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INTRODUCTION

Gelatinous zooplankton have shown increases in
some marine ecosystems, possibly as a result of cli-
mate change, species introductions, and a number of
anthropogenic alterations to coastal food webs that
favor jellyfish and ctenophores (Sullivan et al. 2001,
Purcell & Decker 2005, Richardson et al. 2009). One
important driver of the shift toward greater abun-
dance of gelatinous zooplankton is the construction
of hard surfaces such as bulkheads, docks, and other

shoreline modifications that provide suitable habitat
for scyphozoan polyps (Duarte et al. 2013). Addition-
ally, gelatinous zooplankton may benefit from bottom
hypoxia driven by local eutrophication, since they
are highly tolerant of low dissolved oxygen, giving
them an advantage over prey species that may be
more susceptible (Breitburg et al. 1997). Under these
eutrophic conditions, gelatinous zooplankton ex -
perience elevated energy intake through reduced
competition and increased prey capture efficiency,
leading to increased reproductive capacity which
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ultimately contributes to population growth (Purcell
et al. 2001, 2007, Grove & Breitburg 2005, Wang et al.
2016). Large populations of jellyfish can be detrimen-
tal to fisheries because they are voracious predators
of zooplankton and ichthyoplankton and are there-
fore both competitors and predators of fish (Brodeur
et al. 2008, Uye 2008). Additionally, blooms can also
impact power generation and manufacturing by
clogging intake screens, reduce tourism, and drive
additional hypoxia when they die. Consequently,
understanding population and species changes over
time is critical to assessing the current and future
impacts of these species on food webs, nutrient
cycling, fisheries, and economic development (Pur-
cell et al. 2007, Pitt et al. 2014).

While increases in some species have been docu-
mented, there is no clear pattern of global escalations
in jellyfish populations (Richardson et al. 2009, Sanz-
Martín et al. 2016), and long-term monitoring of jelly-
fish communities may be necessary to elucidate glo -
bal cycles or changes in relative abundance (Condon
et al. 2013). Many investigated communities appear
to be dominated by 1 or even a few species which ap-
pear to demonstrate bloom conditions (Richardson et
al. 2009), suggesting that the community dynamics
and pelagic trophic interactions may be dictated by
only a few dominant species. Many of these commu-
nities show seasonal signals related to reproduction
cycles of these dominant species (Sullivan et al. 2001,
Molinero et al. 2008), but subsequent trophic interac-
tions may mask the relative abundance of other
pelagic species, leading to an incomplete assessment
of gelatinous zooplankton community dynamics
(Boero et al. 2008). While many scyphozoans are rela-
tively large and conspicuous, their densities can be
dwarfed by smaller hydrozoans (Sun et al. 2012,
Nogueira et al. 2015). However, many diminutive
species may be important in trophic webs (Mills 1995,
Purcell & Arai 2001) and contribute to energy transfer
and nutrient recycling (Robinson et al. 2015). Since
many gelatinous zooplankton species exert substan-
tial top-down pressure on various organisms (Feigen-
baum & Kelly 1984), they have assumed apex preda-
tor status in some planktonic communities (Finenko
et al. 2013, Robinson et al. 2014). As a result, changes
in the density, distribution, and species composition
of gelatinous zooplankton can substantially alter trophic
webs, nutrient cycling, and fisheries yields, but we
need careful assessment of data sets and  results to
ensure accuracy before asserting global patterns
(Sanz-Martín et al. 2016).

A critical global factor impacting gelatinous zoo-
plankton communities is climate change (Doney et

al. 2012). From an oceanic standpoint, increasing
water temperature has allowed the migration of
species into new regions (Hoegh-Guldberg & Bruno
2010) and also impacted organismal basal metabolic
rates, energy demand, and ultimately oxygen con-
sumption (Pörtner 2010). Warming ocean waters
also play a critical role in the formation and intensi-
fication of hurricanes (Webster et al. 2005, Vecchi et
al. 2008), with increasing destructiveness (Emanuel
2005). Hurricanes and severe storms negatively
impact coastal communities directly through physi-
cal de struction of habitats and infrastructure as well
as indirectly through elevated rainfall and coastal
flooding (see Greening et al. 2006 and references
within). As these storms gain energy, their destruc-
tive force increases and can lead to escalating eco-
nomic damage (Akhtar & Santos 2013). Hurricane
Sandy in October 2012 entered the Mid-Atlantic
Ocean and devastated coastal New York and New
Jersey, USA. The storm possessed a storm surge
greater than 2.5 m (Sweet et al. 2013), which de -
stroyed buildings, caused massive flooding, and
breached barrier islands, leading to an economic
loss estimated at more than US$75 billion, the direct
loss of 147 lives (see Henry et al. 2013), and signifi-
cant losses of ecosystem services (Hauser et al.
2015). One region particularly impacted was north-
ern Barnegat Bay, NJ, where the storm surge pro-
duced an island breach, inundated coastal commu-
nities, and de stroyed buildings and structural
features such as marinas, docks, and bulkheads.
While the breach was repaired im mediately, debris
removal continued well into 2013 and beyond. This
region of the bay also maintains the highest densi-
ties of adult Chrysaora quinquecirrha (Bologna et
al. 2017) and larval recruitment to hard substrates
(Bologna 2011, Soranno 2016). Given the impor-
tance of polyp habitat for the life history and popu-
lation dynamics of scyphozoans (Lucas et al. 2012),
Hurricane Sandy had the po tential to dramatically
change community dynamics by impacting polyp
substrate for C. quinquecirrha and subsequently
their density and distribution. This research assessed
the impacts of an extreme stochastic event on gelat-
inous zooplankton community structure.

MATERIALS AND METHODS

Study area

This project focused on Barnegat Bay, NJ, USA
(39° N, 74°W), a Mid-Atlantic estuarine system iso-

218



Bologna et al.: Hurricane impacts on jellyfish communities

lated from the Atlantic Ocean by 2 barrier
islands, representing a lagoonal-type estuary.
Barnegat Bay has 2 natural inlets in the
central and southern reaches but also has a
northern man-made tidal inlet associated with
the Intracoastal Waterway maintained for nav-
igation. It is designated both as a NOAA
National Estuarine Re search Reserve (NERR)
(Jacques Cousteau NERR) and as a US Envi-
ronmental Protection Agency National Estuary
Program site (Barne gat Bay Partnership). It is
shallow (1.5 m  average depth) and well mixed
(Kennish 2001). The northern reaches of the
watershed are high ly developed (Lathrop &
Bognar 2001), with 2 major rivers (Toms and
Metedeconk) contributing substantial fresh-
water and nutrients to the bay (Wieben &
Baker 2009). The middle and southern reaches
of the bay have less development and fresh-
water inputs, but overall, the bay has been
described as highly eutrophic (Kennish et al.
2007), with evidence of hypoxia in regions of
poor circulation (Sugihara et al. 1979). Sixteen
sampling sites were established in the bay
using a stratified bay-wide design to assess
the spatial distribution of organisms through-
out Barne gat Bay (Fig. 1). Sampling occurred
monthly during the summer (May/June
through September) at these 16 sites in 2012,
2013, and 2014. During sampling events,
water quality (e.g. salinity, temperature, and
dissolved oxygen) data were collected using a
YSI® Professional Plus Multi-Parameter meter
calibrated and certified by the New Jersey
Department of Environmental Protection. Co -
ordinates for sampling stations are provided
in the Appendix.

Gelatinous macro-zooplankton sampling

Large gelatinous zooplankton were collected
using lift nets (3.2 mm mesh, 0.836 m2) from
each station during each sampling event (n = 10 per
site, per sampling event: N = 2977). Sampling
occurred by allowing the lift net to settle to the bot-
tom and remain undisturbed for at least 30 s. Lift nets
were then raised directly through the water column,
and all organisms were lifted to the surface. Once on
deck, samples were transferred to a holding bin,
where all gelatinous zooplankton were identified
and enumerated. Water depth was recorded for each
lift net sample, and the lift net area was then multi-

plied to determine the volume of water sampled. All
samples were then standardized to ind. m–3 and com-
pared among years. In 2012, 1394 lift net samples
were collected; 823 in 2013, and 760 in 2014.

Gelatinous micro-zooplankton sampling

In addition to the lift net sampling for larger
gelatinous zooplankton, triplicate 363 µm surficial
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Fig. 1. Eight paired sampling stations in Barnegat Bay, NJ, and
the 3 tidal inlets. Map abbreviations and site depths as follows:
ME: Metedeconk River East (site depth 1.4 m); MW: Metedeconk
River West (1.5 m); SBE: Silver Bay East (1.3 m); SBW: Silver Bay
West (1.9 m); TRE: Toms River East (2.25 m); TRW: Toms River
West (1.4 m); FRE: Forked River East (1.6 m); FRW: Forked River
West (1.3 m); DCE: Double Creek East (1.6 m); DCW: Double
Creek West (1.67 m); HCE: Harvey Cedars East (2.03 m); HCW:
Harvey Cedars West (1.2 m); WE: Westecunk Creek East (1.2 m);
WW: Westecunk Creek West (1.56 m); TCE: Tuckerton Creek 

East (1.36 m); TCW: Tuckerton Creek West (2.1 m)
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zooplankton nets (30 cm diameter) were towed at
each location (N = 819). Tows were conducted at
minimally engaged engine speed for 1 min.
Length of tow was measured using a mechanical
flow meter (General Oceanics Model 2030R) to
calculate the distance traveled using the manu-
facturer’s conversion constant. Sample volume
was then calculated for each tow, and samples
were standardized to ind. m–3 prior to analysis.
Since Barnegat Bay is a well-mixed, shallow sys-
tem (mean depth = 1.5 m), these samples are rep-
resentative of the overall water column. After
field collection, ctenophores were immediately
sieved (4 mm) and counted in a manner similar to
Purcell & Decker (2005). This method was per-
formed to specifically evaluate the ctenophore
Mnemiopsis leidyi populations, since they do not
preserve well. Employing this method was neces-
sary to obtain an accurate assessment of their dis-
tribution in the plankton tows. Zooplankton sam-
ples were then preserved in ethanol, stained with
rose bengal, and returned to the  laboratory for
later identification (lowest reasonable taxonomic
level) and enumeration. In 2012, 369 zooplankton
samples were collected; 218 in 2013, and 232 in
2014.

Statistical analyses

To evaluate the impacts of Hurricane Sandy, data
were pooled by year to evaluate changes. Specifi-
cally, 1-way ANOVAs were conducted using PROC
GLM (SAS® ver. 9.3, SAS Institute), with year as
the independent variable and water quality param-
eters and organismal density from lift nets and
plankton tow samples of each taxon as dependent
response variables in the model. Discrimination of
significant differences among years was accom-
plished by using the LSMEANS method in SAS®.
Organismal density for each taxon was square root
transformed prior to analysis to eliminate hetero -
scedasticity.

The zooplankton tow data were also analyzed for
community structure using a 2-way ANOSIM proce-
dure in Primer® on 4th root Bray-Curtis transformed
data (Clarke & Gorley 2006), using year and month of
collection as factors to determine seasonal and
annual changes in the gelatinous zooplankton com-
munity. Additionally, a principal component analysis
(PCA) was completed to assess the primary taxa
responsible for driving annual community structure
patterns.

RESULTS

Water quality

While average salinity did not change significantly
from 2012 to 2014 (Fig. 2A), both temperature and
dissolved oxygen changed significantly, coinciding
with Hurricane Sandy (Fig. 2B,C). Specifically, aver-
age temperature significantly declined each year
(F2,273 = 17.1, p < 0.0001) from an average of 24.7°C in
2012 to 22.1°C in 2014 (Fig. 2B). Similarly, and most
likely related to the lower temperatures, dissolved
oxygen was significantly greater (F2,273 = 27.7, p <
0.0001) in both 2013 and 2014 compared to 2012
(Fig. 2C).

Gelatinous macro-zooplankton sampling

During lift net sampling for larger individuals (i.e.
>3.2 mm), 6 species of gelatinous zooplankton were
collected, including the scyphozoans Chrysaora
quinquecirrha, Aurelia aurita, and Cyanea capillata
and the ctenophores Mnemiopsis leidyi, Beroe ovata,
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Fig. 2. Yearly mean ± SE water quality results from the com-
bined 16 sampling stations in Barnegat Bay. (A) Salinity,
(B) temperature, and (C) dissolved oxygen. Different letters 

above bars indicate significant differences (p < 0.05)
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and Pleurobrachia pileus. The 2 most numerically
abundant species were M. leidyi and C. quinquecir-
rha and accounted for >90% of all organisms sam-
pled. During our investigation, density of C. quin-
quecirrha and M. leidyi changed dramatically among
years. For C. quinquecirrha, density was significantly
higher in 2012 compared to both 2013 and 2014
(F2,2974 = 6.27, p < 0.002; Fig. 3A). One feature of the
decline in sea nettle populations in 2013 is the signif-

icant increase in M. leidyi densities during that year
(F2,2974 = 32.4, p < 0.0001; Fig. 3B). However, in 2014,
M. leidyi densities significantly declined by half. The
only other species to show significant changes in its
density was the sea gooseberry P. pileus, which
showed a significant decline in population density in
2013 following the storm (F2,2974 = 4.23, p < 0.015) but
then returned to pre-hurricane densities in 2014
(Fig. 3C).

Gelatinous micro-zooplankton sampling

Seventeen different gelatinous zooplankton taxa
were collected from plankton tow samples, with
 representatives from Scyphozoa (4 taxa), Hydrozoa
(10), Tentaculata (2), and a single Thaliacea (Salpa
sp.), as well as a few unidentifiable ephyrae. Of the
taxa identified, 8 showed significant density differ-
ences among years. Results from the plankton net
samples, however, showed no significant difference
in C. quinquecirrha densities among years compared
to results from the lift net samples, which showed sig-
nificant declines post-hurricane. This result was not
unexpected, as plankton nets poorly sample adult C.
quinquecirrha. For M. leidyi, we observed a signifi-
cant increase in 2013 (F2,816 = 14.18, p < 0.0001) and
then a dramatic decline in 2014 (Fig. 4), similar to the
results seen from the lift net samples. A similar pat-
tern was observed with P. pileus, with a significant
increase in density in 2013 (F2,816 = 7.54, p < 0.0006).
One outstanding result from 2013 was the massive
and significant increase in Salpa sp. (Fig. 5A), which
is a coastal/open ocean species rarely encountered in
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Fig. 3. Yearly mean ± SE densities from the combined 16
sampling stations in Barnegat Bay collected from lift nets.
Density comparisons for (A) Chrysaora quinquecirrha, (B)
Mnemiopsis leidyi, and (C) Pleurobrachia pileus. Different
letters above bars indicate significant differences (p < 0.05)
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sheltered lagoon systems (F2,816 = 18.8, p < 0.0001).
Turritopsis nutricula and Nemopsis bachei showed
significant increases in 2013 following Hurricane
Sandy (F2,816 = 11.24, p < 0.0001, and F2,816 = 10.96,
p < 0.0001, respectively), while Rathkea octopunctata
and Bougainvillea muscus both showed significant
increases in 2014 (Fig. 5B), coinciding with declines
in M. leidyi populations (F2,816 = 3.6, p < 0.03, and

F2,816 = 12.82, p < 0.0001, respectively). The only
other taxa to show significant declines post-hurri-
cane was Clytia sp., which showed significant de -
clines in 2013 and was absent from samples in 2014
(F2,816 = 8.39, p < 0.0002). This pattern was true for
Aequora sp., albeit not significantly (F2,816 = 1.34, p >
0.26). Overall, comparisons among years showed a
species richness increase of 64% in 2013, with con-
tinued higher species richness in 2014.

Community dynamics

Overall, the analysis of community structure
showed significant differences among year compar-
isons in the 2-way ANOSIM (global R = 0.143, p <
0.001) as well as significant differences among
months of collection (global R = 0.079, p < 0.001). For
monthly contrasts, all pair-wise comparisons were
significantly different (p < 0.05) from each other
except for May when compared to samples from
June, July, and August. This indicates that a seasonal
signal in community structure exists, which is typical
in temperate estuaries. Results from the PCA demon-
strate clear patterns of individual species driving
community structure among years. Since M. leidyi
density is often an order of magnitude greater than
all other species, its abundance drives the majority of
loading on PC 1 (Table 1). As such, discrimination of
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Mnemiopsis leidyi 0.979 −0.055 0.072
Chrysaora quinquecirrha −0.158 −0.042 0.479
Turritopsis nutricula −0.035 −0.015 −0.771
Aurelia aurita −0.009 −0.002 −0.047
Obelia spp. 0.005 −0.004 −0.006
Eutima mira −0.012 −0.003 −0.024
Clytia spp. −0.004 0.018 0.005
Aequora spp. 0.002 −0.003 0.002
Bougainvillea muscus −0.062 0.007 −0.183
Pleurobrachia pileus 0.052 −0.073 −0.174
Cyanea capillata 0.002 −0.001 0.001
Rhopilema verrilli −0.001 −0.001 −0.015
Nemopsis bachei −0.005 −0.013 −0.054
Salpa spp. 0.049 0.994 0.008
Moerisia spp. 0.003 0.017 0.002
Sarsia tubulosa 0.001 −0.002 −0.001
Rathkea spp. 0.019 −0.014 −0.026

Table 1. Individual principal component analysis loading
values for the taxa identified in samples associated with the
first 3 principal components (PCs). Eigenvalue (E) and rela-

tive contribution (%) are provided for each PC

Fig. 5. Yearly averaged gelatinous zooplankton densities
from the combined 16 sampling stations in Barnegat Bay col-
lected from plankton nets with Chrysaora quinquecirrha and
Mnemiopsis leidyi excluded. (A) All taxa present in samples
and (B) all taxa present with Salpa sp. removed. Shown are
means for each taxon. Salpa: Salpa sp.; Ro: Rathkea octo -
punctata; St: Sarsia tubulosa; Moer: Moerisia sp.; Nb: Ne -
mopsis bachei; Rv: Rhopilema verri; Cc: Cyanea capillata;
Pp: Pleurobrachia pileus; Bm: Bougainvillea muscus; AEQ:
Aequora sp.; Clytia: Clytia sp.; Eutima: Eutima sp.; Obelia: 

Obelia sp.; Aa: Aurelia aurita; Tt: Turritopsis nutricula
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the community is better re presented from loading
factors on PC2 and PC3 (Fig. 6). Specifically, Salpa
sp. strongly describes the sample community in 2013
with high loading on PC2, while C. quinquecirrha
drives community development in 2012 with high
loading on PC3 (Table 1). P. pileus, T. nutricula, and
B. muscus densities played critical roles in defining
differences between pre- and post-hurricane com-
munities, showing discrimination along the PC3 axis
(Fig. 6).

DISCUSSION

Community structure is typically defined by the
dominant species present or those that structure or
engineer the system (Breitburg et al. 2010). In Barne -
gat Bay, the increase in abundance of Chrysaora
quinquecirrha over the last decade has changed the
pelagic trophic structure to where this species as -
sumed the role of an apex predator and exerted
strong top-down control of the food web (Bologna et
al. 2017). The appearance of established C. quin -
quecirrha populations in Barnegat Bay is a relatively
new phenomenon, as they were never recorded in
previous evaluations of gelatinous zooplankton (Nel-
son 1925, Mountford 1980, Sandine 1984), although
this is within their established range (Morandini &
Marques 2010). The most probabilistic mechanism in
the establishment of polyp populations is the sub-

stantial development in the northern part of the bay
over the last 40 yr. This has led to changes in land use
and loss of coastal wetlands (Lathrop & Bognar 2001),
elevated nutrient loading (Wieben & Baker 2009),
and substantial increases in hard substrates (e.g.
docks, bulkheads), which has led to high levels of lar-
val settlement and polyp recruitment (Bologna 2011,
Soranno 2016). However, Hurricane Sandy in Octo-
ber 2012 significantly impacted Barnegat Bay, caus-
ing an island breach to develop in the northern re -
gion of the bay, and destroyed homes, roads, and
businesses (Henry et al. 2013). These impacts had
unanticipated consequences, as the elimination of
floating docks, bulkheads, and other hard surfaces in
the bay destroyed polyp/podocyst habitat for C.
quinquecirrha. At the time of the storm, adult C.
quinquecirrha populations had senesced; therefore,
continued larval production and recruitment could
not occur. We theorize this event caused the signifi-
cant decline in their densities seen in 2013 and 2014
(Fig. 3A) and was a result of the destroyed structures
which supported existing polyps and generated a
population check in the years following the storm.
Additionally, large-scale changes in tidal exchange
with the coastal ocean and elevated water levels
were seen after the storm (Aretxabaleta et al. 2014).
Subsequent changes led to the observed shifts in
water quality (Fig. 2) and an increase in the fre-
quency of novel coastal ocean species like salps. Our
data demonstrate that the significant increase in
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Fig. 6. Principal component analy-
sis demonstrating community com-
position with critical species and di-
rectional loading on PC 2 and PC3
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Salpa sp. in 2013 following the storm showed that
Barnegat Bay was undergoing a substantial change
in the gelatinous zooplankton community (Figs. 5A
& 6). It is possible that the ob served changes and
increased abundance of coastal ocean species corre-
spond to physical and environmental shifts poten-
tially linked to coastal oceanographic mechanisms.
One potential mechanism which could elevate
coastal sea levels (SLs) along the western Mid-
Atlantic is change in the strength and stability of the
Gulf Stream coupled with atmospheric forcing.
Andres (2016) describes the recent destabilization of
the Gulf Stream and its westward movement toward
the Mid-Atlantic Bight coastal shelf, which impacts
both surface and deep water currents. The location
and strength of the Gulf Stream coupled with the
North Atlantic Oscillation have previously been tied
to accelerated flooding along the east coast (Ezer &
Atkinson 2014, Goddard et al. 2015), with Ezer (2016)
describing a potential SL gradient mechanism driv-
ing short-term coastal SL rise. Additionally, Sheridan
et al. (2017) and Sweet et al. (2009) have demon-
strated that coastal wind patterns can cause elevated
dynamic SL and subsequent coastal flooding. Little et
al. (2017) describe potential interactions between the
decline in the Atlantic meridional overturning circu-
lation and dynamic SL, where long-term changes in
coastal waters are likely linked, but local wind-
 driven forces can greatly impact local SL, and this is
supported by Piecuch & Ponte (2015). These condi-
tions were present in the system during the post-
Sandy sampling and could support the increased
abundance of coastal oceanic gelatinous zooplankton
species observed and changes in water quality.

While these physical oceanographic changes were
likely responsible for the inclusion of coastal species
in samples, the significant density reduction in C.
quinquecirrha led to community shifts through
trophic interactions. The significant increase in Mne-
miopsis leidyi in 2013 is a direct result of C. quinque-
cirrha declines (Figs. 3B & 4), something that has
been observed in other systems where C. quinquecir-
rha and M. leidyi are abundant (Feigenbaum & Kelly
1984, Purcell & Decker 2005). In addition, the 64%
increase in gelatinous species richness in 2013 and
the significant increase in the densities of 4 other
species in the ensuing 2 yr (Fig. 5B) can be tied to
the increasing densities of Turritopsis nutricula,
Bougainv illea muscus, and Rathkea octopunctata fol-
lowing Hurricane Sandy (Fig. 6). These are relatively
small gelatinous species and are potential prey items
of C. quinquecirrha (Meredith et al. 2016). Conse-
quently, the predation release due to the significant

decline in C. quinquecirrha (Fig. 3A) has opened the
community to successional shifts, and this is clearly
demonstrated in our results (Fig. 5B).

The keystone predator concept has been applied to
C. quinquecirrha in the Chesapeake Bay, where the
relative abundance of sea nettles among years has
had a structuring force on the food web and initiated
trophic cascades (Feigenbaum & Kelly 1984, Purcell
& Decker 2005). Bologna et al. (2017) also demon-
strated significant top-down control of food webs by
C. quinquecirrha, but no trophic cascades were evi-
dent, as C. quinquecirrha actively fed on copepods
(and reduced their densities) as well as on M. leidyi.
Consequently, the dynamics of predator abundance
in this system is quite complex, but the significant
decline in C. quinquecirrha density has opened and
expanded the ecological niches for other species, and
results from our ANOSIM demonstrate significant
differences in the community among years. It is in -
teresting to evaluate the keystone predator designa-
tion of C. quinquecirrha, since its removal led to in -
creased diversity rather than diversity loss (cf. Paine
1966, Estes & Palmisano 1974).

If we invoke the keystone predator concept for
C. quinquecirrha, then its community structuring
forces are more similar to communities that have seen
introductions of non-native predatory species. For
 example, the introduction of M. leidyi into several sys-
tems has caused significant shifts in communities and
concomitant fisheries collapses (Oguz & Gilbert 2007,
Roohi et al. 2010, Oguz et al. 2012), and the introduc-
tion of Nile perch Labrus niloticus Linnaeus, 1758 to
lakes in Africa has decimated native cichlid popula-
tions (Achieng 1990). The introduction of non-native
species into new systems is one of the primary con-
cerns in global conservation biology (Ruiz et al. 1997,
Bax et al. 2003). Perhaps it is the fact that in Barnegat
Bay, where C. quinquecirrha have become dominant,
prior investigations did not even report their presence
(Nelson 1925, Mountford 1980, Sandine 1984). What
remains to be understood is whether C. quinquecirrha
will become reestablished as the apex predator in this
system or whether the increase in other taxa seen in
2013 and 2014 will lead to a new species equilibrium.
The most likely scenario is that, as the infrastructure
slowly returns and polyp habitat becomes available
again, C. quinquecirrha populations will rebound,
and they will eventually return to pre-storm densities
and begin to exert top-down pressure on the plank-
tonic community. However, large stochastic events
can exert impacts on population genetics, which may
slow or impede the reestablishment of this species
(Banks et al. 2013, Mora et al. 2016).
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Bay-wide sampling site Abbre- GPS coordi- GPS coordi-
viation nate N nate W

Metedeconk River West MW 40.050983 −74.064300
Metedeconk River East ME 40.045183 −74.054117
Silver Bay West SBW 39.992217 −74.119350
Silver Bay East SBE 39.933683 −74.092100
Toms River West TRW 39.989917 −74.107567
Toms River East TRE 39.925833 −74.084733
Forked River West FRW 39.821333 −74.159667
Forked River East FRE 39.815767 −74.122883
Double Creek East DCE 39.787550 −74.153833
Double Creek West DCW 39.786100 −74.182700
Harvey Cedars West HCW 39.700733 −74.166050
Harvey Cedars East HCE 39.698917 −74.146000
Westecunk Creek West WW 39.620117 −74.259400
Westecunk Creek East WE 39.598800 −74.229750
Tuckerton Creek West TCW 39.578983 −74.324283
Tuckerton Creek East TCE 39.556400 −74.254433

Appendix. Sampling stations and coordinates for the 16 sites used for data collection, coordinated from north to south
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