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INTRODUCTION

Competitive interactions play a critical role in shap-
ing the abundance and distribution of organisms in
marine systems, often influencing patterns of biodi-
versity. In exploitative competition, one species con-
sumes scarce resources faster than their competitor(s),
thus making the resource unavailable, while interfer-
ence competition occurs when one user negatively
hinders (or harms) another species, affecting its ability
to access the resource (Underwood 2000). For exam-

ple, sessile invertebrate species may exploit limited
attachment substrata and food, sometimes re sulting in
space monopolization by the dominant species (e.g.
Connell 1961, 1983, Menge 1976, Wethey 1983, 2002),
while macroalgae often compete for space, irradiance,
and nutrients (e.g. Lub chenco 1980, Carpenter 1990,
Peckol & Rivers 1995, Worm & Karez 2002). Some spe-
cies demonstrate interference competition by releas-
ing toxic chemicals, making areas around them unin-
habitable for other species (Magre 1974, Lubchenco
1980, Ridenour & Callaway 2001).
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Mobile organisms also compete for food and habi-
tat (Underwood 1978, Schoener 1983, Robertson &
Gaines 1986, Petraitis 1989, 2002, Navarrete &
Castilla 1990, Wootton 1993, Moksnes 2004, Spitz et
al. 2006), but these interactions may not result in
species exclusion. For example, intraspecific compe-
tition for limited food has been shown to affect indi-
vidual size and density of herbivore populations
(Branch & Branch 1981, Fletcher & Creese 1985,
Ortega 1985), and interspecific effects between
sympatric congeners caused shifts in foraging char-
acteristics, allowing for coexistence (Haven 1973,
Schmitt 1996).

Along the North Atlantic coastline, Littorina litto-
rea and L. obtusata are 2 abundant herbivorous gas-
tropods with sometimes overlapping intertidal distri-
butions. L. littorea commonly occurs in both rocky
and soft sediment areas from the upper intertidal
zone downward into subtidal areas (Brenchley &
Carlton 1983, Watson & Norton 1985, Norton et al.
1990). The success of this gastropod species in estu-
arine and marine habitats is related to its tolerance of
widely ranging environmental conditions (Newell et
al. 1971, Murphy 1979, Sokolova et al. 2000, Daven-
port & Davenport 2005). L. littorea consumes a diver-
sity of algae (Lubchenco 1978, Petraitis 1989, Norton
et al. 1990, Peckol & Putnam 2017) and even small
invertebrate eggs and barnacle cyprids (Brenchley
1982). Controversy remains regarding its status as a
native or introduced species to the western Atlantic
coastline (Carlton 1982, 1992, Wares et al. 2002,
Chapman et al. 2007, Cunningham 2008); however,
molecular analyses by Blakeslee et al. (2008) con-
firmed a relatively recent (~500 yr ago) introduction
from Europe.

In contrast to L. littorea, indigenous L. obtusata is a
more selective grazer (Norton et al. 1990), commonly
found on 2 fucoid algae, Fucus vesiculosus and Asco-
phyllum nodosum, which it uses as food and habitat
(Watson & Norton 1987, Norton et al. 1990, Trussell
et al. 1993, Reid 1996). While L. littorea has wide tol-
erances of fluctuating environmental conditions, L.
obtusata is less tolerant of high heat or freezing tem-
peratures, relying on dense fucoid canopies to pre-
vent desiccation on warm and sunny days (Hammer-
son 2004). Unlike L. littorea, a broadcast spawner, L.
obtusata is oviparous, directly laying egg masses on
fucoid algae (Reid 1996).

Several studies have identified L. littorea as a
competitively superior intertidal herbivore. For
example, L. littorea exerted competitive pressure,
limiting distribution and growth of L. saxatilis
(Behrens Yamada & Mansour 1987, Eastwood et al.

2007) and the limpet Testudinalia testudinalis
(Petraitis 1989; note that this species has been pre-
viously placed in Noto acmea, Tectura, Lottia and
Acmaea). Brenchley & Carlton (1983) found that
addition of L. littorea re sulted in emigration of the
mud snail Tritia obsoleta (formerly Ilyanassa) in salt
marsh habitats.

Competitive interactions involving L. obtusata
have been less documented than those of its con-
gener L. littorea. Kozminsky (2013) linked successful
recruitment of L. obtusata with food availability,
suggesting intraspecific competition between
recruits and adult snails. Herbivory may result in
induction of resistance in the Phaeophyceae (e.g. in
F. vesiculosus and A. nodosum) that subsequently
serves as a grazer deterrent (Van Alstyne 1988,
Peckol et al. 1996, Toth & Pavia 2000, Amsler 2001,
Hemmi et al. 2004, Flöthe et al. 2014, Haavisto et al.
2017). Long et al. (2007) ex plored interference com-
petition among herbivores via grazer-induced resist-
ance in F. vesiculosus, and concluded that L. obtu-
sata exerted both inter- and intraspecific effects.
However, they found no differences in phlorotannin
levels between un grazed and grazed fronds, and
the mechanism of this interaction was left unre-
solved.

Because L. littorea and L. obtusata have overlap-
ping spatial distributions and food resources in
rocky intertidal areas, competition may be occurring
be tween these species. Although Ulva lactua is a
preferred food of L. littorea (Lubchenco 1978, Wat-
son & Norton 1985, Norton et al. 1990, Peckol & Put-
nam 2017), it is an ephemeral species and therefore
an unstable resource. L. littorea was found to con-
sume F. vesiculosus (Watson & Norton 1985, Barker
& Chapman 1990, Norton et al. 1990) despite its
preference for U. lactuca, while L. obtusata showed
a strong preference for fucoids over ephemeral
green algae (Watson & Norton 1987, Peckol & Put-
nam 2017). We hypothesized that these herbivores
might demonstrate some form of interference com-
petition in their area of overlap. Using field and lab-
oratory experiments, we explored intra- and inter-
specific competitive interactions between New
England populations of L. littorea and L. obtusata.
We manipulated snail density and food availability
to determine effects on growth rates and abun-
dances. We investigated potential mechanisms of
interference competition by (1) determining grazing
rates on ungrazed and grazed (induction of resist-
ance) fronds of fucoid algae, and (2) measuring the
impact of snail presence, waterborne cues, and
mucus on herbivory.
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MATERIALS AND METHODS

Study sites

Two sites were selected for study: Ft. Wetherill State
Park, Jamestown, Rhode Island, USA (41° 28’ 43” N,
71° 21’ 44” W) and Pemaquid Point, Bristol, Maine,
USA (43° 49’ 59” N, 69° 30’ 53” W). The sites contained
moderate densities of both Littorina littorea and L.
obtusata and had similar habitat structure. The inter-
tidal areas had semi-exposed and somewhat sheltered
regions, and included vertical rock walls, grading into
gentler slopes. Both sites had thick (~70 to 100%
cover) algal canopies consisting of mixtures of Fucus
vesiculosus and Ascophyllum nodosum. Mean (±SD)
snail densities (number m−2) during summer (June
and August surveys combined, n = 20) were as
follows: Rhode Island: L. obtusata high-intertidal =
161.6 ± 69.4, mid-intertidal = 66.4 ± 68.3; L. littorea
high-intertidal = 63.2 ± 68.6, mid-intertidal = 47.2 ±
47.9; Maine: L. obtusata high-intertidal = 109.7 ± 84.6,
mid-intertidal = 116.6 ± 91.7; L. littorea high-intertidal
= 50.9 ± 68.5, mid-intertidal = 85.1 ± 81.8.

Field density manipulations

We investigated interspecific interactions between
L. littorea and L. obtusata in Rhode Island (July) and
Maine (August). Experimental sites in high- and mid-
intertidal regions were selected in areas with steep
vertical aspect where fucoid canopies were consistent
and dense (at least 75% cover). We conducted 4 sepa-
rate experiments, manipulating L. littorea and L.
obtusata densities in Rhode Island and Maine. Treat-
ment conditions for each experiment included:
control area (no manipulation), removal (density re-
duction of 1 congener), and addition (density increase
of 1 congener). The snails taken from removal repli-
cates were added to the addition replicates, thereby
doubling unmanipulated densities. Removal, control,
and addition treatment replicates were each estab-
lished within 1 m wide areas in high- and mid-inter-
tidal areas. There was an unmanipulated 1 m wide
area between each treatment replicate within each
set (for each experiment, n = 4 or 5 replicate sets;
namely removal, control, and addition at both tidal
levels). Initial and final densities of the species being
monitored within each treatment area (high- and
mid-intertidal zones) were taken using a 0.25 m2 (0.5
× 0.5 m) quadrat. Initial densities (mean ± SD m−2) of
the species to be monitored after density mani -
pulation of its congener were as follows: for L. obtu-

sata — Rhode Island: high-intertidal removal = 48.1 ±
27.6, control = 47.0 ± 20.4, addition = 62.0 ± 23.2
(ANOVA p = 0.69); mid-intertidal removal = 37.2 ±
18.4, control = 24.8 ± 11.2, addition = 30.0 ± 7.6
(ANOVA p = 0.68); Maine: high-intertidal removal =
44.8 ± 20.1, control = 39.2 ± 21.6, addition = 35.2 ±
20.8 (ANOVA p = 0.50); mid-intertidal removal = 22.4
± 12.4, control = 20.8 ± 10.4, addition = 25.6 ± 27.2
(ANOVA p = 0.92); for L. littorea — Rhode Island:
high-intertidal removal = 45.2 ± 16.8, control = 50.8 ±
18.8, addition = 32.0 ± 18.4 (ANOVA p = 0.47); mid-
intertidal removal = 26.8 ± 6.0, control = 30.8 ± 20.0,
addition = 28.0 ± 14.4 (ANOVA p = 0.54); Maine:
high-intertidal removal = 10.0 ± 10.4, control = 18.0 ±
8.4, addition = 21.0 ± 14.4 (ANOVA p = 0.41); mid-in-
tertidal removal = 17.0 ± 5.2, control = 23.0 ± 8.8, ad -
dition = 24.0 ± 11.2 (ANOVA p = 0.50). At subsequent
low tides (total of 6, at ~12 h intervals for 3 d), individ-
uals of either L. obtusata or L. littorea were again re-
moved from high- and mid-intertidal removal repli-
cates. Initial snail removal densities were as follows:
for L. littorea removal — Rhode Island: high-intertidal
~50 m−2, mid-intertidal ~35 m−2; Maine: high-inter-
tidal ~25 m−2, mid-intertidal ~35 m−2; for L. obtusata
removal — Rhode Island: high-intertidal ~55 m−2,
mid-intertidal ~35 m−2; Maine: high-intertidal ~30 m−2

mid-intertidal ~25 m−2. Removal numbers declined
with subsequent low tides, generally ranging from
~10 to 25 m−2, depending on species and tidal height.
Removed snails were always added to the addition
treatment of each set; control areas remained unma-
nipulated. After 3 d, we recorded final densities of the
species being monitored.

Laboratory experiments

All macroalgae, snails, and seawater used in labo-
ratory experiments were freshly collected from Ft.
Wetherill, Jamestown, Rhode Island. Specimens
were transported in coolers and held aerated at am -
bient water temperatures (range = 13 to 18°C) until
the initiation of experiments (within 2 d). Orga nisms
were used only once in experiments to avoid any re -
sidual effects, and we used similarly sized L. littorea
(~6.8 to 11.5 mm) and L. obtusata (~6.5 to 12.0 mm).
Experiments were conducted in Percival growth
chambers on Innova platform shakers for aeration, at
ambient water temperatures and irradiance level of
100 µmol photons m−2 s−1 on a 12 h light:12 h dark
schedule. Experiments were conducted in lidded
glass containers (500 ml) and seawater was changed
daily in all experiments.
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Effects of snail density and food availability
on growth rates

We investigated potential effects of inter- and
intraspecific competition between L. littorea and L.
obtusata on their growth rates under ad libitum
and limiting food resources of either F. vesiculosus
or A. nodosum. Each of 4 experiments were run
for 25 to 30 d. The experimental design included
treatment conditions (n = 5, each treatment) that
manipulated snail species and densities on a speci-
fied food source, either in a high food (available
100% of time) or a low food (available 25% of
time) regime. Snails held in high food treatments
were provided ~6 g fresh mass (FM) of fresh algae
weekly, while those held in the low food regime
were provided algae for the first 7 d, then subse-
quently starved for the duration of the experiment.
Water was changed daily in all containers. To
examine density effects, we added 4 (low density,
either L. littorea or L. obtusata) or 8 (high density)
snails to containers. The high density treatments
assessed intraspecific (8 ind. of same species) and
interspecific (4 ind. of each species) effects. Thus,
for each experiment, we had 2 food availabilities
and 3 density/species treatment conditions. The
inside surface area of the containers was 568 cm2.
Thus, our low and high density treatments were 70
and 140 snails m−2, respectively, within the range
of field abundances (see ‘Study sites’ above). We
measured initial shell length of each snail with
digital calipers (Control Company Traceable; 3415
± 0.01 mm) and marked shells with colored nail
varnish to identify individuals. For analyses, we
determined mean snail growth rate for each con-
tainer and used containers as replicates.

Grazing rate determinations

Only epiphyte-free, non-reproductive, ungrazed
algal fronds (unless otherwise noted) were selected
for use in experiments, and apical (distal) regions
(~6 to 7 cm length) of fronds were cut the day
prior to initiation of experiments and allowed to
wound heal overnight under aeration at ambient
temperatures. Initial and final algal FM was deter-
mined following removal of gravitational water
with a lettuce spinner. Grazer-free algal controls
were run to correct for autogenic growth, and all
ex periments were run for 4 d. Grazing rates were
calculated using the formula Ti (Cf / Ci) − Tf, where
Ti and Tf represent the initial and final algal

masses, respectively, of tissue subjected to grazing,
and Ci and Cf are, respectively, the initial and final
masses of grazer-free control algal tissues (equation
from Sotka et al. 2002).

Induction of resistance

We evaluated potential effects from inter- and
intraspecific interference competition by both gastro -
pod species on herbivory of pre-grazed (grazed)
fronds (induction of resistance) of F. vesiculosus and
A. nodosum (8 experiments). During the induction
phase, similarly sized (<12 mm) L. littorea or L. obtu-
sata were allowed to graze on distal regions of F.
vesiculosus or A. nodosum (~6 g FM of each species
in 5 containers holding 4 snails each) for 1 wk. This
length of time allowed induction (if any) of phloro -
tannins (Peckol et al. 1996) or of other changes to
algal thalli (e.g. toughness, additional changes in
chemistry). Ungrazed fronds were held under simi-
lar conditions without snails. We selected fronds
that visually had a similar amount (area) of algal
tissue removed by each snail species. Ungrazed
fronds were paired with the grazed tissues in
choice experiments to assess intra- and interspecific
induction by each gastropod species. A thin thread
was attached to each frond of grazed algae to dif-
ferentiate algal fronds (ungrazed vs. grazed) in
replicate containers. Grazer-free algal controls
(both ungrazed and grazed fronds) were used to
correct for autogenic growth. Both control (no graz-
ers) and experimental treatments (n = 12, both
treatments) held ~1.5 g FM of ungrazed and grazed
tissues in 300 ml seawater; 4 snails (either L. litto-
rea or L. obtusata) were included in experimental
containers.

Phlorotannin determination

Total phlorotannin concentrations (mg g−1 dry
mass, DM) of control (ungrazed) and grazed (by L.
littorea and L. obtusata) fronds of F. vesiculosus and
A. nodosum were determined using a modified ver-
sion of the Folin-Denis method (Ragan & Glombitza
1986, Yates & Peckol 1993, Targett & Arnold 1998).
Non-reproductive, distal regions were selected, and
extractions were conducted using fresh (non-frozen)
material (n = 8, all treatments). Phlorotannin levels
were calculated from a standard curve of phloroglu-
cinol and expressed on a DM basis using regression
analysis.
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Presence of congener

We measured grazing rates of L. littorea and L.
obtusata on F. vesiculosus in the presence of its con-
gener. Grazer-free control containers held pre-
weighed algae (~2 g FM). The ‘grazer-only’ treat-
ment contained pre-weighed algae and 4 snails of
either gastropod species, while the ‘grazer with con-
gener’ treatment contained pre-weighed algae, 4
grazers, and 4 ind. of the other snail species held in
submerged mesh bags unable to access the algae.
Therefore, the included congener was present, but
not in direct contact with the grazer (n = 13, all treat-
ments).

Effects of waterborne cues and mucus

To further identify any avoidance behavior by L.
obtusata of L. littorea, we investigated the effect of
waterborne cues of L. littorea on L. obtusata grazing
rates. We did not conduct the reciprocal experiment,
i.e. of waterborne cues of L. obtusata on L. littorea,
be cause other experiments revealed limited effects
of the former species on L. littorea (see ‘Results’). Fol-
lowing collection, L. littorea were held aerated with-
out food at ambient temperatures for 2 d to allow
them to excrete any residual consumed food. This
species then grazed on F. vesiculosus for 1 d to gen-
erate waterborne cues to be used in the experiment.
To standardize the water, 100 L. littorea (<12 mm)
were held in a volume of 10 l of seawater. The water
was then filtered to remove any fragments of algae
prior to use; we generated this experimental water
daily over the 4 d period. Each replicate container
received ambient seawater or water containing L.
littorea cues and ~2 g FM of F. vesiculosus. This
waterborne cue experiment had 4 treatments (n = 8).
Two grazer-free controls were used: F. vesiculosus
held in ambient seawater or water containing L. litto-
rea cues, while 2 experimental groups contained 4 L.
obtusata (plus algae) in ambient seawater or water
containing L. littorea cues. Ammonium levels were
undetectable in ambient and ~6 µM in experimental
treatments; nitrate concentrations showed the oppo-
site pattern, i.e. ~6 and <5 µM in ambient and exper-
imental treatments, respectively.

We investigated the effect of mucus trails gener-
ated by L. littorea on grazing rate of L. obtusata. We
placed 10 L. littorea in glass containers containing
300 ml of seawater for 24 h, allowing the snails to
crawl around and leave mucus on the container walls
to be used in the experimental treatment. ‘Mucused’

containers were created each day to allow L. obtu -
sata contact with fresh L. littorea mucus. Grazer-free
controls contained algae with no grazers. We added 4
L. obtusata to containers with ~2 g FM F. vesiculosus
and no L. littorea mucus and containers that had
been ‘mucused’ by L. littorea (n = 9, each treatment).
We also measured the effect that L. litto rea mucus
might have on the movement behavior of L. obtusata,
recording the number of snails submerged, on algae
(F. vesiculosus), or out of the water (emerged) during
day and night (growth chamber, 12 h light:12 h dark)
in all treatment conditions.

Statistical analysis

Prior to statistical analyses, homogeneity of vari-
ance was determined using the Fmax test (Sokal &
Rohlf  2012) and normality was evaluated using the
Kolmogorov-Smirnov test. We applied 2-tailed t-tests
for all grazing experiments. For the 8 choice trials
(grazed vs. ungrazed fronds), we employed 2-tailed,
paired t-tests. We applied 1-factor ANOVA for analy-
sis of phlorotannin concentrations (ungrazed and
grazed fronds of F. vesiculosus and A. nodosum by L.
littorea and L. obtusata) and 2-factor ANOVA for the
4 field density manipulation experiments (L. obtusata
and L. littorea response to varying densities of their
congener conducted at 2 tidal levels in Maine and
Rhode Island, density × tidal height) and 4 laboratory
growth rate determinations (density × food) under
varying snail densities (inter- and intraspecific ef -
fects) and food availability. Tukey’s multiple range
test was used to make comparisons among means
from significant ANOVA tests.

RESULTS

Field density manipulations

At both Maine and Rhode Island study sites,
manipulation of densities of Littorina littorea
(removal and addition for 6 low tides, 3 d) from high-
and mid-intertidal areas resulted in a consistent
response by L. obtusata. In Maine (Fig. 1a), we found
tidal height (2-factor ANOVA, F1,24 = 5.73, p = 0.025)
and density (F2,24 = 5.85, p = 0.008) effects, but no
interaction (density × height, p = 0.41) between these
variables. L. obtusata abundances increased signifi-
cantly following L. littorea removal compared with
control and addition treatments (Tukey’s test, p <
0.05). In Rhode Island (Fig. 1b), we did not document
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a tidal height effect (2-factor ANOVA, p = 0.09); how-
ever, removal of L. littorea resulted in higher densi-
ties of L. obtusata compared with control and addi-
tion treatments (2-factor ANOVA, F2,18 = 5.71, p =
0.012; Tukey’s test, p < 0.05). Although we observed
declines in L. obtusata density with L. littorea addi-
tion in Maine, there was not sufficient statistical
power to detect a significant effect.

Manipulation of L. obtusata densities had no clear
effect on abundances of L. littorea. Final (mean ± SD
m−2) densities (pooled across tidal height) of L. litto rea
were as follows: for Maine, control = 8.5 ± 5.0, re moval
= 17.0 ± 13.1, addition = 16.0 ± 12.1 (ANOVA, p =
0.52); for Rhode Island, control = 44.7 ± 34.1, removal
= 38.7 ± 13.1, addition = 29.3 ± 4.8 (ANOVA, p = 0.21).

Effects of density and food availability on snail
growth rates

We measured effects of snail density (intra- and
interspecific effects) and food availability (100 and
25% accessibility) on growth rates of L. littorea and
L. obtusata. When offered Fucus vesiculosus as food
(Fig. 2), 2-factor ANOVA revealed food and density
effects for both L. littorea (food: F1,23 = 18.4, p =
0.0003; density: F2,23 = 6.4, p = 0.006; interaction: p =
0.90) and L. obtusata (food: F1,23 = 4.5, p = 0.04; den-
sity: F2,23 = 4.1, p = 0.04; interaction: p = 0.29). Under
low food availability, L. obtusata showed reduced
growth rate (Tukey’s test, p = 0.03) at high densities
(compared with low density treatment) in the pres-
ence of L. littorea, indicating a negative interspecific
effect, but not in the presence of its conspecific
(Fig. 2b). L. littorea demonstrated the opposite pat-
tern, namely, lower growth rate under high densities
of its conspecific (intraspecific effect), but not con-
generic (Tukey’s test, p = 0.04). However, perform-
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ance under low food did not vary (Tukey’s test, p =
0.81) between the 2 high density treatments (Fig. 2a).

L. littorea demonstrated low growth rates when
offered Ascophyllum nodosum, and performance
was similar (mean growth = 0.002 to 0.003 mm d−1)
across treatments. Statistical analysis did not detect
an effect of density or food availability on growth (2-
factor ANOVA, food: p = 0.48; density: p = 0.34).

In contrast with L. littorea, growth rates of L. obtu -
sata when offered A. nodosum as a resource were
relatively high under the low snail density/high food
availability treatment (Fig. 3). L. obtusata demon-
strated food and density effects (2-factor ANOVA,
food: F1,23 = 42.8, p < 0.0001; density: F2,23 = 5.6, p =
0.01; interaction: p = 0.11). Although growth rates
were similar and low across treatments under limited
A. nodosum availability, under high food availability,
L. obtusata growth at high density was reduced com-
pared with the low density treatment (Tukey’s test,
p = 0.002) in the presence of L. littorea (interspecific
effect), but not in the presence of higher density of
members of its own species (Tukey’s test, p = 0.29).

Effects of grazed (induced) algae on grazing
preferences

The littorinid species demonstrated distinctive re -
sponses to grazed (intra- and interspecific effects)
and ungrazed fucoid algae. When offered a choice of
F. vesiculosus or A. nodosum that was ungrazed or
had been grazed by its conspecific (intraspecific ef-
fect), neither L. littorea nor L. obtusata had a signifi-
cant preference (paired t-tests, for F. vesiculosus: L.

litto rea, p = 0.13; L. obtusata, p = 0.48; for A. nodo -
sum: L. littorea, p = 0.50; L. obtusata, p = 0.48), though
in each trial the grazed fronds were consumed at a
lower rate than ungrazed tissues (Figs. 4 & 5).
Further, statistical analysis (paired t-test, p = 0.19) did
not detect a difference in herbivory of L. littorea be-
tween ungrazed F. vesiculosus tissues and fronds had
been grazed by its congener (interspecific effect). In
contrast, L. obtusata showed lower consumption of F.
vesiculosus grazed by L. littorea compared with un-
grazed fronds (t11 = 7.6, p < 0.0001), indicating an in-
terspecific deterrent effect. Both gastropod species
demonstrated reduced herbivory on A. nodosum
grazed by their congener (L. littorea: t11 = 2.4, p =
0.03; L. obtusata: t11 = 4.0, p = 0.002).

Phlorotannin concentrations

Constitutive (ungrazed) phlorotannin concentra-
tions varied between the 2 fucoid species, with A.
nodo sum showing nearly 2-fold higher levels (t12 = 4.6,

141

0 

0.004 

0.008 

0.012 

0.016 
High food 

Low food 

Low density High density 
(intrasp) 

High density 
(intersp) 

Gr
ow

th
 ra

te
 (m

m
 d

–1
)

Fig. 3. Mean (+SE) growth rate (mm d−1) of Littorina obtu-
sata on Ascophyllum nodosum at low or high density of
snails (intra- and interspecific effects) under high (100%) 

and low (25%) food availability

0 

4 

8 

12 

16 

20 

Gr
az

in
g 

ra
te

 (m
g 

FM
 d

–1
)

A Ungrazed 
Grazed 

0

10

20

30

40

50

Interspecific Intraspecific

B

Fig. 4. Mean (+SE) grazing rate (mg fresh mass [FM] d−1) of
(A) Littorina littorea and (B) L. obtusata when offered un-
grazed Fucus vesiculosus and algae that had been grazed by
congener (interspecific effect) or by its own species (intra-

specific effect)



Mar Ecol Prog Ser 594: 135–147, 2018142

p = 0.0006) than F. vesiculosus (Fig. 6). Grazing by L.
obtusata induced F. vesiculosus fronds above un -
grazed  levels (1-factor ANOVA, F2,18 = 7.7, p = 0.004,
Tukey’s test, p < 0.05); however, we did not de tect a
significant induction of phlorotannins above constitu-
tive levels by L. littorea (Tukey’s test, p = 0.75). Both lit-
torinid species induced phlorotannins in A. nodosum
above ungrazed levels (1-factor ANOVA, F2,21 = 7.1,
p = 0.005); however, induced levels were similar be-
tween the 2 gastropod species (Tukey’s test, p = 0.88).

Effects of littorinid presence, waterborne cues,
and mucus trails on herbivory

We measured herbivory of L. obtusata in the pres-
ence of L. littorea as well as its waterborne cues and
mucus trails (Table 1). L. obtusata demonstrated a
lower grazing rate on F. vesiculosus in the presence

(no contact) of L. littorea or its waterborne cues com-
pared with the control treatments. In contrast, we did
not detect a significant effect of the presence of
mucus trails of L. littorea on L. obtusata grazing rates.
Similarly, location (submerged vs. emerged) of L.
obtusata in containers was not strongly influenced by
the presence or absence of L. littorea mucus trails
(data not shown). Herbivory of L. littorea was similar
(t-test, p = 0.73) in the presence (22.0 ± 5.4 mg FM d−1)
and absence (25.1 ± 6.7 mg FM d−1) of L. obtusata.
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(intraspecific effect) 

                              L. littorea      Waterborne     L. littorea
                               presence              cue               mucus

Control                  44.3 ± 3.7         84.7 ± 4.3        70.7 ± 9.5

Experimental        29.2 ± 5.0         45.6 ± 3.9        68.5 ± 7.3

t-values                       2.2                    4.9                   0.1
p-values                    0.036               0.0002               0.94

Table 1. Mean (±SE) grazing rate (mg fresh mass d−1) of Lit -
tor ina obtusata on Fucus vesiculosus under various treat-
ment conditions. The ‘L. littorea presence’ (n = 13) treatment
placed L. obtusata in contact with L. littorea held in bags;
the ‘waterborne cue’ treatment held L. obtusata in L. littorea
water (n = 8); the ‘L. littorea mucus’ (n = 9) treatment placed
L. obtusata in contact with L. littorea mucus on surfaces of
experimental containers. The control treatment lacked ex-
perimental manipulations. Grazer-free algal controls run in
each experiment to correct for autogenic growth were used 

in the calculation of grazing rates
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DISCUSSION

This study revealed negative interactions between
Littorina littorea and L. obtusata in field and labora-
tory experiments, indicative of asymmetric competi-
tion. Interspecific, but not intraspecific, competition
affected growth, herbivory, and distribution of L.
obtusata. In contrast, L. littorea demonstrated intra-
specific effects under limited food availability and
higher densities when fed a diet of Fucus vesiculosus;
however, its performance was not strongly affected
by L. obtusata. Thus, coexistence of indigenous L. ob -
tu sata and introduced L. littorea in temperate rocky
intertidal areas may be possible due to distinctive
species characteristics and selective habitat and
feeding preferences of the former species.

Results of field and laboratory density manipula-
tions of the littorines provided evidence of interfer-
ence competition by L. littorea on L. obtusata. In the
field, abundances of L. obtusata increased 2- to 3-fold
above unmanipulated controls following the removal
of L. littorea at both study areas. In the laboratory, L.
obtusata had reduced growth rate in the presence of
L. littorea, but not in the presence of its conspecific,
under limiting food resources (F. vesiculosus) and
abundant food supply (Ascophyllum nodosum). This
latter negative response of L. obtusata to some form
of interference by L. littorea may be similar to that
experienced in a field setting where food is rarely
limiting. Other studies have established that L. litto -
rea as a successful competitor for resources in inter-
tidal habitats (Brenchley & Carlton 1983, Behrens
Yamada & Mansour 1987, Petraitis 1989, Eastwood et
al. 2007), and Frid & James (1988) suggested re -
source partitioning by the mud snail Perin gia (Hydro-
bia) ulvae permitted coexistence with L. littorea. As
noted by Brenchley & Carlton (1983), competitive
interactions may be subtle, be coming evident
through density manipulations rather than by com-
paring distribution patterns.

Our study revealed mechanisms of interference
between these intertidal herbivores. Grazer-deter-
rent effects of constitutive and induced phlorotannin
levels in brown algae often involve complex inter -
actions between herbivores and the environment
(Steinberg 1988, Steinberg & van Altena 1992, Peck -
ol et al. 1996, Targett & Arnold 1998, Amsler 2001,
Kubanek et al. 2004, Long & Trussell 2007, Koivikko
et al. 2008, Haavisto et al. 2017). Several studies have
reported herbivore avoidance following induction of
resistance (phlorotannins) in Fucus spp., including F.
vesiculosus (Van Alstyne 1988, Yates & Peckol 1993,
Rohde et al. 2004) and A. nodosum (Pavia & Toth

2000, Toth & Pavia 2000, Borell et al. 2004). In con-
trast, other work reported that herbivores were toler-
ant of this form of chemical defense (Steinberg & van
Altena 1992, Pavia et al. 1997, Jormalainen et al.
2001, Hemmi et al. 2004, Kubanek et al. 2004). We
measured induction of resistance in F. vesiculosus by
L. obtusata and in A. nodosum by both species.
Notably, phlorotannins in A. nodosum were 2-fold
higher than values measured in F. vesiculosus, and
both herbivores showed low preference for A. nodo -
sum in paired-choice grazing experiments (Peck ol &
Putnam 2017). While herbivory by L. littorea was not
diminished on F. vesiculosus grazed by L. obtusata,
fronds of both fucoid algae grazed by L. littorea were
less palatable to L. obtusata, indicating a strong
interspecific effect. Similarly, Yun et al. (2010) found
that F. vesiculosus grazed by L. littorea deterred
grazing by the isopod Idotea baltica, while another
Littorina species, L. brevicula, induced resis tance in
Laminaria japonica that decreased grazing of the
abalone Haliotis discus (Molis et al. 2008). Recently,
Jones & Long (2017) documented variation in the
strength of herbivore-induced deterrence with
grazer identity.

The lack of significant grazing deterrence among
conspecifics under elevated phlorotannin levels cou-
pled with strong avoidance by L. obtusata of both
fucoid species grazed by L. littorea indicates that
 herbivore-induced interference cannot be fully ex -
plained by phlorotannin induction. Instead, as sug-
gested by some research (Hemmi et al. 2004, Ku ba -
 nek et al. 2004, Sotka & Gantz 2013), compounds
other than phlorotannins may be induced by L. litto -
rea that result in reduced palatability to its congener.
For example, Deal et al. (2003) characterized meta -
bolites linked to reduced palatability, and concluded
that galactolipids and other non-phenolic com-
pounds produced the strongest deterrence. Notably,
Flöthe et al. (2014) found that defensive re sponses by
F. vesiculosus to herbivory were associated with
induction of several genes, and grazing by snails and
isopods elicited distinctive gene expression. Such
differences in gene regulation may be caused by spe-
cies differences in saliva (Coleman et al. 2007) or her-
bivore specialization (Ali & Agrawal 2012). Similarly,
defensive responses caused by gene expression in
terrestrial plants were species dependent (Walling
2000, Reymond et al. 2004).

The fucoid species responded differently to herbi -
vory by the littorines, suggesting specificity of induc-
tion. Pavia & Toth (2000) postulated that differences
between L. obtusata and the isopod Idotea granulosa
in their ability to induce resistance in A. nodosum
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might be related to varying feeding capabilities and
damage caused by the 2 herbivores, while Rohde et
al. (2004) found a similar ability by L. littorea and I.
baltica to induce defense in F. vesiculosus. Compara-
ble to our findings, Molis et al. (2006) documented
distinctive induction of the kelp Ecklonia cava by
herbivores with the same grazing mode. Interest-
ingly, we observed unique grazing marks on the
fucoid algae; L. littorea removed larger portions of
tissue through all cell layers, while L. obtusata con-
sumed surface layers. Although both littorines are
taenioglossam grazers, L. littorea has pointed shaped
cusps while L. obtusata has broad, blunt, and short
cusps (Reid 1996). Molis et al. (2008) argued that a
combination of mechanical and chemical cues might
be necessary to induce anti-herbivory de fenses in
some algae. Thus, these patterns of herbi vory, due to
distinctive radular structures, may ex plain differ-
ences in induction of macroalgal defenses and in
grazer response to these compounds.

We identified other mechanisms of interference
competition by L. littorea on L. obtusata. Herbivory
by L. obtusata was reduced in the presence (no con-
tact) of L. littorea or its waterborne cues. Similarly,
the ladybird Propylea japonica showed a reduced
feeding rate on aphids when exposed to fecal matter
left behind on a plant by Harmonia axyridis (Agar-
wala et al. 2003). Brenchley & Carlton (1983) sug-
gested that contact with L. littorea interfered with
foraging and locomotory activities of Tritia obsoleta.
Thus, waterborne cues produced by L. littorea (or its
presence) might negatively influence L. obtusata dis-
tribution and grazing in a field setting.

We documented negative interspecific effects be -
tween L. littorea and L. obtusata indicative of asym-
metric competition, yet these species coexist in a nat-
ural field setting across a range of densities (<30 to
sometimes >200 m−2). Further, we were unable to
elu ci date a clear effect of addition (>2-fold above un -
mani pulated controls) of L. littorea on abundances of
L. obtusata, suggesting that the latter species is toler-
ant of its congener across a range of densities and
tidal levels. Species exclusion might be unlikely due
to renewability of resources and the ability to change
location (Underwood 1978, Ritchie 2002). Because of
its mobility, the competitively inferior L. obtusata
may demonstrate behavioral avoidance, as detailed
for other species (Thorp 1976, Race 1982, Jensen et
al. 2002). With the exception of extremely exposed
shores, there is an abundance of micro- and macro-
algal species along temperate rocky coastlines (Lub -
chenco 1980, Goecker & Kåll 2003), so food is rarely
limiting (Underwood 1978, Petraitis 1989, Pavia &

Toth 2000). Additionally, similar to our results,
Petraitis (2002) demonstrated that increased L. litto -
rea density resulted in a marked depression of its
growth rate due to intraspecific competition. Ches -
son (2000) argued that strong intraspecific competi-
tion may dampen interspecific pressure, permitting
stable species coexistence. Thus, more restricted
food and habitat preferences may be successful
strategies for L. obtusata, allowing it to maintain
modest, relatively stable abundances (Pavia & Toth
2000) and gain refuge from predation (Hay et al.
1989, Duffy & Hay 1994) within the perennial fucoid
algal canopies.

While the mechanisms of interference being ex -
erted by L. littorea on L. obtusata were not fully elu-
cidated, our study revealed notable characteristics of
this asymmetric competitive interaction. We docu-
mented several examples of interference by L. litto -
rea that reduced grazing and growth rates of L. obtu -
sata, and found that abundances of the latter species
are clearly influenced by L. littorea in the field set-
ting. However, their ability to coexist despite adverse
interspecific effects highlights the dynamic and com-
plex nature of the interactions between these herbiv-
orous gastropods and their environment.
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