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INTRODUCTION

Species distribution models (SDMs) are essential
tools used by conservation biologists for understand-
ing species distribution patterns and their drivers (see
Guillera-Arroita et al. 2015 for a review), assessing
the combined effects of environmental change and

direct human pressure (i.e. economic activities in-
cluding tourism) on natural habitats (Gutt et al. 2012),
defining conservation priorities (Vierod et al. 2014,
Greathead et al. 2015) and de veloping relevant man-
agement plans (Reiss et al. 2015, Koubbi et al. 2016).
SDMs allow scientists to interpolate the known distri-
bution of single species, assemblages or communities
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(Ferrier & Guisan 2006) to little-accessed or under-
sampled areas (Reiss et al. 2011, Robinson et al. 2011)
and help improve our knowledge of the distribution
of rare species (McCune 2016).

In regions subject to rapid environmental change
and significant anthropogenic activities, SDMs can
be useful tools in planning conservation measures
(Guisan et al. 2013, Reiss et al. 2015). However, mod-
eling species distributions over vast and remote areas
is challenging and raises questions regarding the rel-
evance of this method compared to more traditional
and qualitative approaches (Koubbi et al. 2016). In
such regions, our knowledge of species distributions
is usually based on historical and heterogeneous
presence-only data sets, which may include many
gaps, and may induce methodological biases that
affect the level of SDM performance (Loiselle et al.
2008, Costa et al. 2010, Newbold 2010). The use of
historical data in SDMs has been widely discussed
(Reutter et al. 2003, Hortal et al. 2007, 2008); for
instance, regarding the spatial and temporal hetero-
geneities induced by the use of different sampling
strategies. Limitations to SDM performance are
mainly due to uncertainties in data location and de -
tection (Costa et al. 2010, Naimi et al. 2014, Tessarolo
et al. 2014), overestimations of habitat suitability in
intensively sampled areas (Guillera-Arroita et al.
2015) and artefacts in niche descriptions (Hortal et al.
2008). The lack of available data from remote areas
also constitutes a limitation to SDMs, which are re -
stricted to presence-only data and are regarded as
being less reliable and less efficient than presence−
absence and abundance-based models (Brotons et al.
2004). Over the past few years, many methodological
developments in SDM procedures have been pro-
duced to correct for such biases (Dormann 2007,
Phillips et al. 2009, Barbet-Massin et al. 2012), but no
single corrective procedure has emerged (Qiao et al.
2015) and few practical solutions have been pro-
posed to deal with poor and heterogeneous data sets.

Our knowledge of species distribution in the
Southern Ocean is still patchy (Koubbi et al. 2016).
Therefore, the growing interest of marine biologists
and biogeographers in the region has led to the con-
ception of collaborative projects compiling past and
present marine biodiversity data in information net-
works such as the SCAR-Marine Biodiversity Infor-
mation Network (SCAR-MarBIN) (Griffiths et al.
2011), the Biogeographic Atlas of the Southern
Ocean (De Broyer et al. 2014) and other open access
databases (Danis et al. 2013, Gutt et al. 2013, Van de
Putte et al. 2014). However, running SDMs in the
region still requires a significant data compilation

effort (Guillaumot et al. 2016) to complement the
existing open access data sources and to check for
data quality. In addition, modeling Southern Ocean
species distributions poses auxiliary problems due to
the paucity of data and model performances that can
vary with ecological niche width (Qiao et al. 2015).
Recent works have developed methodologies to
adapt SDMs to rare species and poorly sampled
areas, but none have been tested for the Southern
Ocean (Pokharel et al. 2016, Phillips et al. 2017).

In this work, we analysed the reliability of model-
ing procedures with regards to the heterogeneous
nature of data available and the gaps in our knowl-
edge of species distributions. We compiled echinoid
presence-only data collected from several ancient
and recent oceanographic campaigns that have been
carried out on the Kerguelen Plateau (sub-Antarctic
region) over the past 145 yr. The distributions of 4
echinoid species with contrasting ecological niches
were modeled and the reliability and performance of
the modeling procedures were tested. We propose
methodological procedures to correct for spatial and
temporal biases and assess the sensitivity of model-
ing procedures to a species’ ecological niche width.
This is the first methodological approach to correct
for potential biases in SDMs in the Southern Ocean.
Our objective is to offer useful perspectives for future
modeling, along with a practical and transferable
protocol to test for the reliability and performance of
modeling procedures.

MATERIALS AND METHODS

Biological data

Species occurrence data were taken from Guillau-
mot et al. (2016) and Pierrat et al. (2012). The data set
includes presence-only data of echinoid species col-
lected during 19 scientific cruises carried out on the
Kerguelen Plateau (46 to 56° S, 63 to 81° E) since 1872
(Fig. 1). Fig. 1B illustrates the expeditions that mainly
contributed to the dataset. The full list is available in
Guillaumot et al. (2016). Scientific objectives, dates,
sampling effort, gears and surveyed areas differed
between cruises, leading to spatial and temporal het-
erogeneities (Guillaumot et al. 2016). From this data
set, 4 echinoid species with contrasting ecological
preferences and a high number of presence-only
records were selected. Species included 2 sediment
feeders of the family Schizasteridae (1 shallow water
species, Abatus cordatus, and a deeper one, Brisaster
antarcticus), 1 carnivorous/detritivorous and eury-
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bathic species of the family Cidaridae, Ctenocidaris
nutrix and 1 omni vorous and eurybathic species of
Echinidae, Sterechinus diadema (David et al. 2005)
(Fig. 1). A. cordatus is a coastal species endemic to
the Kergu elen Pla teau, B. antarcticus is known to oc-
cur in the Kergu elen and Crozet archipelagoes and
has broader environmental preferences than A. cor-
datus, and C. nutrix and S. diadema are widespread
in the Southern Ocean and have contrasting environ-
mental preferences (Fig. 1).

Environmental descriptors

Environmental descriptors were taken from Guil-
laumot et al. (2016). The data set covers the geo-
graphic extent of the Kerguelen Plateau and com-

prises environmental data encompassing 6 decades
(1955–2012). Environmental data are available at a
grid cell resolution of 10 km. Environmental layers in-
clude no-data pixels, particularly in seafloor-related
descriptors. Data were not interpolated to avoid po-
tential biases due to interpolation procedures.

Collinearity between descriptors can alter model-
ing performances (Phillips et al. 2006) because col -
linear data may (1) inflate standard errors, (2) induce
the violation of residual independency during model
validation and (3) generate noise that can be inter-
preted as a link between descriptors (Dormann et al.
2013). To reduce the collinearity effect, we computed
the variance inflation factor (VIF) and Spearman cor-
relation coefficient (rS) between all available descrip-
tors from Guillaumot et al. (2016). VIF analysis was
performed in a stepwise procedure using the ‘vifstep’

Fig. 1. (A) Occurrence data of the 4 studied echinoid species over the Kerguelen Plateau: Brisaster antarcticus, Ctenocidaris
nutrix, Sterechinus diadema, Abatus cordatus. (B) Sampling effort (in presence-only records) through time by main scientific
cruises during which the 4 studied species were collected on the Kerguelen Plateau. (C) Species presence data plotted accord-
ing to depth , seafloor salinity and seafloor temperature on the Kerguelen Plateau with projection of standardized distribution
ellipsoids (see Jackson et al. 2011 for details) on bivariate plots. (D) Species depth range over the Kerguelen Plateau based on
occurrence data (solid line: median; box: upper and lower quartiles; whiskers: 75 ± 1.5% interquartile range; dots: outliers)
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function in the R package ‘usdm’ (Naimi et al. 2014).
Descriptor pairs with high VIF and rS values were
omitted based on the commonly used thresholds of
VIF < 5 and rS < 0.85 (Pierrat et al. 2012, Dormann et
al. 2013, Duque-Lazo et al. 2016). Environmental
descriptors finally selected to model species distribu-
tion are given in Table 1.

Environmental changes were tested between 1955
and 2012. The comparison of pixel values between
periods was generated using a Wilcoxon signed-rank
test with the Bonferroni correction.

Analytical procedure

The flow chart of Fig. 2 details the analytical proce-
dure used in the present work.

Model selection

Due to the growing interest of ecologists in species
distribution modeling, a large range of modeling tech-
niques is now available (Reiss et al. 2011, Guillera-Ar-
roita et al. 2015, Qiao et al. 2015). Running the most
appropriate model involves selecting the best model-
ing technique for the data under ana lysis and also in-
volves considering the scientific objectives to be ad-
dressed (Reiss et al. 2011, Qiao et al. 2015).

Here, we compared several modeling techniques
using the ‘biomod2’ library in R v.3.3.0 (Thuiller et al.
2016) and tested the performance of these ap proaches
with regards to the chronological addition of new data
and the transferability performance of models be -
tween areas. Several models were generated with an
increasing number of occurrence data (see Fig. S1 in
Supplement 1 at www. int-res. com/ articles/ suppl/  m594
p149_ supp. pdf). The best modeling techniques were
then compared with each other using a non-random
cross-validation procedure (Fig. S2; Wenger & Olden
2012) in order to determine the ap proach with the
best accuracy in transferability performances (Randin
et al. 2006, Wenger & Olden 2012).

Results showed high performance and stability val-
ues for random forest (RF) and boosted regression
trees (BRT) in our case study (see Supplement 1).
However, BRT performed better in transferability
than did RF (Heikkinen et al. 2012). Previous works
have shown that RF does not deal correctly with miss-
ing values and patchy data sets (Breiman 2001, Bar-
bet-Massin et al. 2012, Qiao et al. 2015; see Table S1
in Supplement 1 for a review). Therefore, BRT was
chosen in the present work to generate the analyses.

BRT calibration was completed using the ‘gbm’ R
package (Elith et al. 2008, Ridgeway 2015). The 3
main parameters (learning rate [lr], tree complexity
[tc], bag fraction [bg]) were selected using the
method developed by Elith et al. (2008) to determine
the combination of values that would minimize the
predicted deviance of the models (Elith & Leathwick
2014). The parameters were finally set at lr = 0.0001,
tc = 2 and bf = 0.75.

Following Barbet-Massin et al. (2012), we sampled
the same number of background data as the number
of presence data available for computing BRT mod-
els. Considering the low number of presence data
points available, 100 model replicates (i.e. back-
ground sampling) were generated for each analysis.
Finally, to correct for data aggregation in space, pres-
ence duplicates were removed when present in the
same 10 km resolution pixel.

Model performance was assessed by measuring
the area under the receiver operating curve (AUC) of
each model replicate using the ‘dismo’ R library (Hij-
mans et al. 2016). AUC expresses the relationship
between model sensitivity and the commission error
(1 − specificity), where sensitivity corresponds to the
number of presence pixels correctly predicted as
present, and specificity is the number of absence pix-
els correctly predicted as absent (Fielding & Bell
1997). The use of the AUC to evaluate SDM perform-
ance has been debated (Lobo et al. 2008, Peterson et
al. 2008), but the AUC remains the most appropriate
metric for presence-background models since values
remain stable with low-prevalence data sets and are
not sensitive to threshold effects (Hand 2009, van
Proosdij et al. 2016). Following the recommendation
of Jiménez-Valverde (2012), we used the AUC to
estimate the robustness of the models but not for
direct comparisons between models that were gener-
ated for different species, on different study areas or
with different training samples.

Correcting for sampling bias

The data collected during the various scientific
cruises over the Kerguelen Plateau over the last 145
yr present conspicuous spatial heterogeneities. The
resulting biases can generate an unequal number of
records in different sectors of the study area and het-
erogeneous patterns in record distribution. Such het-
erogeneities can increase the risk of overestimating
the contribution of environmental conditions to the
models in the most frequently sampled areas (Araújo
& Guisan 2006).

http://www.int-res.com/articles/suppl/m594p149_supp.pdf
http://www.int-res.com/articles/suppl/m594p149_supp.pdf
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Fig. 2. Tests and procedures carried out in the present work. Arrows indicate the stepwise procedure with statistical validation 
leading either to the following step or correction/stepback requirements
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The effect of spatial heterogeneities on the quality
of distribution models was tested using a null model
approach. The first null model (null model #1) was
generated by sampling presence data at random
within the total set of sites that were visited during
the different campaigns, whether echinoid speci-
mens were collected at these sites or not (see Fig. 3).
Because absence data were not available, this
approach allowed us to assess the weight of sampling
bias in the models. If a sampling bias is significant,
null model #1 is expected to produce distribution
maps with higher suitability values in the most fre-
quently sampled areas (Merckx et al. 2011).

A second null model (null model #2) was built by
simulating presence data sampled at random over
the entire study area. Null model #2 was expected to
produce distribution maps of equal suitability over
the entire study area. If sampling is spatially biased,
we expect that null model #1 would deviate from null
model #2 (Raes & ter Steege 2007).

The 2 null models were generated for the 4 se -
lected species. The number of presence-only data
used in the models was contained between the num-
ber of data points collected from the MD04 campaign
until the PROTEKER campaign, between 1974 and
2015, which corresponds to periods of high sampling
effort (Fig. 1B). In each null model, 100 replicates
were produced. Time-averaged environmental de -
scriptors (1955–2012) were used for the analysis.

To correct for sampling bias when null models #1
and #2 significantly differed from each other, we used
the methodology proposed by Phillips et al. (2009),
which has been shown to improve modeling perform-
ance (Phillips et al. 2009, Aguirre-Gutiérrez et al.
2013). A grid layer was built using a kernel density es-
timation (KDE) to represent spatial sampling bias. The
layer was calculated from the map of visited sites. The
estimated proportion of presence-only data present in
each pixel was determined using the ‘kde2d’ function
of the ‘MASS’ R package (Venables & Ripley 2002).
Background data were sampled according to the
weighting scheme of the KDE layer, to reduce dis-
crepancies between presence-only re cords and back-
ground data (Phillips et al. 2009, Barbet-Massin et al.
2012). In order to test for the efficiency of model cor-
rection based on the KDE, Pearson’s r correlation was
computed between pixel values of the KDE layer (the
proxy for sampling effort) and the predicted proba -
bilities of models after the KDE correction.

Spatial heterogeneities in data collection can also
generate spatial autocorrelation (SAC) between pres-
ence records, which can violate model calibration as-
sumptions and affect model accuracy with in correct

parameter estimations (Segurado et al. 2006, Dor-
mann 2007, Crase et al. 2012). Several ap proaches
have been developed to take SAC into account in
SDMs (see Crase et al. 2012 for a review). They
consist of including an additional term in the models
(the auto-covariate) which represents the influence of
neighboring records on modeling predictions. The
significance of SAC was tested using the Moran I au-
tocorrelation index computed on model residuals (Lu-
oto et al. 2005, Crase et al. 2012) for both original and
corrected models. Models were built using time-aver-
aged environmental descriptors (1955–2012).

Testing for the effect of the chronological addition
of new records on model performance

Our data set consisted of presence-only data col-
lected during various scientific cruises with distinct
sampling protocols, which may alter the performance
of the models (Fig. 1). To test for model reliability, we
separately analysed the influence of (1) the chrono-
logical addition of presence records, (2) data number
alone and (3) sampling patterns (the distribution of
data in space). The analyses were performed for A.
cordatus, C. nutrix and S. diadema; not enough data
were available for B. antarcticus. We used time-
averaged environmental descriptors (1955–2012) to
generate the models.

To test for the potential effect of the chronological
addition of new data on model performance, we fol-
lowed the protocol proposed by Aguiar et al. (2015).
The data set was split into distinct subsets correspon-
ding to main periods of sampling effort (1975, includ-
ing Marion Dufresne campaigns; 1993, including
ANARE campaigns; 2010, including POKER II cam-
paign; 2015, including PROTEKER campaigns). New
presence data were progressively added to the
 models, following the chronological collection of
new records. The influence of the chronological
addition of data was assessed by measuring the cor-
relation be tween models using Schoener’s D statistic.
Schoener’s D is a correlation metric adapted to the
study of niche similarities (Warren et al. 2008, Rödder
& Engler 2011). It evaluates the similarity of pixel
 values between 2 distribution grids. A D value of 0
means that the 2 maps are perfectly different, and a
D value of 1 means that maps are perfectly similar.
Values were computed using the ‘niche.overlap’
function of the ‘ENMeval’ R package (Muscarella et
al. 2014).

The significance of correlations was tested following
a null model protocol, using 100 replicates, pairwise-
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compared using the Schoener’s D statistic (Raes & ter
Steege 2007, Warren et al. 2008, Ficetola et al. 2009).

The distinct effect of data addition and sampling
patterns were tested separately. To test for the effect of
data addition alone, models were built by sampling an
increasing number of presence data at random in the
total area for A. cordatus (n = 54, 76, 95), C. nutrix (n =
46, 54, 106, 114) and S. diadema (n = 54, 66, 98). These
thresholds correspond to the number of presence-only
data used in the chronological addition analysis.

Finally, to test for the effect of sampling patterns,
different models were produced by sampling pres-
ence data at random either within a subset of real
data collected along transects (MD03 campaign) or
within a subset of real data collected at random
(POKER II, PROTEKER campaigns). All models were
compared with each other.

Testing for the effect of temporal variations on
model performance

To test for the effect of environmental shifts on the
models, different distribution models were generated
using distinct environmental descriptors for 4 periods
(1955–1964; 1965–1974; 1975–1994; 2005–2012) and
the complete set of presence data available. Similari-
ties between models were measured using Schoe -
ner’s D statistic.

RESULTS

Environmental shifts

Mean sea surface temperature and amplitude,
mean seafloor temperature and amplitude and mean
sea surface salinity and amplitude all differed signif-
icantly among all studied decades (p < 0.001). Only
seafloor temperature amplitude did not significantly
differ between the time periods 2005–2012 and 1955–
1964. These results indicate that significant environ-
mental shifts occurred during the studied time
period, and this may induce important variations in
the models since the data set extends over 145 yr.

Spatial bias

Null model #1 predicted higher suitability values in
areas with the most intense sampling effort, corre-
sponding to the northern part of the Kerguelen
Plateau and the vicinity of the Kerguelen archipelago

(Fig. 3A). In contrast, null model #2 predicted medium
suitability values over the entire Kerguelen Plateau
because presence data were sampled randomly in the
area (Fig. 3B). The difference between null models #1
and #2 was significant for the 4 species (Fig. 3), show-
ing that sampling bias has a significant impact on
model outputs, which will overestimate environment
suitability in areas with the highest number of sam-
pling sites if no correction is applied.

Correlation between visited areas and predicted
probability distribution decreased in models built with
the KDE-correction compared to non-corrected models
(Table 2), showing that the correction is efficient at re-
ducing the influence of sampling bias on modeling
performance. However, the correction proved less effi-
cient in models of the coastal and narrow niche species
Abatus cordatus, for which correlation values after the
KDE correction remained high (r = 0.44) (Table 2).

SAC was significant for non-corrected models
(Moran index, Imin = 0.05, Imax = 0.16) but values were
not significant in corrected models (Imin = 0.04, Imax =
0.06), except for A. cordatus (see Table S2 and Fig. S3
in Supplement 2). This shows that the KDE proce-
dure corrected for SAC in 3 of the 4 studied species.

Chronological addition of new records

The different models built with a chronological ad-
dition of new data showed high AUC values (mean ±
SD) for Ctenocidaris nutrix and A. cordatus (0.814 ±
0.018 < AUCC.nutrix < 0.883 ± 0.024 and 0.908 ± 0.023 <
AUCA.cordatus < 0.909 ± 0.018 respectively), demon-
strating the relevance of all models (Fig. 4, see Fig. S4
in Supplement 3). For these 2 species, Schoener’s D
correlation values were high (mean ± SD; DA.cordatus =
0.978 ± 0.023,DC.nutrix = 0.968 ± 0.020) and significant,
showing that the models were similar to each other.
(see Table S3 in Supplement 3)

In contrast, models generated for Sterechinus dia -
dema significantly differed from each other with
lower Schoener’s D statistics (DS.diadema = 0.932 ±
0.036) (see Fig. S5 in Supplement 3). Therefore, the
chronological addition of new data has contrasting
impacts on model outputs in the studied species,
which may be explained by the sensitivity of models
to data addition and to sampling patterns.

Data addition and sampling patterns

Comparison of models produced with an increas-
ing number of data points presents high and signifi-
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cant Schoener’s D values (minimum D = 0.979 ± 0.031
for S. diadema, maximum D = 0.985 ± 0.020 for C.
nutrix), showing that model outputs did not vary
 significantly with increasing data in our case study
(Table 3).

To test for the influence of sampling patterns, mod-
els built using subsets with contrasting distribution
patterns (radial versus random patterns) were com-
pared. Schoener’s D statistics measured between

these 2 types of models presented low values, sug-
gesting a significant influence of sampling pattern on
model output (Table 3).

Environmental change and model performance

The different models generated with contrasting
environmental descriptors were highly similar, as
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Fig. 3. (A) Null model #1 and (B) null model #2 for the different species under study. Mean (±SD) area under the receiver oper-
ating curve (AUC) values are given for the 100 replicates. Comparisons between models compiled with Pearson’s r correlation 

values and associated probabilities (colour bar)
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shown by high Schoener’s D and low standard de -
viation values (D = 0.981 ± 0.005). This proves that
environmental shifts have no significant impact on
model outputs. In addition, the respective contribu-
tions of environmental descriptors to models did
not vary significantly among periods for the 4 spe-
cies. However, A. cordatus seems to be less
impacted by environmental shifts than the other
species (Fig. 5).

Finally, the contribution of time-averaged environ-
mental descriptors over the total studied period
(1955–2012) differed from contributions computed
for each decade separately (Fig. 5).

Final species distribution models

Sampling bias analyses and model corrections
showed that reliable distribution models can be built
for C. nutrix only; this was the only data set in which
spatial and temporal heterogeneities did not impact
prediction performances significantly. A final, reli-
able model was produced for C. nutrix over the Ker-
guelen Plateau (Fig. 6).

DISCUSSION

Data scarcity and heterogeneity

First research surveys of the Kerguelen Plateau
date back to the oceanographic campaign of the HMS
Challenger in 1872. One and a half centuries later, our
knowledge of benthic species distribution on the Ker-
guelen Plateau has significantly increased, but re-
mains patchy (Koubbi et al. 2016). As in most parts of
the Southern Ocean, modeling species distributions
on the Kerguelen Plateau faces significant limitations
due to gaps and heterogeneities in the data (Guillau-
mot et al. 2016). Such limitations can seriously limit
the relevance of modeling procedures, which are re-
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                                             Before                     After
                                      KDE correction     KDE correction

Abatus cordatus                    0.72                       0.44
Brisaster antarcticus             0.60                       −0.17
Ctenocidaris nutrix               0.80                       0.11
Sterechinus diadema            0.61                       0.20

Table 2. Pearson’s r correlation of pixel values between the
kernel density estimation (KDE) layer and the predicted
probability of each species model. Statistic probabilities are 

all <0.05

Fig. 4. First row: distribution models of Ctenocidaris nutrix for 4 periods, with increasing number of presence data points to
build the model (averaged maps of 100 model replicates). Colour bar: probabilities of distribution predicted by the model (be-
tween 0 and 1). Second row: difference in probability distribution between (A) n = 54 and n = 46, (B) n = 106 and n = 54 and 

(C) n = 114 and n = 106. Colour bar represent differences in distribution probabilities between maps



Guillaumot et al.: Improving species distribution models in data-poor areas

quired by environmental managers for conservation
purposes (Féral et al. 2016, Koubbi et al. 2016). In the
present work, we followed a step-by-step protocol to
assess, quantify and correct the potential effects of
data scarcity and heterogeneity on SDMs, a critical is-
sue when considering the growing interest for model-
ing approaches in Antarctic and sub-Antarctic regions
(Gutt et al. 2012). Our re sults demonstrate that such

approaches can prove feasible and reliable
in certain case studies, when data quality
and sampling bias can be tested and cor-
rected.

Coping with spatial and temporal bias in
 presence-only datasets

Spatial bias and SAC

Building SDMs for remote and little-
accessed regions often requires the use of
spatially biased data sets conditioned by
sampling caveats. Because parts of these
regions that are the most easily accessed

aggregate most of the available presence data, more
weight is given to the most frequently sampled sites,
and thus model performance is reduced (Phillips et
al. 2009). In the present work, a significant difference
was measured be tween the 2 null models (generated
by selecting presence data either from visited sta-
tions only or from random sites over the total investi-
gated area), highlighting the strong heterogeneity of
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Species                   Data addition Sampling pattern

                                              Dobs              p                  Dobs              p

Abatus cordatus           0.981 ± 0.025   <0.05                 −

Ctenocidaris nutrix       0.985 ± 0.020   <0.05       0.941 ± 0.030   0.147

Sterechinus diadema   0.979 ± 0.031   <0.05       0.842 ± 0.040   0.941

Table 3. Influence of data addition and sampling patterns on models for
Abatus cordatus, Ctenocidaris nutrix and Sterechinus diadema. Data
addition: mean (±SD) Schoener’s D and associated p-value computed
between models (100 replicates) produced for the different species with
n = 54, 76, 95, n = 46, 54, 106, 114 and n = 54, 66, 98 occurrences ran-
domly sampled from the total dataset. Sampling pattern: Schoener’s D
and associated p-value computed between models (100 replicates) pro-
duced with subsets contrasting in data distribution patterns (transect 

versus random sampling)

Fig. 5. Mean (±SD) contributions of environmental descriptors to the models for the 4 time periods and species under study.
sst: sea surface temperature; sst amp: sea surface temperature amplitude; sssalinity: sea surface salinity; sst amp: sea surface 

salinity amplitude; chl a: chlorophyll a (see Guillaumot et al. 2016 for details)



Mar Ecol Prog Ser 594: 149–164, 2018

sampling effort with more data collected in the north-
ern part of the Kerguelen Plateau and in shallow
coastal areas.

The significant SAC values that were computed
from model residuals also reveal the impact of sam-
pling bias. The significance of SAC on uncorrected
model residuals can be partly explained by the rela-
tive accumulation and high density of presence data
in shallow areas of the Kerguelen Plateau, where
species presence probability is over-predicted. One
could argue that SAC analysis does not apply to
SDMs, as species presence proximities must be con-
sidered in the environmental niche space, not in the
geography. However, in the present study, the differ-
ence between null models constitutes operational
evidence of the impact of sample clumping on model
outputs, which is also revealed by significant SAC
values.

To correct for sampling bias, we used a back-
ground-based correction method (Phillips et al.
2009) that was previously used in studies based on
presence-only and limited data sets (Mateo et al.
2010, Pokharel et al. 2016, Phillips et al. 2017).
These methods allowed us to reduce the effect of
sample spatial bias on modeling performance by
weighting background records according to sam-
pling patterns. In the present study, the correction
was proven to be efficient to correct both for the
influence of uneven sampling effort on predicted

distributions (Table 2) and for SAC on all SDMs
except for models of Abatus cordatus. A. cordatus is
a coastal, shallow marine species that was mainly
sampled in the northern part of the Kerguelen
Plateau. Species presence records are strongly con-
ditioned by the location of the most intense sam-
pling efforts. This is in line with previous studies
that highlighted the difficulties of modeling the
 distribution of narrow-niche species with low preva-
lence distribution (i.e. corresponding to the propor-
tion of the area where presence records are located)
(Barbet-Massin et al. 2012, Qiao et al. 2015). In
small presence-only datasets, the methodologies used
to correct for spatial bias are not as efficient for
 narrow-niche species as for broader-niche species.
Re ducing the extent of distribution modeling of nar-
row-niche species to the boundaries of their envi-
ronmental limits could prove a good alternative.

Influence of record addition

The chronological addition of new data had a lim-
ited impact on certain model outputs, as demon-
strated by high similarities between the chronologi-
cal models generated for A. cordatus and Cteno -
 cidaris nutrix. In contrast, chronological models of
Sterechinus diadema differed significantly from each
other. A detailed analysis of data increments proved
that the increasing number of presences had no
impact on modeling performance, which is not in line
with previous works (Stockwell & Peterson 2002,
Wisz et al. 2008). However, these results can be
altered by our incomplete knowledge of full species
distributions due to sampling bias and the limited
number of data sets available (Hernandez et al. 2006,
Bean et al. 2012). With S. diadema, differences be -
tween the chronological models were due to con-
trasted spatial patterns between data sets (transects
versus random patterns).

Historical data and environmental change

Significant environmental shifts were measured
for the descriptors analysed between 1955 and 2012
over the Kerguelen Plateau (i.e. mean sea surface
temperature and amplitude, mean surface salinity
and amplitude). However, for all species, distribu-
tion models built for each decade were highly simi-
lar to each other. These results confirm that tempo-
ral heterogeneities in data sets do not necessarily
impact the robustness of the models, because spe-
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Fig. 6. Species distribution model generated for Ctenoci-
daris nutrix using all presence-only data available and pres-
ent environmental descriptors (2005−2012). Mean (±SD) area
under the receiver operating curve (AUC) = 0.813 ± 0.02
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cies preferences for their environment may be wider
than the magnitude of changes in time. Working
with both present and historical data to improve the
completeness of occurrence records proved reliable
when assuming that species niche and distribution
have not significantly changed during the studied
time period.

Between 1955 and 2012, the respective contribu-
tions of temperature and salinity to the models did
not vary over the range of within-decade variation for
B. antarcticus, C. nutrix or S. diadema; variations be -
tween decades were more marked in models pro-
duced for A. cordatus. This near-shore species is
found in shallow waters of the Kerguelen and Heard
islands, where environmental descriptors include
many no-data pixels (Guillaumot et al. 2016). Conse-
quently, the varying contributions of temperature
and salinity to the models of A. cordatus between
decades cannot be attributed with certainty to the
effect of environmental change, but rather to model-
ing limitations.

Sea surface temperature and salinity amplitudes
contributed significantly to the models, contributing
more than the averaged parameters (i.e. A. cordatus
and B. antarcticus; Fig. 5). This is in line with the re -
sults of Bradie & Leung (2017), who tested for the
contribution of several environmental descriptors
across a wide panel of taxa. They showed the impor-
tance of including seasonal means and extremes in
models to further depict species distributions, consid-
ering their stronger relationships with species niche
width and ecological traits (i.e. growth and survival;
see Franklin 2009).

Using time-averaged descriptors over the entire
 period (1955–2012) may be considered the best ap -
proach to produce representative models, independ-
ent of short-term environmental variations. Unex-
pectedly, our results showed that for all species,
contributions of time-averaged descriptors to the
models were much more different than all differences
between decadal descriptors (Fig. 5). This suggests
that using time-averaged descriptors for long time
periods does not necessarily improve model reliability
compared to using descriptors averaged over shorter
time periods. This also highlights the importance of
the descriptor selection in modeling procedures, a
critical issue for improving model performance as al-
ready stressed in previous studies (Bradie & Leung
2017). This is particularly relevant for certain regions
of the Southern Ocean, such as the Western Antarctic
Peninsula, which has ex perienced among the most
significant environmental changes in the world’s
oceans during the last de cades (Turner et al. 2014).

Influence of species niche width in modeling
performances

Among the 4 studied species, A. cordatus has the
narrowest ecological niche and most restricted distri-
bution in the vicinity of coastal areas of the Kergue-
len and Heard archipelagoes. Such limited geo-
graphic and environmental distributions compared to
the total extent of the studied area implies that simi-
lar environmental conditions prevail in geographi-
cally close occurrence sites. This induces a strong
SAC pattern that explains the difficulties encoun-
tered when correcting for spatial bias compared to
other species models. Moreover, the limited environ-
mental variability between coastal sampling sites of
the different oceanographic surveys can also explain
the absence of a data-addition effect on modeling
performances for A. cordatus.

In contrast, C. nutrix and S. diadema have wider
ecological niches than A. cordatus (Fig. 1). For these
2 species, record data are more widely distributed
and show contrasting sampling patterns (i.e. tran-
sect-like versus random patterns) that were shown to
influence modeling performance in S. diadema only
(Table 3). This can be explained by the higher num-
ber of presence records available for C. nutrix (n =
114 and 98 for C. nutrix and S. diadema respectively)
that allowed a more complete survey of C. nutrix dis-
tribution. Finally, only the C. nutrix data set con-
tained the quality and number of occurrence records
that fulfilled all methodological requirements to pro-
duce a reliable distribution model.

Considering species niche width in order to cope
with spatial and temporal bias in SDMs is important,
as already shown by Tessarolo et al. (2014) who stud-
ied the influence of survey designs on the perform-
ance of distribution models for endemic species with
narrow ecological niches. They concluded that sur-
vey designs have a low impact on models in compar-
ison with the effect of niche width, number of data
points and type of modeling technique used. How-
ever, they did not generate any analysis of species
with broad ecological niches as a comparison. Our
results are also in line with other modeling studies in
which distribution models of species with broad
niches were the least stable (Reiss et al. 2011, Guo et
al. 2015, Qiao et al. 2015, Ranc et al. 2017).

CONCLUSIONS

The use of SDMs has gained importance during the
last decades, providing complementary information
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for environmental managers. Modeling results can
help interpolate species distributions, identify the
potential drivers of a species’ distribution and predict
the potential effects of environmental changes on
habitat suitability. However, modeling species distri-
butions over vast and remote marine areas like the
Southern Ocean using poor and heterogeneous data
sets remains challenging, and improvement of bio-
logical and environmental data sets is still required.

In the present study, we showed that reliable SDMs
can be produced in such areas as long as the amount
and quality of data allow testing and correcting for
the effects of biases. Using historical data requires
proper environmental descriptors for modeling the
effect of environmental changes on species distribu-
tions. Using time-averaged predictors over long time
periods can generate unrealistic models.

Model selection is also crucial at this stage and the
statistical performance of models is not the only crite-
ria to be considered. Modeling procedures must be
chosen with regards to the scientific issues that are
being addressed. Two procedures (BRT and RF) per-
formed best in our case study, but one of them (BRT)
proved to be more relevant because it dealt better
with transferability and data patchiness.

Modeling species distributions in data-poor areas
poses the practical problem of the minimum number
of presence-only data points required to run reliable
models, although this is not the only or most critical is-
sue. The number of occurrence records must be high
enough for testing model robustness and reliability. In
regions with limited access, sampling effort may be
heterogeneous, which influences model performance.
We showed that sampling bias can be corrected, but
the efficiency of the correction depends on species
niche width, with narrow-niche species models being
more troublesome to correct. In our study, A. cordatus
is a species limited to shallow coastal areas, which im-
plies a strong correlation be tween species occurrence
and sampling patterns. Restricting the model to a
more reduced area could allow for correction of
spatial bias and improve modeling performance.

There is also a crucial need for improving the qual-
ity of data sets (Kennicutt et al. 2014) and running
more accurate models to better tackle conservation
issues (Rodríguez et al. 2007, Guisan et al. 2013). For
the time being, producing uncertainty maps can be
an alternative (Rocchini et al. 2011, Tessarolo et al.
2014) and can provide additional information to envi-
ronmental managers and stakeholders (Addison et
al. 2013, Guisan et al. 2013).

Model reliability and performance also depend on the
interaction between data set completeness and a spe-

cies’ intrinsic ecological properties. Hence, we showed
that the type and width of ecological niches are im-
portant to consider, with the distribution of narrow-
niche species being easier to model and less sensitive
to incomplete data sets (Guo et al. 2015, Ranc et al.
2017). However, narrow niches usually imply that spe-
cies are distributed over small areas, for which distribu -
tion models will be highly sensitive to extrapolations.

Our protocol showed that reliable SDMs can be
produced when enough data are available and data
set bias can be tested and corrected. In the present
study, only one SDM (C. nutrix) could be corrected
for spatial and temporal heterogeneities to generate
reliable distribution predictions. However, our re -
sults stress the need to consider methodological
issues when modeling species distributions based on
poor and spatially biased data sets, and should con-
tribute to bringing new insights and enhancing mod-
eling performance in future studies.
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