2016). Distributions of the various species generally
are unknown because of uncertainties in identifi -
cation. Regional distributions of pelagic Hydrozoa
show 7 Aequorea and 2 Zygocanna species in waters
around southern Africa (supplementary data in Gib-
bons et al. 2010) and 4 Aequorea spp. and Rhacos-
toma atlanticum in waters around southern South
America (Rodriguez et al. 2017); however, data are
lacking for much of the world’s oceans (e.g. Nogueira
et al. 2016).

Distributions of the Aequorea spp. medusae have
been studied mostly where large scyphomedusae
(Chrysaora spp.) have bloomed and created concerns
for fisheries (the northern Benguela, the Bering Sea,
and the northern California Current). Species of
Aequorea also have bloomed in those areas and have
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been included in the large-scale sampling with fish-
ing trawls (Brierley et al. 2001, Zavolokin et al. 2008,
Suchman et al. 2012). In those regions, Aequorea
spp. medusae are mainly further offshore than Chry -
saora spp., which tend to be in shallower upwelling
waters (Fig. 3). In each region, Aequorea spp.
medusae are more widely distributed than the Chry -
saora spp. medusae and, therefore, more numerous
overall (Brierley et al. 2001, Zavolokin et al. 2008,
Suchman et al. 2012). Aequorea spp. medusae also
occurred along the entire coastline sampled in the
northern California Current, throughout nearshore
waters of the Salish Sea, British Columbia, Canada,
and of Prince William Sound (PWS), Alaska, USA
(Purcell 1989, 1990, 2003, Suchman et al. 2012,
Greene et al. 2015).

The vertical distributions of A. forskalea medusae
were estimated with several methods: acoustics
(Brierley et al. 2001) and a submersible (Sparks et al.
2005) in the Benguela, trawls (Zavolokin 2010) and a
remotely operated vehicle (ROV) (Brodeur et al.
2002) in the Bering Sea. Fishing trawls are usually
semi-quantitative (catch per time or distance) and not
depth specific. Therefore, the visual counts of
medusae from the submersible and ROV provided
the most accurate estimates of the weighted mean
depths (24 m) in the Bering Sea and 23, 43, and 42 m

at 3 stations in the Benguela (Fig. 3). Acoustic sam-
pling showed that Aequorea sp. medusae formed
dense layers near bottom (~100 m) during the day,
ascended at dusk and distributed throughout the
water column, and then descended after dawn in the
southern Argentine Sea (Alvarez-Colombo et al.
2003). Those authors and Brierley et al. (2001) found
similar acoustic target strengths for Aequorea spp.
medusae (−64.15 and −66.3 dB, respectively). The
distributions of pelagic cnidarians and ctenophores
are not uniform throughout the water column or
static, which are important factors when considering
their ecosystem effects.

AEQUOREA SPP. RELATIONSHIPS 
WITH ENVIRONMENTAL CONDITIONS AND

BLOOM FORMATION

Eutrophication

Eutrophication, the addition of nutrients to water-
ways, is one of the major global pollution problems
(Rabalais et al. 2014). Generally, eutrophication cre-
ates poor conditions for visually feeding fish because
of small prey and turbidity but not for non-visual
jelly fish (reviewed in Purcell 2012). The coastal envi-

ronments where jellyfish have in -
creased generally are eutrophic with
high prey densities. In general, jelly-
fish eat more when more food is avail-
able, and feeding does not saturate at
natural prey densities (e.g. Purcell
1997, Stibor & Tokle 2003). Therefore,
more prey could be available for jelly-
fish in eutrophic waters.

In addition to altered feeding condi-
tions, eutrophication often leads to
low oxygen concentrations (hypoxia)
in bottom waters. Increasing atmos-
pheric carbon dioxide levels also are
causing acidification of marine wa ters.
Jellyfish are more tolerant of hypoxic
and low pH conditions than are fish
(reviewed in  Purcell 2012, see also
Tills et al. 2016 and references there -
in). Aequorea victoria medusae were
the most tolerant of hypoxia of 12 spe-
cies of jellyfish and cteno phores tested
in the Salish Sea (Rutherford & Thue-
sen 2005). Thus, hypoxic and acidic
environments may favour tolerant jel-
lyfish, such as A. victoria, over fish.
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Fig. 3. Offshore/inshore echogram (38 kHz) along 22° S latitude showing the
prominent scattering layer inshore (top right) caused by Chrysaora fulgida
medusae and the diffuse scattering layer offshore caused by Aequorea
forskalea medusae. The pie charts at the bottom show the relative proportions
(by wet mass) of C. fulgida (black) and A. forskalea (white) in trawl catches in
the waters above the pies, where jellyfish catch rates were greater than
100 kg min−1. White dots are the weighted mean depths of A. forskalea calcu-
lated from daytime submersible transects (n = 26 and 46) in November 1997
and April 1999, respectively, in Sparks et al. (2005). Echogram modified from 

Brierley et al. (2001) and reprinted with permission from ©Springer
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Temperature

Accumulating evidence indicates that temperature
is a key influence on interannual variation in pelagic
cnidarian and ctenophore species population sizes
(e.g. reviews Purcell 2005, 2012, Purcell et al. 2012,
also Condon et al. 2013, Sun et al. 2015). In the east-
ern Bering Sea, A. forskalea constituted 5.0 to 8.5%
of the jellyfish collected in fishing trawl samples, sec-
ond to Chrysaora melanaster (82.5 to 91.0%) in 1995
to 1999 (Brodeur et al. 2002) (Table 1). A. forskalea
and C. melanaster abundances were significantly
associated with higher temperatures, occurring in
60% of the trawls in warm years but in only 39% in
cool years (Cieciel et al. 2009). The jellyfish biomass
in the western Bering Sea increased from the 1990s
to the mid-2000s mainly from the abundance of A.
forskalea, which had its largest biomass during the
warmest year (reviewed in Decker et al. 2014). The
greatest biomass of A. forskalea there in 2012 was
over 500 kg km−2 (Radchenko 2013).

Aequorea spp. medusa abundances were also
greater in warm years in other locations in the north-
eastern Pacific. A. victoria (log10 medusae m−3) in the
Salish Sea were positively correlated with tempera-
ture (Pearson product moment correlation coeffi-
cient, CC = 0.771 [p = 0.02] in Kulleet Bay, British
Columbia, Canada, and CC = 0.980 [p < 0.01] in East
Sound) (Fig. 4). The CCs were not significant for
salinity. In the California Current, general additive
models indicated that catches in 2000 to 2007 of
Aequorea sp. were positively correlated with temper-
ature and salinity (Suchman et al. 2012). Thus, in the
cool waters where they occur, Aequorea spp. num-
bers increase with temperature.

AEQUOREA SPP. IMPORTANCE IN THE
 ECOSYSTEM

Swimming and feeding

Cnidarians catch their planktonic prey with feed-
ing tentacles bearing millions of intracellular sting-
ing capsules called cnidocytes (nematocysts) that
affect which types of prey are captured (Purcell &
Mills 1988, Corrales-Ugalde et al. 2017). Movement
of the prey relative to their tentacles, created by
swimming of the prey and the predator species, also
affects prey capture (Purcell 1997). Costello, Colin,
and colleagues studied the water flow generated by
swimming of hydromedusae, including Aequorea
victoria, scyphomedusae, cubomedusae, and cteno -

phores (e.g. references in Colin & Costello 2002,
Dabiri et al. 2010, Costello et al. 2012, Colin et al.
2013). Prolate (bell-shaped) jellyfish are ambush
predators that do not swim during feeding. Oblate
(umbrella-shaped) jellyfish are cruising predators
that maximize their feeding rates by moving high
volumes of water through the tentacles and by the
time spent swimming (e.g. Colin & Costello 2002).
For example, in situ videos by SCUBA divers showed
that A. victoria medusae (oblate) averaged 79% of
the time swimming, clearly indicating a cruising
mode of foraging (Colin et al. 2003). In contrast, A.
vitrina medusae observed in situ at the surface in still
water swam little and appeared to be ambush, not
cruising, predators (Riisgård 2007).

Diet

Gut content data should be collected in situ for
meaningful data on the types of prey eaten and feed-
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Fig. 4. Densities of Aequorea victoria medusae showing sig-
nificantly positive correlation with temperature in the Salish
Sea in (A) Kulleet Bay, British Columbia, Canada, at the time
herring larvae hatched in 1983 to 1986 (data from Purcell &
Arai 2001), and (B) East Sound, Washington, USA, in June 

for the years 2002 to 2006 (J. E. Purcell unpubl. data)
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ing rates of pelagic cnidarian and ctenophore species
(reviewed in Purcell 1997, 2009). Gut contents from
net-collected jellyfish are often not accurate due to
gut evacuation or feeding on prey in the net (Purcell
1997, 2009). Aequorea spp. medusae open their large
mouths and egest the consumed foods upon distur-
bance. Therefore, dietary data have been collected
extensively only for Aequorea spp. in the Salish Sea
and PWS, where they were dipped from the surface
and preserved immediately (Purcell & Arai 2001,
Costello & Colin 2002, Purcell 2003). Presumably, gut
evacuation prevented feeding analysis for Aequorea
spp. collected in trawls in the California Current
(Suchman et al. 2008, 2012) and in the Bering Sea,
where gut fullness was evaluated at only 0.01%
(Radchenko 2013).

The wide variety of jellyfish displays a diversity of
diets (reviewed in Purcell 1997). Large jellyfish, i.e.
scyphomedusae (see Tilves et al. 2016, Zeman et al.
2016) and Aequorea spp., tend to eat more different
prey types than do small hydromedusae (Purcell &
Mills 1988). In the Salish Sea and in PWS, Aequorea
spp. consumed a wide variety of prey: tintinnids, all
stages of copepods, cladocerans, barnacle nauplii,
decapod larvae, mollusc veligers, polychaete larvae,
invertebrate and fish eggs, fish larvae, appendicu -
larians, hydromedusae, siphonophores, and cteno -
phores (Purcell 1989, 1991a, 2003, references in Pur-
cell & Arai 2001). Comparison of the main prey types
of Aequorea spp. showed great similarity between
regions; copepods plus appendicularians totalled
78% of the diet in Kulleet Bay and 80% in PWS (Pur-
cell 1989, 2003). The numbers of copepods plus ap -
pendicularians eaten in Kulleet Bay (214 medusa−1

d−1) were about 40% of those in PWS (537 medusa−1

d−1), which could be attributed both to the lower den-
sities of those prey (969 vs. 2134 m−3) and the smaller
medusae (60 vs. 73 mm diameter) in Kulleet Bay.

Prey selection

Jellyfish are often described as generalist preda-
tors, but most species studied show some selection
among prey (consumption of prey types in dispropor-
tion to their availability in the plankton) (reviewed in
Purcell 1997). Although A. victoria medusae have
very broad diets, they select positively for soft-bodied
prey (fish larvae, appendicularians, and pelagic
cnidarians and ctenophores) and negatively for cope-
pods (Purcell 1989, 1991a, Purcell & Sturdevant 2001,
Costello & Colin 2002). The soft-bodied prey taxa are
especially vulnerable to capture by tentaculate pred-

ators, because of their large sizes, weak swimming
and escape abilities, and lack of protective exo -
skeleton (reviewed in Purcell 1997). Some predators,
such as A. victoria medusae, are predisposed to catch
soft prey because they lack the adhesive nematocysts
found in pelagic hydrozoans that eat primarily crusta -
 ceans (Purcell & Mills 1988). The remarkable escape
speeds of copepods (references in Bradley et al. 2013)
undoubtedly contribute to the apparent negative
selection for them by pelagic cnidarians and cteno -
phores (e.g. Purcell & Sturdevant 2001, Costello &
Colin 2002, Zeman et al. 2016).

Feeding rates

To determine the feeding rates of pelagic cnidari-
ans and ctenophores on zooplankton, the number of
prey captured divided by the digestion time gives the
predation rate, which can be multiplied by the pred-
ator density and divided by the prey density to give
the proportion of each prey population consumed.
Predation rates of A. forskalea in PWS on copepods
estimated from gut contents, digestion rates, and
prey densities were ≤1% of the prey standing stock
d−1 (Purcell 2003), which suggests that predation on
copepods by A. forskalea was negligible there.
Clearance rates (the volume of water cleared of prey)
differed by prey type by 2 orders of magnitude in
PWS among copepods, cladocerans, and appendicu-
larians (Purcell 2003). Clearance rates for medusae of
a given species of similar size can be used to estimate
their predation effects on a given prey type from in
situ data on predator sizes and prey densities. Thus,
to estimate the feeding of A. victoria on copepods in
Kulleet Bay (5 April 1983), we can use the average
clearance rate on copepods (0.0003 m−3 medusa−1

d−1) in PWS for A. forskalea medusae multiplied by
the densities of prey (661.4 copepods m−3) and
medusae (0.02 medusae m−3) in Kulleet Bay, which
equals 0.4% of the copepods daily, also a low preda-
tion effect.

Feeding rates of jellyfish measured in laboratory
containers are usually lower than those estimated
from gut contents (Purcell 1997, 2009). The average
clearance rate of A. vitrina medusae (mean 3.3 mg
dry weight) fed copepods in 5 l containers was
0.3 l d−1 medusa−1 (Møller & Riisgård 2007a). For A.
forskalea medusae the same size in PWS (Purcell
2003), clearance in situ was 7-fold that of A. vitrina in
laboratory containers. When the clearance rate for A.
vitrina was applied to medusa and copepod densities
in situ, Møller & Riisgård (2007c) concluded that
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those medusae had no effect on the zooplankton
 population.

Katija et al. (2011) photographically tracked the
fluid flow A. victoria medusae generated while swim-
ming (11.4 l h−1 medusa−1) together with videotaped
prey capture efficiencies at room temperature in the
laboratory. The potential clearance rate of a 50 mm di-
ameter medusa on copepods was ~3.5 l h−1 (Katija et
al. 2011). The in situ clearance rate of copepods by a
50 mm A. forskalea medusa in PWS (Purcell 2003) was
about twice the rate estimated by flow for A. victoria.

Proxies of feeding rates

Respiration rates (RRs) can be used to estimate
minimum ingestion by pelagic cnidarians and cteno -
phores in situ, as detailed in Ishii & Tanaka (2006),
and by the polyps (Ikeda et al. 2017). Although this
method underestimates ingestion in situ, because it
does not include growth or reproduction, it requires
much less effort and can be applied to similar species
anywhere given predator body mass (Purcell 2009,
Purcell et al. 2010). To estimate their minimum inges-
tion, I use RRs for 50 mm diameter A. victoria and A.
vitrina, which were very similar (25 and 27 µl O2 h−1

medusa−1, respectively), as calculated from Larson
(1986c, 1987) and Møller & Riisgård (2007c). Larson
(1987) calculated a 5% C d−1 turnover using the car-
bon content of 2% dry weight (Larson 1986c), equi -
valent to ~6 mg C d−1 medusa−1. Therefore, 6 mg C
would be the minimum daily carbon ingestion for
50 mm Aequorea spp. medusae. Such estimates of
ingestion are important to determine the importance
of jellyfish in ecosystems.

Although normalization of metabolic measure-
ments by dry weight is standard practice (Hirst &
Forster 2013), several authors caution against its use
for gelatinous species because dry weight differs
with salinity (e.g. Nemazie et al. 1993, Purcell 2009).
Additional problems were revealed by comparisons
of oven-dried, freeze-dried, dialysed (desalted), and
non-dialysed medusae, including A. forskalea in
Kogovšek et al. (2014), who found 15-fold greater
percent carbon in dialysed than in non-dialysed
medusae.

Predation on fish

Human interest in jellyfish is, in part, because of
their potential effects on fish populations (Purcell &
Arai 2001). Although most recent scientific and

media reports declare that jellyfish are important
predators and competitors of fish, data on those top-
ics are rare. A. victoria medusae provide some of the
best examples available.

The focus of studies on A. victoria medusae in
British Columbia, Canada, was predation on herring
larvae (references in Purcell & Arai 2001). At the
times herring larvae hatched in 5 yr in Kulleet Bay,
the percentages of larvae consumed (0.7 to 72.8%
d−1) increased with medusa densities that differed by
3 orders of magnitude (Purcell & Arai 2001). Thus, A.
victoria medusae are consistently predators in her-
ring spawning grounds with devastating reduction of
larvae in some years.

In addition to herring, A. victoria medusae con-
sumed larvae from 7 other families of fish (Purcell
1989). Predation by A. victoria medusae was ≤17%
d−1 of those larvae, assuming similar digestion times
(2 to 3 h at 8 to 10°C) as for herring larvae. Eggs from
6 families of fish were common in the gut contents of
A. victoria medusae; however, the lack of data on
digestion times of eggs prevented estimation of pre-
dation rates or effects in Kulleet Bay (Purcell 1989).

Feeding by pelagic cnidarians and ctenophores
typically does not saturate at prey densities occurring
in situ; they ingest more prey as prey densities in -
crease (reviewed in Purcell 1997). Feeding saturation
often is shown in laboratory containers, where prey is
given at unnaturally high densities (e.g. Stibor &
Tokle 2003); however, saturation rarely has been
tested in situ. One striking example showed no satu-
ration for A. victoria medusae, whose ingestion
increased linearly over 4 orders of magnitude when
the number of herring larvae available differed over
4 orders of magnitude (Purcell & Arai 2001).

Competition with fish

Effects of pelagic cnidarians and ctenophores on
fish include potential competition for zooplankton
food. All fish larvae eat zooplankton, and small
schooling pelagic fish (forage fish), such as ancho -
vies, herrings, and sardines, eat zooplankton through -
out life. The few studies of dietary overlaps between
jellyfish and fish include one on A. forskalea in PWS.
The diet overlaps among 4 forage fish species and 4
large pelagic cnidarians and ctenophores ranged
from 5.3 to 78.1%, depending on the numbers of
crustaceans versus soft-bodied prey in the diets;
overlaps of the fish species with A. forskalea were
moderate (35.5 to 59.0%), reflecting their broad diet
(Purcell & Sturdevant 2001). In the California Cur-
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rent, spatial and dietary overlaps of scypho medusae
with 9 pelagic fish species were incorporated into an
overlap index (Brodeur et al. 2008); presumably, lack
of dietary data for Aequorea sp. prevented their
inclusion in the analysis. Similarly, 2 of the 3 ecosys-
tems (Bering Sea, California Current) modeled by
Robinson et al. (2014) contain Aequorea spp., but
their trophic effects were not included. Stable iso-
topes showed considerable overlaps among fish and
jellyfish, including Aequorea sp., which generally
were enriched in 13C and depleted in 15N relative to
fish in Puget Sound (Naman et al. 2016).

Competition requires that resources are limiting,
which is difficult to demonstrate. Competition for
food usually has been inferred from inverse relation-
ships among zooplankton, fish, and pelagic cnidari-
ans and ctenophores (e.g. Daskalov et al. 2007) and
has been tested directly only once, to my knowledge.
Predation by A. victoria and 6 other gelatinous
 species was estimated to be only 0.2% d−1 of the
standing stocks of the microzooplankton prey of post-
 yolksac herring by Purcell & Grover (1990), who con-
cluded that although the diets overlapped, competi-
tion for food did not occur in Kulleet Bay at that time
because prey densities were too high (41 l−1) to be
affected.

Aequorea spp. as hosts of fish parasites

The transmission of parasites to fish is potentially
an extremely important, but inadequately known,
consequence of fish eating gelatinous species (re -
viewed in Arai 1988, Purcell & Arai 2001, Diaz Briz
et al. 2012). Trematode, cestode, and nematode lar-
vae are widely distributed among pelagic cnidarians
and ctenophores, with digenetic trematodes the
most studied. Their first larval stages develop in
gastro pods, followed by metacercaria larvae that
develop in pelagic cnidarians and ctenophores or
other intermediate hosts. The trematodes become
sexually mature in the definitive host fish, such as
mackerel, which eats gelatinous species. In the
southwestern Atlantic Ocean, 21.7% of the exam-
ined Aequorea spp. medusae were parasitized by 2
species (Diaz Briz et al. 2012). The high parasite
prevalence in Aequorea spp. suggests that they and
other large medusae are especially important as
hosts (Nogueira et al. 2015). Molecular genetics to
identify the parasites in medusae would further
knowledge of medu sae as hosts of fish parasites and
could indicate feeding interactions among medusa
and fish species.

Intraguild predation on gelatinous zooplanktivores

A possible benefit of some jellyfish to fish is creat-
ing a trophic cascade that results in more zooplank-
ton food. Some gelatinous taxa, especially large
medusae, consume other jellyfish (reviewed in Pur-
cell 1991b, 1997). When the predator and prey spe-
cies are both zooplanktivores, the intraguild preda-
tion may benefit the predator species by reducing
potential competition for food (Polis et al. 1989).
Medusae in the family Aequoreidae are large with
large mouths and gastric areas (Fig. 1) and well
adap ted to consume other pelagic cnidarian and
cteno phore species. The gut contents of A. victoria
contained ≥11 pelagic cnidarians and ctenophores
in spring, constituting 10.5% of the prey items (Pur-
cell 1991a). The densities of A. victoria and other
gela tinous prey species were significantly nega-
tively  correlated, suggesting that A. victoria might
control their populations (Purcell 1991a). Densities
of zooplankton and other gelatinous prey species
also were significantly negatively correlated, sug-
gesting that A. victoria could indirectly increase
zooplankton densities (Purcell 1991a) and create a
trophic cascade.

Predation by Aequorea victoria on ephyrae and
small Aurelia labiata medusae (Arai & Jacobs 1980)
may explain why Aurelia labiata populations were
low in 2005 and 2006 in East Sound when tempera-
tures were highest (Fig. 4B), even though more Aure-
lia labiata ephyrae are produced in warm years (Pur-
cell 2007, Purcell et al. 2009). No scyphomedusae
that could consume large Aurelia labiata were pres-
ent in East Sound (pers. obs.). Predation among
pelagic cnidarians and ctenophores is common, and
large jellyfish may be more important in controlling
populations of other gelatinous zooplankton and bal-
ancing pelagic food webs than realized.

Lessons learned from Aequorea spp.

Studies reviewed here on Aequorea spp. provide
some important insights into their ecology. Neverthe-
less, those studies are relatively few considering that
the genus and family are globally distributed. Of key
importance are their high abundances in commercial
fishing areas and their predation and competition
with fish. The topics reviewed (population dynamics
and bloom formation, trophic ecology) are important
for all zooplanktivorous gelatinous species. An over -
view of other gelatinous species is provided below
using examples of current research.
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NEW APPROACHES TO CONTINUING
 CHALLENGES IN JELLYFISH RESEARCH

Identification

Recent molecular genetics have opened new hori-
zons in evolutionary biology, population genetics, and
species identification. Several species of Aurelia and
Cyanea have been distinguished instead of one or a
few (Dawson 2005, Dawson et al. 2005, Scorrano et al.
2016). Molecular genetics can be used to describe
new species, identify larvae, and reveal relationships
among the pelagic cnidarians and ctenophores (Podar
et al. 2001, Bentlage et al. 2010, Kayal et al. 2015) as
well as to link the attached stages with the correspon-
ding free-living medusae among the scyphomedusae,
cubomedusae, and hydromedusae (e.g. Stampar et al.
2015). Continuing advances in molecular genetics will
facilitate identification of gelatinous species.

Contributions of sexual reproduction to blooms

Much remains to be learned about all aspects of sex-
ual reproduction by pelagic cnidarians and cteno -
phores. Medusae of at least some species concentrate
before spawning (Hamner et al. 1994, Kingsford &
Mooney 2014); gamete ripening (Uye 2014) and
release may be stimulated by light (Purcell 1995). At
least some cubomedusae and Periphylla periphylla
mate (Tiemann et al. 2009, Kingsford & Mooney 2014).
Histological and behavioural evidence suggests that
spawning in pelagic cnidarian and cteno phore species
occurs repeatedly over an extended period and de-
pends, at least in part, on environmental conditions and
the food available (Jaspers et al. 2011a, 2015, Lilley et
al. 2014, Lucas & Dawson 2014, Milisenda et al. 2017).
Species without attached stages may be preferable to
develop new techniques to more fully understand the
population dynamics of blooming jellyfish.

The subsequent survival of eggs and planulae also
is poorly known. A few studies report that predation
by Aurelia spp. scyphistomae on planulae of con-
specifics and other species could affect settlement
(Gröndahl 1988, Kuplik et al. 2015). Other predators
also could reduce survival and settlement of planulae
(Mercier et al. 2013, Kuplik et al. 2015, Miyajima-
Taga et al. 2016). Factors that determine settlement
and metamorphosis of planulae need more study (see
Riascos et al. 2013, Gambill et al. 2016). Methods to
discourage settlement would be useful to reduce
blooms (Guenther et al. 2009), especially given the in-
creases in aquaculture and other marine construction.

Asexual reproduction and blooms

Most of the scyphomedusan polyps found in nature
are Aurelia spp. from harbours (Toyokawa et al.
2011, references in Duarte et al. 2013, Janßen et al.
2013, Makabe et al. 2014, Marques et al. 2015).
Molecular genetics used to search for scyphistomae
revealed only those of Aurelia aurita in their samples
from the North Sea (van Walraven et al. 2016). To
predict the probabilities and magnitudes of jellyfish
blooms, data on the sizes of the attached populations
in situ are necessary.

Seasonal changes in various environmental factors,
including light, temperature, salinity, and food, may
stimulate attached stages to produce jellyfish. Inter-
annual variations in these conditions affect the
 timing and numbers of medusae produced, as for
Aurelia labiata scyphistomae in situ that produced
medusae 1 mo earlier in a year when high tempera-
ture, sunlight, and salinity coincided than in years
when those factors were lower (Purcell et al. 2009).
Most scyphozoan species examined produced more
medusae in higher temperatures (reviews Purcell
2012, Purcell et al. 2012).

Although salinity and light have been studied
less than temperature, the effects on asexual repro-
duction of scyphozoan and hydrozoan species are
significant (summarized in Purcell 2007). In cubo-
zoans, which often occur in or near estuaries, salin-
ity may be especially important for medusa produc-
tion (re viewed in Kingsford & Mooney 2014).
Significant positive effects of light at low levels
were shown for Aurelia spp. asexual reproduction
(Purcell 2007, Liu et al. 2009). Metamorphosis of
cubopolyps with zooxanthellae depended on in -
creasing temperature and daylight (Straehler-Pohl
& Jarms 2011). Thus, temperature, salinity, and
light affect asexual production of many medusozoan
taxa, and experiments on environmental factors
that may contribute to blooms of more species are
needed.

Survival of the young medusae is another little-
studied component of bloom formation. Environmen-
tal factors, food, and predators all could affect their
survival and bloom size (e.g. Wang & Li 2015). Adults
and ephyrae of Aurelia spp. are tolerant of starvation
(Hamner & Jenson 1974, Fu et al. 2014). Scyphisto -
mae of several scyphozoan species eat the planula
larvae and ephyrae of their own species (summarized
in Pennington 1990). Small Lychnorhiza lucerna
rhizo stome medusae ate the ephyrae and young
medusae of other scyphomedusan species but not of
their own (Carrizo et al. 2015).
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Abundance and biomass of gelatinous species

Net sampling can be used for most cnidarians and
is necessary for the desperately needed quantitative
data on abundance and biomass of pelagic cnidari-
ans and ctenophores (Lucas et al. 2014b). Small
hydromedusae are routinely captured in traditional
zooplankton nets; however, large mouth area and
mesh size are needed for large, sparse species (Pur-
cell 2009). Special care must be taken with most
ctenophore species, which are destroyed by the
 standard sampling and preservation methods
(exceptions include Pleurobrachia spp., Mertensia
ovum, Beroe spp.).

In addition to typical methods like nets and trawls,
new methods are being used to sample jellyfish. A
new towed camera system shows promise for quanti-
tative photographic sampling of small gelatinous
organisms (Luo et al. 2014). Citizen scientist pro-
grams collect sightings and photographs for verifi ca -
tion of conspicuous jellyfish, including Aequorea spp.
(e.g. www. medjelly. com, www. jellywatch. org/, www.
mcsuk. org/ sightings/ jellyfish. php, www. ciesm. org/
marine/ programs/ jellywatch. htm).Those records pro -
vide semi-quantitative data on dates, distributions,
and abundances that can be used to compare among
locations and years, as in Canepa et al. (2014, also A.
Canepa et al. unpubl.) and Purcell et al. (2015b).
Shoreline surveys can be used to develop monitoring
programs (Fleming et al. 2013). Aerial methods also
enable low-cost sampling over large areas and multi-
ple years, especially for aggregations of Aurelia spp.
medusae (Purcell et al. 2000, EOPS 2016) but also
for large, highly visible medusae of other species
(Houghton et al. 2006, Barrado et al. 2014). The large-
scale semi-quantitative methods need to be com-
bined with concurrent in situ sampling to determine
jellyfish densities quantitatively, which has been
accomplished rarely (see Graham et al. 2003, Bastian
et al. 2011).

Effects of environmental conditions on abundance

Abundances of pelagic cnidarians and ctenophores
are known to cycle with long-term environmental
conditions, such as temperature and salinity (e.g.
reviewed in Purcell 2005). On the other hand, human
activities have greatly changed coastal environments
in ways that may benefit gelatinous species (e.g.
reviewed in Purcell 2012). Pelagic cnidarian and
ctenophore species that have been studied can flour-
ish in eutrophic waters with low visibility, low light,

small food, and low oxygen that are detrimental to
fish. Further insight into the consequences of eutro -
phication may be gained by experimental manipul -
ations (e.g. McNamara et al. 2014) and long-term
studies (van Walraven et al. 2015). That ocean tem-
peratures are rising is clear (Wijffels et al. 2016). For
most gelatinous species tested, their numbers are
positively correlated with temperature (e.g. reviewed
in Purcell 2012); however, some Chrysaora spp.
medusae apparently benefit from the increased pro-
duction in cold, high-nutrient upwelling water,
where large populations of some of them live (Such-
man et al. 2012, Roux et al. 2013, Quiñones et al.
2015).

Non-indigenous species

Blooms of several scyphozoan, hydrozoan, and
ctenophore species have been increased by acciden-
tal introductions (reviews Bayha & Graham 2014,
González-Duarte et al. 2016). The main vectors for
these non-indigenous species (NIS) have been in the
ballast tanks and on the hulls of ships (González-
Duarte et al. 2016). The harbour destinations of the
vessels provide excellent habitats for the NIS. Both
ship transport and marine construction, including
aquaculture and energy installations, continue to in-
crease dramatically (reviewed in Duarte et al. 2013).
Thus, the opportunities for population expansion have
greatly increased, as demonstrated recent ly (Janßen
et al. 2013, Makabe et al. 2014). The cnidarian fauna
attached to marine construction is cryptic, and small
medusae in the surrounding water may be unnoticed.
Therefore, the extent that jellyfish blooms have been
enhanced by human activities probably is greatly un-
derestimated (Carlton 2009), and invasions are likely
to increase with the widening of the Suez and Panama
canals and more shipping.

Positions in the food web

Recent studies have indicated broader ecological
roles for pelagic cnidarians and ctenophores than
their traditional trophic level as zooplanktivores in
pelagic food webs, as understood from gut content
analyses that underestimate consumption of micro-
plankton. Aurelia aurita medusae, for example, were
recognized decades ago as consumers of microplank-
ton (Southward 1955), and recent analyses using sta-
ble isotopes support those results (e.g. D’Ambra et al.
2014, Fleming et al. 2015). The hydromedusa Aglaura

18



Purcell: Successes and challenges in jellyfish research

hemistoma feeds on protozoa and other zooplankton
and has ciliated tentacles (Colin et al. 2005), as does
Aglantha digitale. I suggest that other trachy me du -
sae in their family (Rhopalonematidae) may also feed
on microplankton using ciliary currents. Other spe-
cies were demonstrated to feed on microplankton,
such as Mnemiopsis leidyi larvae and adults (re -
viewed in Costello et al. 2012, Vansteenbrugge et al.
2016). The potential importance of medusozoans and
cteno phores in benthic trophic pathways also is be -
coming increasingly apparent (e.g. Pitt et al. 2008).

Biomarkers (stable isotope and fatty acids) have
become popular tools to study feeding in pelagic
cnidarians and ctenophores. Those results may differ
depending on many factors and can lead to conclu-
sions that do not agree with dietary data, such as for
Beroe spp. (e.g. Vansteenbrugge et al. 2016). The
trophic enrichment factors (TEFs) of jellyfish have
been determined experimentally only for Aurelia sp.
by D’Ambra et al. (2014); however, those TEFs con-
trasted markedly with the average TEFs usually used
and gave unreasonably high trophic positions for
Aurelia aurita and other species in another environ-
ment (Fleming et al. 2015). Stable isotope niches dif-
fered by season and by species, as reported by Flem-
ing et al. (2015), who emphasized that all gelatinous
species should not be treated as one functional group
in fishery and ecosystem models. Standardization
and improvements will increase the insights gained
from these methods (Phillips et al. 2014). For exam-
ple, Kogovšek et al. (2014) recommended freeze-dry-
ing and dialysis for organic and biochemical analyses
rather than the usual methods, which represent jelly-
fish biomass poorly.

The apparent increase of pelagic cnidarians and
ctenophores and the realization that large biomasses
(jelly-falls) settle to the sea floor globally (e.g.
Lebrato et al. 2012) have renewed interest in them in
carbon recycling. The protein-rich mucous secretions
of living jellyfish and decay of dead biomass are
readily assimilated by bacteria and can redirect car-
bon towards bacteria (Condon et al. 2011). Thus,
gelatinous species are important to nutrient recycling
in the water column (e.g. Condon et al. 2011, McNa-
mara et al. 2013) and on the benthos, where they are
scavenged and decompose (e.g. Sweetman et al.
2014, 2016, Chelsky et al. 2016).

Proxies of feeding estimates

Respiration and other metabolic measurements
could allow rapid large-scale estimation of food

requirements from densities and sizes of pelagic
cnidarians and ctenophores. The electron transport
system (ETS) activity in eukaryotes shows the capac-
ity of organisms to consume oxygen (Packard et al.
1971). The ETS method has been used extensively on
marine zooplankton and provides good estimates of
RRs in situ (Packard 1985). Data on the ETS activity
of 5 small medusa and 1 ctenophore species indicate
that this method works on them (King & Packard
1975, Owens & King 1975). Application of the ETS
method to jellyfish in nature would help to alleviate
the problems associated with laboratory confinement
(Purcell et al. 2010) and could enable estimation of
the energetic requirements and ecological effects for
net-collected specimens and the largest species.

Predation on fish

Studies using gut contents and digestion analyses
to estimate jellyfish predation on ichthyoplankton, as
shown for Aequorea victoria, are rare. Predation on
fish eggs and larvae by Pelagia noctiluca was high
over the Catalan Shelf in the Mediterranean Sea
(Tilves et al. 2016). Although all larvae (mean 2.5 h)
and anchovy eggs (mean 8.5 h) were digested by P.
noctiluca ephyrae, only 45% of another egg of the
same size (0.8 mm) was digested (mean 17.4 h; Pur-
cell et al. 2014). Similarly, anchovy eggs were quickly
digested by Mnemiopsis leidyi ctenophores (Purcell
et al. 1994), but cod eggs were not digested (Jaspers
et al. 2011b). Possible survival of some fish eggs after
egestion from pelagic cnidarians and ctenophores is
important to determine. Molecular genetics may
facilitate fish egg and larva identification in gut con-
tents (Fox et al. 2012).

Predation by fish on gelatinous species

The juveniles of numerous commercially harvested
fish associate with jellyfish (reviewed in Arai 1988,
Purcell & Arai 2001, Ohtsuka et al. 2009, Graham et
al. 2014, Kondo et al. 2014). The associations are
mainly between scyphozoan medusae and fish in the
families Carangidae, Stromateidae, and Gadidae.
These associations probably benefit the fish, provid-
ing food and protection from other predators, but the
importance is nearly unknown. The reliance of the
associated fish on the host for food can be clarified by
stable isotopes (D’Ambra et al. 2015).

Predation on jellyfish is not limited to associated
fish (reviews Arai 1988, 2005, Purcell & Arai 2001).
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Several studies since those reviews document pre-
dation (e.g. Milisenda et al. 2014, Miyajima-Taga et
al. 2016), with jellyfish being considered as food for
some aquaculture fish (Liu et al. 2014, Marques et
al. 2016, Miyajima-Taga et al. 2016). Some stable
isotope studies on fish predation have yielded
results that conflict with known diets (Cardona et al.
2012), while other studies (Cardona et al. 2015) con-
firm earlier dietary studies. The magnitude of fish
predation on gelatinous species in situ is unknown.
No direct evidence links reduction of those fish pop-
ulations to positive effects on pelagic cnidarian or
ctenophore populations, to my knowledge. Esti-
mates of predation rates of fish on gelatinous spe-
cies are scarce because digested gelatinous species
are difficult to identify and quantify and digestion
times are almost completely lacking. The only study
showed that gelatinous food was digested ~20 times
faster than shrimp by gelativorous chum salmon
(Arai et al. 2003). The combination of stable isotope
compositions and gut content analysis can offer
insights into the diets of predators of jellyfish
(Nakamura & Sato 2014).

Jellyfish, fisheries, and aquaculture

Humans may have unintentionally benefitted gela -
tinous populations by fishing, thus removing their
predators and competitors. In most ecosystems, the
largest predatory fish were depleted first and the for-
age fish second, i.e. fishing down marine food webs
(e.g. Pauly et al. 2009). Although the reduction of
pisci vorous fish would favour small zooplanktivorous
fish, those forage fishes are heavily fished to produce
oil and meal for aquaculture feeds (Tacon & Metian
2009). Where populations of forage fish are reduced
by fishing, zooplanktivorous gelatinous species have
bloomed, presumably due to reduced competition for
food (e.g. Purcell 2012, Robinson et al. 2014). A dra-
matic example of overfishing is in the Benguela,
where jellyfish seem to have replaced heavily fished
forage fish (Lynam et al. 2006).

The large populations of pelagic cnidarians in -
creasingly interfere with fisheries. Numerous exam-
ples document jellyfish filling the nets of fishers,
making it impossible to fish, or reducing the catches
(e.g. reviewed in Graham et al. 2014, Lucas et al.
2014a, Mianzan et al. 2014, Robinson et al. 2014).
This has a substantial economic cost for shellfish and
finfish fisheries (Graham et al. 2014).

Similarly, jellyfish have been costly to aquaculture
farms, sometimes causing mass mortality in penned

fish (reviewed in Purcell et al. 2013, Lucas et al.
2014a). The damage caused by jellyfish to penned
fish ranges from skin and gill lesions to metabolic
and neurological impairment (Baxter et al. 2011,
Bosch-Belmar et al. 2016a,b, 2017). Such studies
have just begun. The contribution of jelly fish stings
to the less dramatic background fish mortality is
much more difficult to determine.

Aquaculture facilities and other structures in
coastal waters can have attached scyphistomae and
hydroids and thereby could increase jellyfish popu-
lations nearby (reviewed in Duarte et al. 2013,
Bosch-Belmar 2016). Partly because of the cryptic
nature of most of these small organisms, they have
been in adequately documented in general. Because
of de creasing wild fish stocks and increasing
human demands for seafood, aquaculture is expec -
ted to increase dramatically, and consequently, its
problems with jellyfish are likely to increase (Pur-
cell 2012).

CONCLUSIONS

Although Aequorea spp. provide a case study illus-
trating the ecological importance of pelagic cnidari-
ans and ctenophores, data exist for few of the known
species (201 scyphozoans, >1000 hydromedusae, 176
siphonophores, 37 cubozoans, and 190 ctenophores),
with as many as 60% of the species remaining to be
discovered (Appeltans et al. 2012). Data are lacking
for vast regions of the oceans as well (Condon et al.
2013). The extreme shortage of quantitative data on
species of pelagic cnidarians and ctenophores glob-
ally is a major impediment to understanding and pre-
dicting their abundances, biomasses, and effects on
ecosystems and humans. Large-scale and long-term
monitoring is necessary to understand the natural
fluctuations of those species and environmental
effects on their population sizes (Brodeur et al. 2016).

Many basic life history characteristics of pelagic
cnidarians and ctenophores are inadequately stud-
ied, including rates of sexual reproduction, growth,
and mortality that contribute to their population
dynamics. The ecology of the attached stages is not
well known but must play a key role in bloom forma-
tion in species having them (Lucas et al. 2012). Stud-
ies on their distributions, abundances, asexual repro-
duction rates, and environmental factors that lead to
blooms are needed. All of these data are needed to
understand the importance of pelagic cnidarians and
cteno phores and for their inclusion in ecosystem
models.
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Respiration and other metabolic measurements
allow rapid large-scale estimation of food require-
ments from densities and sizes of pelagic cnidarians
and ctenophores. Ingestion calculated from meta-
bolic rates can be used in ecosystem models instead
of more laborious feeding rates. New techniques (sta-
ble isotopes, fatty acids, and molecular genetics) are
producing new insights into jellyfish trophic inter -
actions; however, those methods are not yet quantita-
tive and need to be validated by gut analysis.

The various interactions between jellyfish and fish
are inadequately understood but of great potential
significance for fisheries and aquaculture. These in-
teractions are mostly negative for the fish (predation
and competition for food, parasite transmission, sting-
ing in aquaculture pens), but some are positive (asso-
ciations, food for fish). Overfishing, especially of for-
age fish, may have increased populations of pelagic
cnidarians and ctenophores. Fishing on forage fish
should be reduced and different aquaculture feeds de -
veloped. Jellyfish should be included in  fishery and
ecosystem studies and fishery management plans.

Pelagic cnidarians and ctenophores are likely to
continue to have large populations in regions dam-
aged by human activities. Some species are known to
be more tolerant than fish of degraded conditions
including low visibility, small zooplankton foods, and
low oxygen. Improved water quality in coastal areas
may reduce medusa and ctenophore populations.
Most of the studied pelagic cnidarians and cteno -
phores reproduce more and have larger populations
in higher-than-normal water temperatures, suggest-
ing that those species may proliferate with ocean
warming. Populations of jellyfish with attached
stages may increase with more marine construction.
Introductions of NIS are likely to intensify from more
transport through the widened Suez and Panama
canals. All of these factors are likely to escalate with
increasing human populations and use of the ocean.

Jellyfish are known mostly for the problems they
cause humans, such as stinging and direct interfer-
ence with fishing, aquaculture, and power plant
operations. These problems are likely to intensify
with larger human and jellyfish populations. New
countermeasures can be developed. New uses for
jelly fish are being developed, with many potential
benefits in medicine and as food for both humans and
cultured fish.
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