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INTRODUCTION

Nursery areas are crucial for the health of many
elasmobranch populations (Heupel et al. 2007). These
areas provide biotic and abiotic features that benefit
the development and survival of juveniles (Castro
1993, Heupel & Simpfendorfer 2011). In the past
30 yr, studies of shark nursery areas have significantly
progressed our understanding of their function and
importance (e.g. Simpfendorfer & Milward 1993,
Stevens & West 1997, Heupel & Simpfendorfer 2005,
2011, Keeney et al. 2005, Grubbs & Musick 2007, Mc-

Candless et al. 2007). However, the use of nurseries
by batoid species remains poorly understood.

Batoids are the most diverse group of cartilaginous
fishes (Aschliman et al. 2012), consisting of 23 fami-
lies, 663 species and at least 50 more yet to be
described (Last et al. 2016). However, batoids are the
most endangered group of elasmobranchs, with
19.9% of species listed in a Threatened category by
the IUCN Red List (Dulvy et al. 2014, Last et al. 2016).
Batoids are increasingly taken by artisanal and
industrial fisheries around the world, which has con-
tributed to population declines (Stevens et al. 2000,
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Cavanagh et al. 2003, Cailliet et al. 2005, Stevens et
al. 2005, White et al. 2006, Dulvy et al. 2003, 2014).
Habitat loss (Stevens et al. 2005) and changes in cli-
mate (Rahmstorf 2007, Chin et al. 2010) also repre-
sent increasing threats to many species. Due to their
relatively unproductive life history characteristics
(e.g. slow growth, large body size, late sexual matu-
rity, low fecundity and high longevity), batoid popu-
lations can rapidly be depleted when exposed to one
or more of these anthropogenic pressures (Stevens et
al. 2000, Fowler et al. 2005). Collapses of populations
of the common skate Dipturus batis (Brander 1981,
Dulvy & Reynolds 2002), the purple eagle ray Mylio-
batis hamlyni (White & Kyne 2010) and all sawfish
species (Pristidae) (Dulvy et al. 2016), for example,
have all been reported as a result of intense human
pressures. Furthermore, stock size and recruitment
are closely related in batoids, resulting in long recov-
ery periods after over-exploitation (Holden 1974,
Stevens et al. 2000). Therefore, intensive manage-
ment and conservation effort is required to sustain-
ably fish these populations or aid their recovery
(Simpfendorfer & Dulvy 2017).

The ability to effectively manage and conserve
bato id populations is affected by a lack of knowledge
on their biology and ecology (Cerutti-Pereyra et al.
2014, Last et al. 2016). The ecology and life history of
batoids are poorly understood (256 Data Deficient
species in the IUCN Red List) and long-term species-
specific data are scarce, such as the scale and timing
of movements (Bonfil 1999), level of philopatry
(Vaudo & Lowe 2006) and location or presence of for-
aging, mating and nursery areas (Le Port et al. 2012).

The identification of elasmobranch nurseries is
complicated by their different reproductive modes.
Many batoids exhibit aplacental viviparous repro-
duction, but skates (4 families: Rajidae, Arhyncho -
batidae, Gurgesiellidae, Anacanthobatidae; 38 gen-
era; at least 288 described species) are a strictly
ovi parous group (Conrath & Musick 2012). Histori-
cally, elasmobranch nursery theories have largely
been developed based on viviparous species models
(e.g. Heupel et al. 2007). Hoff (2016) did consider
nursery areas for oviparous skates, but there is a
need to develop a unified definition of nursery areas
that are suitable for all elasmobranch reproductive
modes. Hence, the aim of this review was to provide
a synthesis of the current knowledge on oviparous
and viviparous batoid nursery areas. In addition, we
aimed to contribute to a better understanding of eco-
logical roles of batoids within these areas, which is
crucial for developing effective management strate-
gies for batoids and their nursery habitats worldwide.

ELASMOBRANCH NURSERY AREA CONCEPTS

Historically, nursery areas were defined as places
where mature females give birth and juveniles reside
until they reach maturity (Meek 1916, Springer
1967, Bass 1978, Castro 1993). According to Springer
(1967), Bass (1978) and Branstetter (1990), these
places should offer abundant food resources and
lower predation risk for neonates. Thus, most estuar-
ine and shallow marine ecosystems were automati-
cally identified as nurseries based on the presence of
juveniles and assumptions of high productivity and
protection against predation (Beck et al. 2001). This
concept was widely accepted and applied, although
a clear definition of what constituted a nursery was
not developed. Lack of a clear definition of nursery
habitats inhibited conservation efforts because the
identification of vast areas as nurseries meant that
protection was expensive and difficult to implement
(Heupel et al. 2007). Thus, the need for a refined def-
inition of nursery areas increased over time, with the
first step to resolve the definition proposed by Beck
et al. (2001).

Beck et al. (2001) specifically noted that nursery ar-
eas for marine animals were not just places where ju-
veniles occur, but regions where juveniles occur at
higher densities, avoid predation more successfully
and grow at a faster rate than the average for that
species. Beck et al. (2001) also stated that nurseries
contribute more individuals per unit area to adult
stocks than other habitats where juveniles occur.
Consequently, not all areas where juveniles are
found are nurseries. This approach to defining nurs-
ery areas was more precise and reduced part of the
risk of diluting management and conservation efforts.

However, the definition outlined by Beck et al.
(2001) had gaps, especially regarding inter-annual
variability in nursery use and recognition of the diffi-
culty in defining the contribution of a single area to
an adult population. While Beck et al. (2001) sug-
gested that some habitats are more likely to be nurs-
ery areas than others, testable approaches to identify
these areas were not proposed. To provide practical
means to identify nursery areas for elasmobranchs,
Heupel et al. (2007) proposed a set of criteria specific
for the group based on Beck et al.’s (2001) concept,
but incorporating aspects such as higher than aver-
age abundance and philopatry as metrics. Using this
approach, an elasmobranch nursery area should be
defined based on 3 criteria where newborn or young-
of-the-year individuals (1) are more commonly en -
countered in the area than in other areas, (2) have a
tendency to remain or return for extended periods
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and (3) repeatedly use the area or habitat across
years.

This definition allowed researchers to test the exis-
tence of nursery areas for sharks in a straightforward
manner. Moreover, Heupel et al. (2007) proposed
new terms to the literature to define areas used by
 juvenile elasmobranchs that are not nurseries, such
as pupping, birthing and egg-laying or hatching
grounds. Heupel et al.’s (2007) criteria have been suc-
cessfully applied by elasmobranch researchers (e.g.
Hussey et al. 2009, Froeschke et al. 2010,  Henderson
et al. 2010, Espinoza et al. 2011, Francis 2013), but in
general have been limited to viviparous species.

Identifying nursery areas for skates and other ovi -
parous species has proven more challenging because
of their reproductive mode. Until recently, authors
commonly identified skate nursery areas as those
where high densities of eggs occur (egg density crite-
rion), with little consideration of the abundance of
neo nates and juveniles (e.g. Hoff 2008, Hunt et al.
2011, Treude et al. 2011, Amsler et al. 2015). Hoff
(2016) emphasized the difficulty in defining nurseries
for oviparous batoids and developed a set of criteria
to identify their nursery areas. He suggested separat-
ing the areas used for eggs and juveniles, with the
addition of 2 terms to the literature: ‘egg case nurs-
ery’ and ‘juvenile nursery’. To be defined as an egg
case nursery, an area should have high densities of
eggs and egg cases in contact with the benthos or
permanent structures. In addition, the area must be
used as an egg-laying area over multiple years, and
newborns should leave the area promptly after
hatching. The egg case nursery definition uses crite-
ria similar to those of Heupel et al. (2007), making it
easily testable. Hoff’s (2016) juvenile nursery was
defined as an area that should have a high abun-
dance of neonate and juvenile skates, be distinct
from the egg case nursery and strongly contribute to
population recruitment. This definition is also similar
to that of Heupel et al. (2007) for shark nursery areas,
and is functionally equivalent.

However, some confusing points in the nomencla-
ture and concepts of oviparous batoids have been
observed, especially regarding the definition of egg-
laying and hatching sites as nurseries. According to
Heupel et al. (2007), egg-laying and hatching sites
could be nurseries, but only if the post-hatching
young remain in the same area, a criterion which
contradicts Hoff’s (2016) description. Generally, elas-
mobranch nursery areas are defined as those where
many of the young live after birth (Springer 1967,
Bass 1978, Branstetter 1990, Beck et al. 2001), but
eggs are a developmental stage that contain unborn

individuals. The requirements for optimal develop-
ment of eggs and juveniles may also differ. In other
words, optimal conditions for egg development are
not always advantageous for juvenile growth. Hoff
(2008, 2010), Love et al. (2008) and Hunt et al. (2011),
for example, observed no or very few neonates and
juvenile skates in areas identified using the egg den-
sity criteria, reinforcing that newborn skates are
likely to leave these areas soon after hatching. Thus,
the egg case nursery as defined by Hoff (2016) is dif-
ferent than an egg-laying ground since not all areas
where eggs are found would meet the egg case nurs-
ery criteria. Under such usage, almost all of the areas
previously identified as skate nursery areas are in
fact egg case nursery areas and not juvenile nurs-
eries. This is not to say that these species do not have
juvenile nurseries, just that the areas identified to
date are egg case nurseries and juvenile nursery
areas remain to be determined.

Importantly, for a single species, egg case nursery
and juvenile nursery areas could overlap and there-
fore result in a single nursery area serving both func-
tions. Although there are no known examples, over-
laps in egg case and juvenile nursery grounds might
occur in batoid species with small home ranges or
restricted distributions. Nevertheless, if egg and
juvenile nurseries overlap in a delineated area, but
are not mostly segregated from the adult population,
this area cannot be a nursery (Knip et al. 2010). This
area might provide benefits for a population (e.g.
food abundance, optimal temperature) but does not
provide specific advantages for egg development or
juvenile growth and survival separate from the needs
of adults. Difficulty in distinguishing egg case and
juvenile nurseries is also an issue for oviparous
sharks. For example, Cau et al. (2013, 2017) identi-
fied a nursery area for the small spotted catshark
Scyliorhinus canicula in the central-western Medi-
terranean Sea using the egg density criteria, al -
though several specimens of S. canicula of different
life stages were also observed in the same area.

In fact, both egg case nursery and juvenile nursery
areas are essential fish habitats (EFH), and their
importance to populations must be recognized. For
this reason, these definitions should not be aggre-
gated, as has been common in the literature. Confu-
sion and inconsistency in the literature highlights the
need for understanding and defining these essential
habitats for early life stage batoids. However, the use
of multiple and sometimes confusing terms could
impede conservation and management efforts by
under- or overestimating the importance of specific
areas, diluting resources and delaying effective pro-
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tection. We suggest that Hoff’s (2016) second term,
‘juvenile nursery area’, be simplified to ‘nursery’,
since it is consistent with Heupel et al. (2007), which
defines nursery areas as associated with the pres-
ence and occurrence of juveniles. Thus, we recom-
mend the use of the Heupel et al. (2007) criteria for
nursery areas and the Hoff (2016) criteria for egg
case nursery as they provide clear, simple, testable
and widely applied methods to standardize the defi-
nitions for all elasmobranchs.

Therefore, for the purposes of viviparous and
oviparous elasmobranch populations, the criteria for
an area to be considered a nursery would be (1) new-
born or young-of-the-year individuals are more com-
monly encountered there than in other areas, (2)
newborn or young-of-the-year individuals have a
tendency to remain or return for extended periods
and (3) newborn or young-of-the-year individuals
repeatedly use the area or habitat across years. For
oviparous species, an egg nursery area can be identi-
fied using the following criteria: (1) high densities of
eggs and egg cases in contact with benthic or station-
ary materials, (2) adults use the area or habitat to lay
eggs repeatedly over multiple years and (3) newborn
or young-of-the-year individuals leave the area
promptly after hatching.

PREVALENCE OF ELASMOBRANCH
NURSERY AREA USE

Many elasmobranch species use nursery areas
(e.g. Castro 1993, Yokota & Lessa 2006, Heupel et al.
2007, DeAngelis et al. 2008, Freitas et al. 2009, Speed
et al. 2010, Cerutti-Pereyra et al. 2014). These areas
can be critical to early life stages of large-bodied spe-
cies with low fecundity and slow growth (Yokota &
Lessa 2006, Hussey et al. 2017). These species gener-
ally have relatively small litters and longer periods
between reproductive events. Hence, survival during
early life is crucial for population persistence (Heupel
et al. 2007, Cerutti-Pereyra et al. 2014). For this rea-
son, slow-growing and low-fecundity species are
more likely to benefit from delineated nursery areas
that increase survival rates of the young-of-the-year
age class (Heupel & Simpfendorfer 2011).

Nevertheless, exceptions may occur. As empha-
sized by Springer (1967), McElroy et al. (2006) and
Heupel et al. (2007), some elasmobranch species do
not use distinct nursery grounds. Small elasmo-
branch species with productive life history character-
istics and fast reproductive cycles often lack nurs-
eries (Knip et al. 2010). For those species, the ab -

 sence of a nursery, which could result in high mortal-
ity rates, is overcome by their relatively rapid growth,
early sexual maturity and high reproduction. Knip et
al. (2010) also hypothesised that the level of protec-
tion against predation in a nursery could be small or
even irrelevant for small-bodied elasmobranch spe-
cies since some small-bodied sharks are likely to be
preyed upon throughout their life, even in nursery
areas, as juveniles of co-occurring larger species
could be potential predators. Thus, the use of nurs-
eries is determined by the life history components of
each species and as such may be traded off for other
advantages (Branstetter 1990).

BATOID USE OF NURSERY AREAS

Nursery areas have been reported in a range of
bato ids, including sawfishes, stingrays, skates, guitar -
 fishes and numbfishes (Table 1). Here, we exa mine
some of the studies that have described batoid nurs-
ery areas in a variety of habitats and consider appli-
cation of nursery theory to these species.

Identification of batoid nursery areas has histori-
cally used differing criteria (Table 1). Few studies
occurred prior to 2007, but those that did used the
occurrence of neonates and pregnant females as
indicators (e.g. Yokota & Lessa 2006). Since 2007,
most studies on viviparous batoids have used the
Heupel et al. (2007) criteria (11 studies), while the
egg density criterion has been used for the majority
of studies on oviparous batoids (8 studies).

Whether all batoid species rely on nursery areas is
unclear due to the limited number of studies on these
species. Existing studies cover less than 6% of the
currently described species — only 38 of 663 species
and 12 of 26 living families. In addition, the existing
studies are restricted to a few families — mainly
Arhyn cho batidae (soft nose skates), Dasyatidae
(whiptail stingrays) and Pristidae (sawfishes). Saw-
fishes in particular have been increasingly studied
due to their imminent threat of extinction (Dulvy et
al. 2014, 2016). The concentration of research effort
to a select few families shows a strong bias in batoid
nursery research. As a consequence, knowledge
about nurseries of several ecologically and economi-
cally important batoid species, and/or threatened
families remain scarce or nonexistent.

Research bias is also evident when habitat types for
batoid nursery areas are evaluated (Table 1). The
majority of Dasyatidae and Pristidae species inhabit
shallow, sheltered coastal and tropical waters. On the
other hand, Arhynchobatidae species tend to be
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Martins et al.: Batoid nurseries

found in cold and deep waters, such as the eastern
Bering Sea and western Antarctic Peninsula. This
tendency shows that very little attention has been
given to pelagic batoids inhabiting open water/off-
shore systems. The reason for focusing on particular
batoid families and habitats is not clear, but might
reflect the limited number of researchers dedicating
time to better understand batoids and current limita-
tions faced by these researchers to meet funding
requirements to access remote locations.

KEY FACTORS AFFECTING BATOID USE
OF NURSERIES

Batoids that demonstrably use nurseries are
attracted to these locations for a combination of biotic
and abiotic features. Differences in these features
can directly affect abundance and distribution
(Sguotti et al. 2016). Even small variations can lead to
spatial and temporal variability (Felley & Felley 1986,
Heupel & Hueter 2002). Shallow coastal ecosystems,
for example, are some of the most variable in the
marine world. Given the common (but not exclusive)
use of coastal habitats as nurseries by batoids and
their variable nature, juveniles that rely on these
habitats must be able to cope with significant envi-
ronmental changes over relatively short time periods
(e.g. Knip et al. 2010, Schlaff et al. 2014). Thus, the
features determining batoid abundance, residency
and fidelity in nursery areas will depend on the spe-
cies and its geographical location. A better under-
standing of these features will be crucial to long-term
assessments of batoid spatial ecology and develop-
ment of site-specific management. Here, we discuss
some common features affecting batoid use of nurs-
eries.

Energy partitioning into food acquisition

Obviously, food is an essential nursery feature. If
there is not enough food, survival will be too low.
However, energy requirements and resulting behav-
iour may differ greatly between species. In theory,
abundant food enhances juvenile development and
survival. However, in practice, this is not always true.
Davy et al. (2015) observed that food was not a major
driver of mangrove whipray Urogymnus granulatus
movements within a nursery area. Thus, while the
availability of food resources is an important feature,
it is not the only essential nursery feature for some
batoids.

Predator avoidance

Several authors have hypothesised that, even by
delaying maturity and recruitment, the permanence
of juvenile batoids in an area protected from large
predators would be an important strategy for popula-
tion health — a trade-off between survival and matu-
rity (Branstetter 1990, Dale et al. 2011, 2013, Dale &
Holland 2012). However, nursery areas are not al -
ways predator-free. Heupel et al. (2007) highlighted
that nurseries can have high levels of predators, but
individuals may employ behavioural strategies to
avoid them. According to Costa et al. (2015), juvenile
Brazilian large-eyed stingrays Hypanus marianae
spend more time in turbid, shallow waters with low
prey abundance to minimize predation risk. Hoff
(2007) hypothesised that neonate Bathyraja parmi -
fera move out of egg case nurseries shortly after
emergence to avoid large predators. Davy et al.
(2015) also cited predator avoidance as a major dri -
ver of habitat use patterns of juvenile mangrove
whiprays U. granulatus that stayed in shallow areas
and in mangrove root habitats of the nursery to avoid
encounters with large blacktip reef Carcharhinus
melano pterus and lemon Negaprion acutidens
sharks. Even larger batoids could present risks to
juveniles. Branco-Nunes et al. (2016) reported the
first evidence of predation between dasyatid species
— remains of H. marianae were found in the stomach
contents of larger H. americanus. Thus, given the
small size and limited swimming ability of many
juvenile batoids (Blake 2004, Dale et al. 2011), it is
likely that predation rates can be high even inside
nursery grounds.

The potential for cannibalism or intra-specific pre-
dation might be the major difference between shark
and batoid nurseries. Cannibalism is common among
shark groups (Compagno 2001) and thus can be an
important factor in the need for nursery areas where
the juveniles of a species are separated from the
adults. Morrissey & Gruber (1993) and Guttridge et
al. (2012), for example, reported intra-specific preda-
tor−prey interactions between juvenile, large juve-
nile and adult lemon sharks Negaprion brevirostris.
On the other hand, the occurrence of cannibalism
within batoid taxa has never been reported, and thus
there are no known effects relative to nursery use.

Temperature

Temperature is a factor that affects the distribution
and movement of a large number of species includ-
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ing elasmobranchs (e.g. Schlaff et al. 2014). Varia-
tions in water temperature have been shown to influ-
ence the biology and ecology of batoids (e.g. Fangue
& Bennett 2003, Hopkins and Cech 2003, Cerutti-
Pereyra et al. 2014). For example, Amsler et al. (2015)
reported that temperature played an important role
in the embryonic development and hatching of skate
eggs off the western Antarctic Peninsula. Le Port et
al. (2012) reported temperature was a major factor in
short-tail stingray Bathytoshia brevicaudata move-
ment patterns, while Dabruzzi et al. (2013) observed
that ribbontail rays Taeniura lymma could identify
optimal zones along a thermal gradient with a high
level of accuracy. The ability to remain in a desired
thermal range is important because juvenile ribbon-
tail rays are often exposed to rapid and extreme tem-
perature fluctuations in shallow coastal waters. Still,
according to Dabruzzi et al. (2013), juvenile ribbon-
tail rays must remodel biochemical pathways to im -
prove physiological functions before recruitment and
migration to the cooler, more stable habitats occu-
pied by adults.

Batoids may also exploit variations in temperature
to enhance oxygen consumption and digestive effi-
ciency (Sims et al. 2006, Di Santo & Bennett 2011a,b).
Matern et al. (2000) and Wallman & Bennett (2006)
observed batoids foraging at high temperatures and
moving to cooler areas after foraging to optimize
digestive processes. In contrast, Tenzing (2014),
through physiological tests, observed no significant
variation between feeding and resting temperatures
of U. granulatus at Orpheus Island, Australia. Ac -
cording to Tenzing (2014), the use of high tempera-
ture habitats might provide an ecological advantage
for the species, accelerating digestive rates and, in
the long term, juvenile development. Thus, higher
temperatures might increase growth rates of juve-
niles (Wearmouth & Sims 2008, Jirik & Lowe 2012),
increase reproductive success, improve feeding effi-
ciency and increase survival through predator avoid-
ance (Wallman & Bennett 2006). Therefore, the ben-
efits of using nurseries with high temperatures may
outweigh the potential physiological costs.

Salinity

Batoid movements and habitat use can also be
influenced by salinity variations (Simpfendorfer et al.
2011, Poulakis et al. 2013). Juvenile sawfish seek out
specific salinity levels to optimize their development
or survival (Simpfendorfer et al. 2011, Norton et al.
2012). Similarly, Collins et al. (2008) and Heupel &

Simpfendorfer (2008) suggested that some elasmo-
branch species actively move to remain within a spe-
cific salinity range, minimizing energetic costs of
osmoregulation and freeing up energy for other pro-
cesses (e.g. growth, sexual maturation). On the other
hand, Poulakis et al. (2011) reported that smalltooth
sawfish Pristis pectinata can remain in a nursery area
under a wide range of salinities and continue to grow
rapidly, suggesting that osmoregulation may have lit-
tle influence on habitat selection for this species.
Effects of environmental parameters such as salinity
need to be explored in more detail to more fully de -
fine any relationships with batoid habitat use and
selection, and how they influence nursery area use.

Oxygen levels

Dabruzzi & Bennett (2014) observed that the
Atlantic stingray Hypanus sabinus commonly used
shallow waters with reduced levels of dissolved oxy-
gen. They hypothesised that by spending time in
hypoxic areas, H. sabinus excludes direct competi-
tion with less hypoxia-tolerant organisms (Di Santo &
Bennett 2011a) and reduces their vulnerability to
predators. Thus, the ability to tolerate low oxygen
concentrations might be an important advantage to
some species of juvenile batoids and is likely a deter-
mining factor for use of some nurseries in shallow
coastal areas.

ECOLOGICAL AND TROPHIC ROLE OF BATOIDS
IN NURSERY HABITATS

The existing information on batoid ecological roles
is based on limited research on a small number of
species and locations, restricting our understanding
largely to shallow water areas (e.g. Jacobsen & Ben-
nett 2013). However, due to their high diversity and
abundance, batoids are thought to play a number of
key ecological roles that are integral to the function-
ing of several ecosystems, including nursery habitats
(Costa et al. 2015). Here, we discuss 3 of these roles.

Energetic links

The limited data available indicate that juvenile
batoids often remain within a restricted area over the
short and medium term (weeks to months) (Vaudo &
Lowe 2006, Davy et al. 2015), but some species have
the capacity to move longer distances between habi-
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tats (Collins et al. 2007, 2008). These movements may
have a variety of ecological effects, such as linking
trophic webs and enhancing or redirecting nutrient
and energy flows (Sheaves 2009). Thus, batoid move-
ments can connect separated ecosystems at short
time scales (Silliman & Gruber 1999, Matern et al.
2000, Cartamil et al. 2003, Davy et al. 2015) or over
long time periods if they undertake ontogenetic or
long-range migrations (Ebert & Cowley 2003, Aguiar
et al. 2009, Ajemian & Powers 2014). These move-
ments also enhance nursery area ecological roles by
transporting energy and nutrients through bio -
logically mediated pathways (Sheaves 2009). Based
on current knowledge (Table 1), these connections
would mostly be from very shallow coastal and estu-
arine habitats to deeper habitats. Further studies on
deep-water species are needed to understand their
role in linking energy between habitats.

Bioturbation

Many batoid species feed on infauna and meio-
fauna within soft sediments. To access these prey
re sources, batoids employ a number of behaviours
(e.g. beating pectoral fins and jetting water) that
suspend soft sediments and often form feeding
pits — excavated depressions in the sediment
(Myrick & Flessa 1996, O’Shea et al. 2012, Takeuchi
& Tamaki 2014). This process, known as bioturba-
tion, is very common in shallow coastal and estuar-
ine nurseries with soft substrates and has a signifi-
cant impact on the physical and biological habitat
properties of intertidal and subtidal areas (O’Shea
et al. 2012), such as density and distribution of ben-
thic fauna (Dabruzzi et al. 2013). At a fine scale, the
formation of feeding pits facilitates oxygen penetra-
tion into sediments, ex tending the zone of oxygena-
tion (Gilbert et al. 1995) and affecting the nitrogen
cycle (Kogure & Wada 2005). Bioturbation may also
enable other species to benefit from prey items that
are disturbed or excavated during foraging activi-
ties (VanBlaricom 1982, Heithaus et al. 2010). Kiszka
et al. (2015) de tected the association of southern
stingrays Hypanus americanus and bar jacks Ca -
ranx ruber, where stingray bioturbation allowed C.
ruber to access re sources otherwise unavailable.
Similarly, Kajiura et al. (2009) observed double-
crested cormo rants Pha la crocorax auritus floridanus
taking advantage of H. americanus bioturbation to
feed on tele osts. Thus, batoid bioturbation may fulfil
a number of roles in soft sediment habitats within
and beyond nursery grounds.

Trophic roles

Batoids can consume a wide range of prey items
and have different feeding mechanisms and behav-
iours. They have highly variable dentition and jaw
morphology among species, sex and/or life stage
(Dean et al. 2007, Pardo et al. 2015). Batoid diets can
also be influenced by aspects such as location, or
predator and prey distribution (Ebert & Cowley
2003). Feeding strategy is another important indica-
tor of batoid trophic relationships. Their approaches
can be categorized as continuous feeders, ambush
predators or filter feeders (Wetherbee & Cortés
2004).

On average, batoid trophic levels vary between 3.4
and 3.9, but can reach higher levels, such as a 4.2 for
Rostroraja velezi (Navia et al. 2017). Navarro et al.
(2013), for example, observed Mediterranean starry
rays Raja asterias sharing trophic position with sea
birds, and large demersal and pelagic fish. Batoids
also play a role as food sources for larger predators in
the food web (Visser 1999, Chapman & Gruber 2002,
Dean et al. 2017). Therefore, most batoids function as
mesopredators, providing the connection between
top predators and lower trophic level organisms
(Vaudo & Heithaus 2011). Navia et al. (2017) empha-
sized that, as a highly diverse group of mesopreda-
tors, batoids influence the stability and robustness of
ecosystems (Dunne et al. 2004). Therefore, batoids
likely play numerous and crucial roles in the struc-
ture and functioning of food webs. Unfortunately,
due to the lack of knowledge of batoid ontogenetic
changes and life cycles, the specific roles played by
juvenile batoids in nursery habitats is poorly known.

ONTOGENETIC SHIFTS AND PARTITIONING OF
RESOURCES IN NURSERIES

Ontogenetic shifts can be a major driver of changes
in batoid diet composition (Gray et al. 1997, Colloca
et al. 2010, Jacobsen & Bennett 2012). These shifts
could be linked to morphological, behavioural and
physiological features (Scharf et al. 2000). Dale et al.
(2011), for example, observed that diet composition
of brown stingrays Bathytoshia lata was closely
related to body size. Juvenile brown stingrays tended
to prey on small and abundant items due to their lim-
ited mouth gape, swimming speed and foraging abil-
ities. On the other hand, larger brown stingrays
tended to ingest less abundant but more energeti-
cally valuable items due to their greater foraging
capabilities. Heithaus (2007) also emphasized the
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possible difficulty of larger juveniles in capturing
small-sized prey. Thus, at some point, large juveniles
need to switch habitats, moving away from nurseries
to attain their specific dietary needs and meet their
higher energetic demands. This strategy could dras-
tically reduce time and energy used during foraging
activities (Scharf et al. 2000) and competition for food
resources with smaller conspecifics, producing a rec-
ognized evolutionary benefit (Dale et al. 2011, Car-
rier et al. 2012).

Partitioning of resources also allows the coexis-
tence of competing or closely related marine preda-
tors (McPeek 2014). Several examples of partitioning
of food resources between batoid species have been
reported (Platell et al. 1998, Mabragaña & Giberto
2007, Treloar et al. 2007, Bornatowski et al. 2014, Biz-
zarro et al. 2017, Kemper et al. 2017). Pardo et al.
(2015), for example, detected localised dietary par -
titioning between sympatric batoids in Australia,
where several species foraged at the same spatiotem-
poral scale, but each species exhibited different prey
preferences. Partitioning may also reduce competi-
tion for food resources among newborn batoids, de -
creasing mortality rates during early life stages. The
existence of partitioning suggests that batoids may
also use communal nurseries as this is a common fea-
ture in these areas (Kinney et al. 2011). The use of
communal nurseries is known to provide benefits in
reducing predation for sharks (Simpfendorfer & Mil-
ward 1993) and may have had great importance in
their life histories. However, limited data have been
presented suggesting this for batoids. Davy et al.
(2015) briefly discussed the coexistence of 2 stingray
species in the same bay at Orpheus Island, Australia,
and there is evidence that communal groupings
of batoids provide increased predator protection
(Semen iuk & Dill 2006). Vazquez et al. (2016) also
indicated the presence of communal egg case nurs-
eries for several skate species in the Argentine shelf-
break front. However, much more research is needed
to clarify the use of communal nurseries and their
benefits for batoids.

CONSERVATION OF BATOID NURSERY AREAS

The low fecundity and slow growth rates of some
batoids suggest that juvenile survivorship is one of
the most crucial features for sustaining stocks (Cortés
2002, Frisk 2010, Goldman et al. 2012). Unfortu-
nately, nursery areas, especially those in shallow
coastal areas, are susceptible to the influence of
anthropogenic pressures (Lotze et al. 2006, Dale et al.

2013). For example, coastal nurseries can be directly
affected by nutrient and sediment pollution due to
their close proximity to human communities. Further-
more, coastal nursery areas support not only batoids,
but often other fishery resources of major economic
significance. As such, juvenile batoids in these areas
may be threatened through bycatch in coastal fish-
eries (Heithaus 2007). The high level of philopatry
seen in many of the batoid species studied (Hunter et
al. 2006, White et al. 2014, Braun et al. 2015, Flowers
et al. 2016) means that they may not respond well
when exposed to high anthropogenic pressures. Ac -
cording to Heupel et al. (2007), some elasmobranch
species tend to remain in their habitats, even when
highly altered by human activities. This situation can
lead to a catastrophic scenario for batoids, resulting
in high rates of juvenile mortality and low rates of
recruitment.

Thus, understanding the dynamics of batoid popu-
lations in nursery areas is crucial to improving con-
servation outcomes for some species (Fowler et al.
2005, Camhi et al. 2009, Dulvy et al. 2014). However,
designating wide swaths of the coastline as protected
nursery areas is probably not an efficient use of
resources, or even politically possible. Obtaining bet-
ter data to specifically target manageable areas for
protection is much more likely to be successful. Thus,
precise identification of areas that support important
life stages (Yokota & Lessa 2006, Le Port et al. 2012),
and improved understanding of batoid life histories
are crucial to assessing their ecosystem function and
connectivity (Espinoza et al. 2015, Munroe et al.
2015), their vulnerability to anthropogenic threats
and environmental changes (Schlaff et al. 2014) and
the development of efficient management and con-
servation strategies (Knip et al. 2012) — not only to
manage batoid species as a fishery resource, but also
to manage habitats (Tilley & Strindberg 2013).

CONCLUSIONS

Knowledge of batoid nursery areas is limited com-
pared to that of sharks, although both groups appear
to use nurseries in very similar ways. We recommend
the use of the Heupel et al. (2007) criteria for identi-
fying nurseries as a simple and effective way to
define a nursery area for juvenile sharks and batoids.
We also support the specific concept of egg case
nurseries as proposed by Hoff (2016) that separates
areas important for egg development in oviparous
species from those important for juvenile and adult
life stages. Adopting these definitions will promote
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the use of standardized criteria and terminology,
which will assist conservation and management ef -
forts while reducing under- or overestimations of
nursery importance, dividing resources for conserva-
tion purposes and hindering effective protection.

At least in the coastal nurseries that have been
studied to date, juvenile batoids play important eco-
logical roles in nursery areas, functioning as meso-
predators, vectors for energy transfer and bioturba-
tors. However, little data are available to enable a full
evaluation of batoid ecological roles in nursery areas.
In addition, the concentration of identified nurseries
in coastal areas highlights a research bias. A broader
approach is required to better evaluate the presence
of batoid nurseries in deeper and offshore ecosys-
tems. Batoid species are at risk of extinction due to
increasing anthropogenic threats and environmental
changes; identification of nursery areas and a better
understanding of batoid ecology are important for
improving management of batoid stocks and sensi-
tive areas, such as nurseries. By compiling what is
known about the use of nursery areas by batoid spe-
cies, this review provides a foundation to move to -
wards broader and practical approaches to identify
and conserve batoid populations.
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