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INTRODUCTION 

Global climate change is already altering the
physical and physiological drivers that marine spe-
cies, communities, and ecosystems experience. For
example, rising temperatures, ocean acidification,
deoxygenation, sea level rise, and increasing storm
activity are all occurring and are expected to inten-
sify (Harley et al. 2006, Doney et al. 2012). Because
climate-driven impacts on ecosystems have major
implications for the ecosystem services that people
depend on, it is important and urgent that we
increase our understanding of how species respond
to climate drivers, and how those responses can

scale up to effects on ecosystem processes and
structure.

Climate drivers can impact ecosystems by chang-
ing the abundance and composition of species, such
as through differential mortality. Syntheses of exper-
imental and field studies have highlighted winners
and losers in the face of climate-driven stressors such
as warming and ocean acidification (Somero 2010,
Kroeker et al. 2013, Cavole et al. 2016). Because spe-
cies often perform different functional roles within
their ecosystems, changes in the relative abundances
of species can alter ecosystem structure, processes,
and functions (Micheli & Halpern 2005, Cardinale et
al. 2006, Mouillot et al. 2013). For example, ocean
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acidification can bring about shifts in the relative
abundance of different habitat-forming taxa in eco-
systems like coral reefs and intertidal mussel beds,
based on differences in their tolerances to low pH
conditions. These changes in species composition
can then lead to changes in the ecological functions
performed, such as habitat provision (Sunday et al.
2017). 

However, climate impacts on ecosystem processes
can also arise through direct changes in species’ eco-
logical roles. Physical and physiological drivers can
alter species’ behavior or activity levels, thus chang-
ing their functional contribution to key ecosystem
processes. For example, physical drivers such as
hydrodynamic forces can limit the timing and spatial
extent of foraging (Duggins 1981, Siddon & Witman
2003), and temperature fluctuations can impose
metabolic constraints on feeding rates (e.g. Sanford
1999, O’Connor 2009). Such changes in species’
functional roles may impact ecosystem processes and
functioning even in the absence of significant
changes in population abundances, species composi-
tion, and community structure. These effects often
occur under less extreme conditions than do the
lethal impacts that alter species’ relative abun-
dances. Therefore, they are likely to occur more fre-
quently, and for longer periods of time. At the same
time, such functional-role impacts may be much
harder to detect in the field because they involve
changes in process rates, rather than the more visible
changes in species numbers.

These functional-role impacts can be especially
important when they occur in species that play key
roles in their ecosystems. For example, small temper-
ature fluctuations mediate keystone predation rates
in the intertidal seastar Pisaster ochraceus, poten-
tially altering the seastar’s keystone role (Paine 1966,
1969) in maintaining benthic diversity in the rocky
intertidal zone (Sanford 1999, 2002). Functionally
important species can thus act as leverage points
through which small changes in physical and physio-
logical drivers may effect larger impacts on the entire
ecosystem (Sanford 2002, Harley et al. 2006). More-
over, between-species and size-dependent differ-
ences in vulnerability to functional-role impacts can
also lead to changes in ecosystem processes and
functions (Taylor & Eggleston 2000, Vanderploeg et
al. 2009).

We explored the potential consequences of a novel
climate stressor, upwelling-driven hypoxia (Stramma
et al. 2008, Keeling et al. 2010), on the diverse, pro-
ductive kelp forest ecosystems of the California Cur-
rent System by investigating thresholds for impacts

on mortality and on the functional role of 2 key kelp
consumers and potential ‘leverage species’ (Harley et
al. 2006) within these ecosystems. Upwelling-driven
coastal hypoxia has been recorded on the continental
shelf within the California Current System since the
early 2000s (Grantham et al. 2004, Chan et al. 2008,
Booth et al. 2012), and it is expected to increase
in severity as climate change intensifies upwelling
 processes (Bakun et al. 2010, Sydeman et al. 2014)
and ocean deoxygenation (Keeling et al. 2010). While
extreme hypoxia events have caused some mass
mortality events in California Current ecosystems
(Grantham et al. 2004, Chan et al. 2008, Micheli et al.
2012), know ledge is limited about how exposures
to hypoxia may impact the highly productive and
diverse nearshore kelp forest ecosystems within the
California Current System. Most work on nearshore
hypoxia has been done in estuarine and semi-
enclosed coastal systems, where hypoxia is largely
respiration-driven (Rabalais & Turner 2001). Species
from upwelling systems are poorly represented in
syntheses of taxa-specific hypoxia thresholds (Vaquer-
Sunyer & Duarte 2008, 2011), so these studies may
not be particularly informative for understanding
hypoxia impact in kelp forests, though some broad-
scale taxa specific differences, such as high hypoxia
vulnerability in fish and crustaceans, and greater
 tolerance in echinoderms and molluscs, may hold
across systems (Vaquer-Sunyer & Duarte 2008, Eerkes-
Medrano et al. 2013). 

We focused on purple and red sea urchins (Stron -
gylocentrotus purpuratus and Mesocentrotus fran -
ciscanus) as 2 functionally important species that
co-occur within California Current kelp forest eco-
systems. Understanding hypoxia impacts on the sur-
vival and/or functional roles of sea urchins can shed
light on how kelp forest ecosystems may be affected.
Sea urchin grazing is a major contributor to kelp loss,
and overpopulation and overgrazing by these species
have led to kelp deforestation and ecosystem state
shifts into urchin barrens in multiple California Cur-
rent kelp forests (Harrold & Reed 1985, Watanabe &
Harrold 1991, Estes & Duggins 1995, Steneck et al.
2002, Beas-Luna & Ladah 2014). Therefore, hypoxia
impacts on sea urchin survival or functional roles
could influence kelp forest dynamics, potentially
moving these ‘tipping points’ for ecosystem state
shifts. Purple and red sea urchins are also prey for a
diverse group of predators such as sea otters, preda-
tory fish, and crustaceans, and can serve as an impor-
tant link to transfer energy up the food web from
 primary producers to predators (Beas-Luna et al.
2014). Therefore, sea urchin responses to hypoxia
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may modulate energy transfer through the food web,
possibly increasing the importance of the detrital
food web. 

Potential differences in hypoxia tolerances may
exist between the 2 sympatric sea urchin species, and
between different size classes. Unlike the subtidal
red sea urchins, purple sea urchins have a depth
range that extends into the intertidal zone and may
be adapted to nighttime hypoxic conditions in tide-
pools (Stephenson & Eyre 1934). Body size influences
hypoxia tolerance in other organisms (Nilsson &
Östlund-Nilsson 2008), and it correlates positively
with decreased surface area to volume ratios in
sea urchins, which are diffusion-limited in their
 respiratory capacity (Giese et al. 1966, Giese 1967).
Changes in sea urchin species composition and size
structure due to such different tolerances could have
additional ecosystem consequences. Red sea urchins
play additional roles in the ecosystem—their spines
act as predator and hydrodynamic refuges for ju -
venile sea urchins, abalone, and other organisms
(Tegner & Levin 1983, Rogers-Bennett & Pearse 2001,
Nishizaki & Ackerman 2007), and they are preferred
over purple sea urchins by some predators (Nishizaki
& Ackerman 2007). Red, but not purple sea urchins
are harvested in commercial fisheries throughout
the nearshore kelp forests of the California Current
(Rogers-Bennett 2013). These fisheries are size-
selective in their harvest, and thus alter both the
 relative abundance and size structure of red sea
urchins. Therefore, any species- and size-specific
 differences in lethal and functional-role oxygen
thresh olds might lead to interactions between up -
welling-driven hypoxia and sea urchin fisheries, and
could also have broader consequences for ecosystem
function.

We examined dissolved oxygen (DO) thresholds for
impacts on sea urchin survival and for their potential
functional roles as kelp grazers in a California kelp
forest ecosystem. Specifically, we quantified and
compared the effects of DO concentrations on 2 size
classes of 2 kelp forest sea urchin species to ask the
questions (1) what are the DO thresholds for impacts
on sea urchin survival, (2) what are the DO thresh-
olds for impacts on sea urchin kelp grazing, (3) are
there differences in these thresholds between sea
urchin species and size classes, and (4) how do these
thresholds compare to current and expected DO
 conditions in California Current kelp forests? We
addressed the final question by placing sea urchin
DO thresholds within the context of a decade-long
data set of DO concentrations from Monterey Bay, in
central California.

MATERIALS AND METHODS 

Collection and maintenance

We collected red and purple sea urchins
(Mesocentrotus franciscanus and Strongylocentrotus
purpuratus) in 2 size classes, ‘small’ (2 to 3 cm test
diameter) and ‘large’ (6 to 7 cm test diameter),
from 9 to 12 m depths at Van Damme State Park,
California, in August 2015. This collection site was
selected for ease of access to a broad size range of
sea urchins from both species, and pilot trials
showed no difference in hypoxia responses be -
tween small sea urchins collected from this site
and those collected from Monterey Bay. Sea urchins
were immediately transported to flow-through sea-
water tanks in a sheltered outdoor aquaria facility
at the Hopkins Marine Station in Pacific Grove,
California, and maintained under ambient condi-
tions in running seawater tanks. Sea urchins were
fed giant kelp, Macrocystis pyrifera, ad libitum
and were allowed to acclimate for at least 10 wk
before experiments. 

DO manipulations

Experiments were run in a sheltered outdoor
aquaria facility at the Hopkins Marine Station. For
all experiments, we manipulated DO concentrations
within 189 l insulated aquarium tanks supplied by
flow-through seawater. To establish and maintain
treatment levels of DO, we bubbled nitrogen gas
into aquaria seawater through 60 mm fine-pore air
diffusers. The flow of nitrogen gas was controlled
by solenoid valves connected to an Arduino micro-
controller system that continuously monitored DO
concentrations in the aquaria using an optical DO
probe (Vernier Software and Technology) and
 initiated feedback loops to maintain DO concen -
trations at treatment levels (N. H. N. Low et al.
unpubl.). DO levels in the tanks were monitored
and verified daily using a handheld data logger
with a DO probe (YSI Pro Plus; Xylem). Other sea-
water parameters reflected the ambient, incoming
seawater supply from Monterey Bay and were con -
sistent across aquaria. Water temperatures stayed
be tween 14.1 and 14.9°C (mean ± SD = 14.5 ±
0.18°C) and seawater pH remained between 7.88
and 7.97 (mean = 7.93 ± 0.028) throughout all
experiments. Sea urchins were exposed to ambient
light cycles during all experiments (approximately
12 h light: 12 h dark).
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Lethal thresholds of hypoxia exposure

To investigate the effects of coastal hypoxia on the
survival of adult sea urchins, we exposed small and
large red and purple sea urchins to 1.0 mg l−1 DO for
different lengths of time in November 2015. This DO
value represents a more extreme level of hypoxia
than has ever been recorded in the Monterey Bay
kelp forest since 2000 (Booth et al. 2012), but it has
been recorded for short durations in other nearshore
locations within the California Current (Micheli et al.
2012, Boch et al. 2018). 

We randomly divided 80 sea urchins of each spe-
cies−size class combination among 8 aquarium tanks.
All tanks were exposed to identical treatments: DO
concentrations were decreased from ambient (7.5 mg
l−1) to 1.0 mg l−1 at a rate of 3 mg l−1 h−1. We defined
the time when DO reached 1.0 mg l−1 as the start of
exposure to extreme hypoxia (0 h). At 0, 12, 24, 36,
48, 60, 72, 84, 96, and 108 h of exposure, we ran-
domly selected 8 individuals from each species−size
class combination (one from each tank), removed
them from the hypoxic treatment, and allowed them
to re cover in ambient, normoxic conditions. Because
mortality in sea urchins often occurs with a time lag,
we monitored all individuals for 2 wk post-exposure
to record both immediate and delayed mortality.
Mortality in sea urchins was characterized by the
complete loss of spines and the shedding of dead tis-
sue from the test. All mortality occurred within the
first 48 h post-exposure, and we did not see any fur-
ther mortality over 2 wk of observation. For each spe-
cies and size class of sea urchin, we recorded the
exposure duration corresponding to a 50% mortality
rate (median lethal exposure time, LT50).

Thresholds of hypoxia for grazing

To investigate the effects of coastal hypoxia on the
ecological roles of adult sea urchins, we examined
kelp grazing rates of red and purple sea urchins, as
a measure of their potential contribution to kelp
removal, under different levels of DO. We ran 2
rounds of experiments, one with large sea urchins
and one with small sea urchins, between October
and November 2015.

For both experiments, each of 12 aquarium tanks
was assigned to 1 of 4 DO treatments: 7.5 mg l−1

(ambient), 6.5, 5.5, and 4.5 mg l−1 (sublethal; Vaquer-
Sunyer & Duarte 2008). We used 96 experimental
chambers consisting of 5.7 l perforated plastic con-
tainers, divided by barriers of 8 × 8 mm plastic mesh

to create 2 compartments. A single sea urchin was
placed into one half of each experimental chamber
along with 30 g of fresh, pre-weighed kelp blades.
The other half of each chamber was stocked with the
same amount of kelp in order to measure autogenic
and microbial-mediated changes in kelp biomass.
Experimental chambers were distributed among the
12 tanks such that each tank contained 4 red sea
urchins and 4 purple sea urchins, for a total of 12
replicate sea urchins of each species in each DO
treatment.

Each grazing experiment ran for 3 d. At the end of
each experiment, we removed sea urchins and kelp
from the experimental chambers. Sea urchins were
euthanized, dried at 60°C for 48 h, weighed to obtain
dry mass, then incinerated in a muffle furnace at
550°C and re-weighed to obtain ashed mass. We
 calculated each sea urchin’s ash-free dry mass as
the difference between dry mass and ashed mass.
Kelp from each chamber was spun 10 times in a salad
spinner (Bickel & Perrett 2016) and weighed to de -
termine its final wet mass. To calculate total graz-
ing while accounting for autogenic and microbial-
mediated changes in kelp mass, we adjusted the
initial kelp mass in the urchin chamber using the per-
centage of kelp mass lost in the kelp-only chamber
(<5% for all replicates), then subtracted final kelp
mass in the urchin chamber from this adjusted initial
mass. This total grazing value was then divided by
the length of the experiment (3 d) to calculate the
per-capita grazing rate (g d−1), and then further
divided this by the ash-free dry mass of the sea
urchin to obtain the mass-specific grazing rate (g g−1

d−1) for each sea urchin.
We analyzed per-capita and mass-specific grazing

rates using a nested analysis of variance (ANOVA)
with DO level and urchin species as fixed factors, and
tank as a random factor nested within the DO treat-
ment. Experiments with large and small sea urchins
were conducted and analyzed separately. Post hoc
Tukey tests were run to distinguish differences in
treatment levels after ANOVA. Based on Shapiro-
Wilk and Fligner tests, the assumptions of normality
and homoscedasticity were met (p > 0.29 for all tests).
All statistical analyses were run using R (R Core
Team 2016).

Field patterns of DO

To assess how the DO thresholds from our labora-
tory experiments compared with conditions in a Cali -
fornia Current kelp forest, we analyzed a decade-
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long data set of DO data from the nearshore Mon-
terey Bay. Since 2000, the Monterey Bay Aquarium
has monitored and recorded the DO concentrations
of seawater entering its intake pipes. This seawater is
drawn from a depth of 17 m, and is expected to
reflect seawater conditions in the surrounding kelp
forest. A detailed analysis of the data set was pub-
lished by Booth et al. (2012), who quantified expo-
sures to critical biological thresholds proposed by
Vaquer-Sunyer & Duarte (2008). 

We used this dataset (spanning 2000 to 2010) to
quantify the frequency and duration of exposure to
the levels of DO used in our laboratory experiments.
We calculated the fraction of time spent below these
DO levels over the 10 yr period. Because we
expected seasonal variation in the duration and fre-
quency of exposure to low DO, we also calculated
these exposure times monthly.

RESULTS

Lethal thresholds of hypoxia exposure

Red and purple sea urchins exhibited visible signs
of stress, such as decreased mobility and partially
collapsed tube feet, after 12 h of exposure to severe
hypoxia (1.0 mg l−1). However, all sea urchins in the
experiments were able to recover from exposures of
up to 36 h. No mortality was observed in any of the
sea urchins exposed to 12, 24, or 36 h of severe
hypoxia. LT50 varied between 48 and 60 h (Fig. 1).
The LT50 value in red sea urchins was greater than
that of purple sea urchins across both size classes,
but no differences were observed for size class. 

Thresholds of hypoxia for kelp grazing 

Kelp grazing rates varied significantly between DO
treatments for both large (F3,8 = 13.6, p = 0.0017) and
small (F3,8 = 22.1, p < 0.001) sea urchins (Fig. 2).
There were significant differences in per-capita
grazing rates between species, with purple sea
urchins generally consuming more kelp than red sea
urchins (large urchins: F1,80 = 36.2, p < 0.001; small
urchins: F1,80 = 4.41, p = 0.04). However, responses to
DO were similar between the 2 species (DO level ×
species interaction for large urchins: F3,80 = 1.84, p =
0.15; for small urchins: F3,80 = 2.33, p = 0.08). 

Post hoc Tukey tests showed that sea urchins of
both species and sizes consumed significantly less
kelp in the 5.5 and 4.5 mg l−1 DO treatments relative
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Fig. 1. Percent survivorship of large individuals (solid points
and lines) and small individuals (open points and dashed
lines) of purple sea urchins Strongylocentrotus purpuratus
(triangles) and red sea urchins Mesocentrotus franciscanus
(circles) following different exposure durations to 1.0 mg l−1

of dissolved oxygen. Horizontal dotted line: 50% survivor-
ship, corresponding to the median lethal exposure time (LT50)

Fig. 2. Per-capita kelp grazing (mean ± SE g d−1, n = 12 ind.)
for (A) large and (B) small individuals of purple sea urchins
Strongylocentrotus purpuratus (filled bars) and red sea urchins
Mesocentrotus franciscanus (open bars) under 4 different
dissolved oxygen (DO) concentrations, from ambient (7.5 mg
l−1) to sub-lethal (4.5 mg l−1). Letters indicate differences
in kelp grazing between DO treatments, based on Tukey’s 

HSD tests
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to the ambient treatment (Fig. 2). On average, large
sea urchins reduced their kelp grazing by 39% and
small sea urchins reduced their kelp grazing by 47%
when exposed to 5.5 mg l−1 of DO. Mass-specific
grazing rates showed the same trends over the differ-
ent DO treatments (large urchins F3,8 = 11.9, p =
0.0025; small urchins: F3,8 = 13.7, p = 0.0016). 

Field patterns of DO

Between 2000 and 2011, DO concentrations at the
Monterey Bay Aquarium intake pipe dropped below
6.5 mg l−1 for 26% of the time (Fig. 3). DO concentra-

tions below 5.5 mg l−1 occurred 13% of the time, and
concentrations below 4.5 mg l−1 occurred 5% of the
time. Severe hypoxia conditions of 1.0 mg l−1 or less
were never recorded.

There was substantial seasonal variation in expo-
sure to low DO (Fig. 4). During the upwelling months
from April to September, an average of 18 to 20% of
the time was spent at DO levels low enough to
reduce sea urchin grazing (<5.5 mg l−1). In contrast,
during the months of October to March, only 1 to 8%
of the time was spent below 5.5 mg l−1 of DO.

DISCUSSION

Current and near-future exposures to low oxygen
conditions in the nearshore kelp forest ecosystems of
the California Current (Booth et al. 2012, 2014, this
study, C. B. Woodson et al. unpubl.) are unlikely to
cause direct mortality of sea urchins. Purple and
red sea urchins Strongylocentrotus purpuratus and
Mesocentrotus franciscanus were tolerant of very low
DO levels (1.0 mg l−1), with all experimental individu-
als recovering from up to 36 h of exposure to these
conditions. These oxygen levels were never observed
in over a decade of field data from Monterey Bay. Se-
vere hypoxia has been documented at other nearshore
locations within the California Current (e.g. Isla Na-
tividad, Baja California, Mexico), but for periods not
exceeding 24 h and typically much shorter (2 to 4 h;
Micheli et al. 2012, Boch et al. 2018). Similarly high
hypoxia tolerances have been found in the larval

stages of S. purpuratus  (Eerkes-
Me drano et al. 2013), suggesting that
direct, lethal impacts of hypoxia on sea
urchin abundances are not likely to
 occur within California Current kelp
forests. Our measurements of LT50 in S.
purpuratus and M. franciscanus fall
within the broad range of LT50s (32 to
>700 h), but are below the mean
(201 h) measured in other echino-
derms—primarily asteroids and ophi-
uroids—under se vere (≤2 mg l−1) hy-
poxia  (Vaquer-Sunyer & Duarte 2008).
To our  knowledge, these represent the
first mea surements of hypoxia toler-
ance in nearshore echinoids. 

In contrast, sublethal effects on
physiology and behavior are likely to
already occur under present-day con-
ditions in the nearshore kelp forests of
the California Current. Across both
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Fig. 3. Percentage of time spent below different levels of dis-
solved oxygen (DO) over 10 yr (2000−2010) in the nearshore 

Monterey Bay

Fig. 4. Percentage of time spent at dissolved oxygen levels low enough to re-
duce sea urchin grazing (<5.5 mg l−1), by month of the year, over 10 yr
(2000−2010) in the nearshore Monterey Bay. Filled circles: percentage values
from each individual year; open triangles: mean percentage values. Bar: me-
dian; box: interquartile range (IQR); whiskers: data range within ±1.5×IQR 

above/below IQR
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species and sizes, sea urchins significantly reduced
their grazing rates under 5.5 mg l−1 of DO. This rep-
resents a DO threshold that is less extreme than the
sublethal threshold of 4.6 mg l−1 proposed by Vaquer-
Sunyer & Duarte (2008), and substantially less
extreme than the mean sublethal threshold that they
reported for echinoderms (1.22 mg l−1). Our findings
support the idea that there is no single value for DO
thresholds that holds across all species or even for
species within a taxonomic group, especially for spe-
cies that are found in different habitats (Seibel 2011,
Somero et al. 2016). In addition, the 5.5 mg l−1 thresh-
old found here represents DO conditions that are cur-
rently relatively common in kelp forests of the Cali-
fornia Current System. A decade of field oxygen data
indicate that DO concentrations fall below 5.5 mg l−1

for 18 to 20% of the time during upwelling seasons in
Monterey Bay. Repeated patterns of exposure to DO
levels below 5.5 mg l−1 have also been seen in other
nearshore California Current ecosystems, including
the Southern California Bight (Booth et al. 2014),
northern California (F. Micheli et al. unpubl.) and at
sites in Baja California, Mexico, where DO levels can
stay below 4.5 mg l−1 for 1 to 3 wk consecutively
(Micheli et al. 2012, Boch et al. 2018). 

Based on a decade of DO data from a Monterey Bay
kelp forest (Booth et al. 2012, this study) and measure-
ments from other locations (e.g. Micheli et al. 2012,
Booth et al. 2014), we observed that the DO threshold
for functional-role impacts in S. purpuratus and M.
franciscanus is much more likely to be crossed than
are the thresholds for mortality. Therefore, the func-
tional-role impacts of coastal hypoxia in this ecosystem
are likely much more prevalent than hypoxia-driven
mortality under both current and near-future climate
change scenarios. These findings support the idea
that ‘physiological rate effects’, defined as changes to
the rates of key biological processes that occur in an
organism’s normal range of physiological conditions,
can be as or more important than the effects of ex-
treme conditions on ecosystem dynamics (Sanford
2002). While the concept of  physiological rate effects
was originally used in the context of temperature, our
study shows that it is more broadly applicable to other
climate drivers, such as DO.

Our estimates of the potential functional-role
impacts of low DO exposures were comparable in
magnitude to some non-consumptive predator effects:
exposure to 5.5 mg l−1 of DO reduced grazing rates in
S. purpuratus and M. franciscanus by an average of
39 to 47%, whereas Matassa (2010) reported a simi-
lar 44% decrease in S. purpuratus grazing rates in
the presence of water-borne cues from spiny lobsters.

Therefore, sublethal hypoxia could potentially have
a similar magnitude of cascading, community-wide
effects as do non-consumptive predator effects (Werner
& Peacor 2003, Schmitz et al. 2004), which can be
substantially larger than consumptive effects (Trussell
et al. 2006). To our knowledge, this is the first docu-
mentation of a possible modulation of kelp grazing
via hypoxia.

The importance of DO impacts on sea urchin func-
tional roles may also be enhanced by the timing of
exposures to low oxygen. There are strong seasonal
differences in the prevalence of DO conditions low
enough to impact sea urchin grazing rates (<5.5 mg
l−1), with low-oxygen conditions being most common
during the spring to summer upwelling season (April
to September). This upwelling season corresponds to
peak recruitment of juvenile kelp (Graham et al.
1997), and the earlier half of the season (April to
June) coincides with lower drift kelp production in
the Monterey Bay kelp forest (Gerard 1976). Drift
kelp shortages are thought to trigger a behavioral
shift in sea urchins from sedentary consumers of drift
kelp to actively roving benthic grazers that can
remove kelp holdfasts and recruits (Dean et al. 1984,
Harrold & Reed 1985). By reducing grazing rates at a
time when food supply is low and kelp recruitment is
occurring, seasonal exposures to low DO conditions
may help to maintain kelp forests, especially at high
densities of sea urchins.

We found no significant differences between either
sea urchin species or size classes in their grazing
responses to hypoxia. While there may have been
some inter-species differences in lethal responses,
our experimental design did not allow this to be tested
statistically, and any such differences would likely
not be ecologically relevant, given the high hypoxia
tolerances we found in both species and size classes.
Our findings suggest that hypoxia effects are likely to
be similar across sizes of both species of sea urchins,
and that their relative abundances and population
size structures may not influence the impact of up -
welling-driven hypoxia on kelp forest ecosystems. 

Our experiments focused on a single physiological
driver: DO. However, upwelling-driven low oxygen
conditions tend to be correlated with low tempera-
ture and/or low pH (Booth et al. 2012, Frieder et al.
2012), and it will be important to consider how sea
urchin mortality and kelp consumption are impacted
by these multiple simultaneous climate drivers. It is
likely that sea urchins will be more tolerant of severe
hypoxia under low temperatures (Vaquer-Sunyer &
Duarte 2011), whereas the well-documented rela-
tionship between temperature and ectotherm meta-
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bolic rate (Brown et al. 2004) suggests that urchins’
kelp consumption rates may be jointly reduced by
low-temperature, low-oxygen upwelling conditions.
As a result, the functional-role impacts of upwelling-
driven hypoxia are likely to be even more important
in a multiple-stressor upwelling context, relative to
the impacts on sea urchin mortality. These potential
effects need to be studied experimentally, along with
the less-predictable effects of low pH. 

This study was limited to the short-term impacts of
low DO on sea urchins. Although upwelling-driven hy-
poxia does generally occur as a short-term ‘pulse’ ex-
posure, organisms are likely to encounter many such
short-term exposures within the course of an upwelling
season (Booth et al. 2012), and more throughout their
lifetime. These repeated exposures to sublethal physi-
ological stress may impose ‘cost-of-living’ conse-
quences that alter sea urchins’ growth and reproduc-
tive rates, and ultimately impact their abundances in
the long term (Somero 2002). Longer-term experiments
are needed to explore these potential impacts, and to
determine if organisms may also be able to acclimate
to repeated low-oxygen exposures over time. 

As the frequency and intensity of upwelling-driven
coastal hypoxia is expected to increase with climate
change (Bakun et al. 2010, Sydeman et al. 2014),
understanding how this driver impacts the structure
and functioning of coastal ecosystems is increasingly
important. Our study contributes toward that under-
standing by providing novel insights into the impacts
of low DO on an ecologically important species
within the kelp forest ecosystem, and more broadly
by demonstrating the potential importance of consid-
ering the non-lethal impacts of climate drivers on the
functional roles of species.
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