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INTRODUCTION

Dinoflagellates are a frequent part of microalgal
communities in the photic and benthic zones of the
world’s coastal waters and oceans. A range of plank-
tonic species, known as ‘harmful’ dinoflagellates, can
produce potent toxins that accumulate in the food
web (e.g. filter-feeding shellfish) and, when consumed

by humans, can cause food-related illnesses. (Van
Dolah 2000) These include paralytic shellfish poison-
ing (Wiese et al. 2010), diarrhetic shellfish poisoning
(Murata et al. 1982), neurotoxic shellfish poisoning
(Baden & Adams 2000), amnesic shellfish poisoning
(Jeffery et al. 2004), and azaspiracid shellfish poison-
ing (Satake et al. 1998). Epibenthic dinoflagellates
live in close association with the benthos or substrates
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such as macrophytes. These organisms have also
been implicated in several human-related illnesses,
ranging from respiratory (Durando et al. 2007) and
dermatologic (Tubaro et al. 2011) conditions through
to cigua tera fish poisoning (Yasumoto et al. 1979).
Toxins produced by epibenthic dinoflagellates are in-
troduced to marine food webs by fish and inverte-
brates grazing on colonised macrophyte substrates, or
through filter feeding (Lewis & Holmes 1993, Ya-
sumoto 2005, Cruz-Rivera & Villareal 2006).

Over the past decade, there has been considerable
research focus on understanding the taxonomy of
key epibenthic dinoflagellate genera including Gam-
bierdiscus Adachi & Fukuyo (Adachi & Fukuyo
1979), Fukuyoa Gómez, Qui, Lopes & Lin (Gómez et
al. 2015), Ostreopsis Schmidt (Schmidt 1901), Coolia
Meunier (Meunier 1919), Prorocentrum Ehrenberg
(Ehrenberg 1834), and Amphidinium Claparède &
Lachmann (Claparède & Lachmann 1859). Each can
easily be identified to genus level based exclusively
on cell morphology using a light microscope; how-
ever, morphological similarities between species
within some genera (e.g. Gambierdiscus, Fukuyoa,
Ostreopsis, and Coolia) necessitates phylogenetic
analyses to resolve identification to species level
(Litaker et al. 2009, Karafas et al. 2015, Accoroni et
al. 2016). More recently, epibenthic dinoflagellate re -
search has shifted to ecological studies aimed at
understanding current species distributions and
potential range expansions under predicted climate
change conditions (e.g. Bomber et al. 1988a, Morton
et al. 1992, Kibler et al. 2012, Xu et al. 2016, Sparrow
et al. 2017). As a result, there is growing evidence
that harmful epibenthic dinoflagellates are expand-
ing their range from tropical to more temperate loca-
tions in both the northern and southern hemispheres
(Aligizaki et al. 2008, Kohli et al. 2014). However, the
natural and human-assisted vectors facilitating this
range expansion remain relatively unexplored.

Marine microorganisms have the potential to be dis-
persed across long distances suspended in ocean cur-
rents (McManus & Woodson 2012). It is possible that
harmful epibenthic dinoflagellates could also be dis-
persed in this way; however, their association with a
substrate makes planktonic drift of free-living cells a
less likely mechanism of transport. A more likely
method is ‘rafting’. This involves organisms being
transported while attached to floating materials and
is already a recognised long-distance dispersal
mecha nism for many sentinel marine organisms
(Thiel & Gutow 2005a,b). These floating materials, or
rafts, can have a biotic origin (e.g. macrophytes) or an
abiotic origin (e.g. litter and plastics) (Thiel & Gutow

2005a,b), and both have the potential to disperse
harmful epibenthic dinoflagellates (Besada et al.
1982, Bomber et al. 1988b, Masó et al. 2003, 2016).
Rafting as the most likely dispersal mechanism for
epi benthic dinoflagellates was first proposed by
Besada et al. (1982) following observations of the poor
swimming ability of cells and their nonplanktonic
habit. This hypothesis was given support by epi -
benthic dinoflagellates documented on drifting frag-
ments of macrophytes collected in the Florida Straits
(Bomber et al. 1988b), and marine plastic debris col-
lected along the Catalan coast in the northwestern
Mediterranean (Masó et al. 2003, 2016). However,
whether epibenthic dinoflagellates could re main
associated with, and be transported by, rafts in open-
ocean environments is not known.

The East Australian Current (EAC) is the western
boundary current of the South Pacific Ocean, origi-
nating in the tropical Coral Sea and flowing south-
ward along the edge of the eastern Australian conti-
nental shelf (Ridgway 2007). Marine organisms such
as reef fish are frequently transported from tropical to
temperate latitudes in eastern Australia via the EAC
(Booth et al. 2007). Like other western boundary cur-
rents in the global ocean (Wu et al. 2012), the EAC is
increasing its poleward extension as the climate
changes (Suthers et al. 2011, Yang et al. 2016), trans-
porting more tropical water into temperate latitudes.
Range expansions facilitated by this strengthening of
the EAC have already been reported for a number of
marine organisms including coastal fish (Last et al.
2011), invertebrates (Banks et al. 2007, Ling et al.
2009), zooplankton (Johnson et al. 2011), and kelp
(Coleman et al. 2011) and could also aid range expan-
sions of epibenthic dinoflagellates. Therefore, we in-
vestigated the potential of the EAC to facilitate long-
distance dispersal of epibenthic dinoflagellates, both
suspended in the plankton and via rafting. The influ-
ence of the EAC on the temperate southeast Aus-
tralian pelagic ecosystem has been monitored at a
historic time-series station, Port Hacking (PH100), for
over 70 yr (Thompson et al. 2009). PH100 is loca ted
~5 km from the coast at a depth of 100 m (Fig. 1a), and
is routinely sampled for hydrographic and biological
parameters, including planktonic microalgal diversity
and abundance (http://imos.org. au). Given that the
fraction of EAC water at PH100 increased during the
decade 1997−2007 (Thompson et al. 2009), this
station provides a relevant point of reference to
assess the abundance of epibenthic dino flagellates in
the water column versus their abundance on rafts.

In this study, our objective was to evaluate rafting
as a natural dispersal vector for epibenthic dinofla-
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gellates. We sampled rafts of biotic and abiotic origin
during an oceanographic voyage and quantified their
capacity to transport viable cells of epibenthic dino-
flagellate species. We then assessed this against the
backdrop of epibenthic dinoflagellate diversity and
abundance detected in the plankton at the PH100
station.

MATERIALS AND METHODS

Presence of epibenthic dinoflagellates in the PH100
time series (1965−2013)

PH100 is a long-term observing station located on
the continental shelf of southeast Australia (34.120° S,
151.224° E; Fig. 1a). This station is regularly influ-
enced by the EAC and can therefore be used to inves-
tigate microalgal assemblages and transport in this
dynamic western boundary current system (Thomp-
son et al. 2009, Ajani et al. 2014a,b). The time series
used in this study was a combination of datasets from
the Port Hacking National Reference Station (1965−
2009) and the Integrated Marine Observing System
(IMOS) National Reference Station (NRS) Network
(same location, 2009−2013), and was combined and
curated as described by Ajani et al. (2016). The 5

datasets included weekly sampling between April
1965 and April 1966 (Grant & Kerr 1970); weekly
sampling between April 1978 and April 1979 (Halle-
graeff 1981); weekly sampling be tween April 1997
and April 1998 (Ajani et al. 2001); monthly sampling
between September 1998 and December 2009 (Ajani
et al. 2014a,b); and monthly sampling between Feb-
ruary 2009 and December 2013 (imos.aodn.org. au).
For a detailed description of the sample collection
methodology, see Ajani et al. (2016). Briefly, samples
were collected either as discrete bottle samples from
0−50 m (Grant & Kerr 1970, Hallegraeff 1981, Halle-
graeff & Reid 1986) or by 50 or 100 m vertical hauls
with a 37 or 20 µm mesh net (Ajani et al. 2001,
2014a,b). Samples were preserved, and microscopic
examination was performed to identify and enumer-
ate microalgal taxa.

We searched this extensive time series, consisting
of 267 individual samples, for occurrences of epiben-
thic dinoflagellate cells from the genera Amphidi ni -
um, Ostreopsis, Coolia, Prorocentrum, Gambi er dis -
cus, and Fukuyoa. Their presence in the plankton at
PH100 would suggest that cells had either been
advected to the site from local shallow-water habitats
after being suspended from the benthos or trans-
ported from more distant sites via the plankton. As
the genus Prorocentrum comprises some species
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Fig. 1. (a) Location of the Port Hacking 100 m Station
(PH100) and the sampling locations of rafts collected in
the East Australian Current (EAC) and an eddy. (b)
Sea surface temperature (SST) during collection of raft
 samples on the oceanic voyage between Brisbane and
 Sydney in June 2015. Data for (b) sourced from IMOS 

(http://oceancurrent. imos. org.au/sst.php)
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which are pelagic and others which are epibenthic,
only species which were described as benthic/
epibenthic by Hoppen rath et al. (2014) or Hallegraeff
et al. (2010) (e.g. P. lima, P. rhathymum, and P. cli -
peus), or were not defined as being either benthic/
epibenthic or pelagic (Proro centrum spp.), were in -
cluded in the analyses. The percent occurrence rate
of benthic dinoflagellates was calculated by dividing
the number of samples where the genus occurred by
the total number of samples in the time series and
multiplying by 100.

Presence of epibenthic dinoflagellates on
ocean rafts

Raft collection and sample processing

Drifting macrophyte and plastic debris were col-
lected in horizontally towed 1 m2 Neuston nets and,
occasionally, from a 1 m2 towed multiple opening and
closing net in the upper 100 m, at sites within the
EAC and associated oceanographic features (e.g.
meso scale eddies) during a voyage (IN2015_V03)
from Brisbane to Sydney on the RV ‘Investigator’ in
June 2015 (Fig. 1b). Floating debris in a single hori-
zontal net tow, sometimes comprising multiple
macro phyte species, was combined into a single
sample and recorded as a single raft. Rafts were then
processed by being placed into a plastic sealable bag
with a volume (150−500 ml) of 0.2 µm filtered seawa-
ter. Epiphytes were vigorously shaken from the sur-
face of the rafts for approximately 1 min and poured
through a 120 µm sieve into a wide-mouth jar to
remove large zooplankton. A 15 ml subsample of the
suspended organisms was preserved with glutar -
alde hyde to a final concentration of 1% (v/v). Macro-
phyte raft samples were oven-dried for preservation.
The remaining suspension was incubated at 20°C,
under ~50 µmol photons m−2 s−1 light until further
processing.

To evaluate the relationship between the type and
size of a raft and associated microalgae abundance
and diversity, raft samples were graded with a size
and complexity score to consider differences in sur-
face area and texture. Each sample was given a score
ranging from 1 to 4, describing the raft size (1 = very
small [<5 cm2], through to 4 = large [>20 cm2]), and a
score describing raft complexity (1 = single species
with flat blades, through to 4 = complex blade struc-
ture such as Sargassum sp.). Size and complexity
scores for individual rafts were then combined to get
a total raft index score.

Identification and enumeration of microalgal
 community associated with rafts

Glutaraldehyde-preserved samples were concen-
trated from 15 to 2 ml by sedimentation for 48 h, and
microalgal taxa were identified to the lowest possible
taxonomic level using a Sedgewick Rafter counting
chamber under an inverted light microscope (maxi-
mum magnification 1000×) fitted with phase contrast
(Nikon Eclipse TS100). Cells were counted to a
threshold of 100 and the entire chamber scanned for
the presence of rare taxa. The number of cells raft−1

was calculated from the initial volume of filtered sea-
water added and broadly categorised into functional
groups (i.e. diatoms, dinoflagellates, other). Taxa
were determined to be benthic/epibenthic based on
classification by Hoppenrath et al. (2014) and Halle-
graeff et al. (2010). Differences among the epibenthic
microalgal assemblage associated with raft samples
were statistically analysed using multi-dimensional
scaling (MDS) in Primer v6.1.16 (Clarke & Warwick
2001), and significance was tested using ANOSIM
(p < 0.01).

To examine whether epibenthic dinoflagellate cells
associated with rafts were viable, single cells were
isolated from a Sargassum sp. raft sample using the
micropipette technique (Andersen & Kawachi 2005)
under an inverted light microscope (Nikon Eclipse
TS100). Established monoclonal cultures were main-
tained in modified K medium (Litaker et al. 2009)
made from sterile aged natural seawater at a salinity
of 32 ppt at 24°C, under ~100 µmol photons m−2 s−1 on
a 12:12 h light:dark cycle.

Phylogenetic analysis of cryptic harmful epibenthic
dinoflagellate species associated with a

macroalgal raft

Where possible, monoclonal isolates were identi-
fied by light microscopy using an inverted light
microscope (Nikon Eclipse TS100); however, phylo-
genetic analysis was conducted to verify the identity
of an established strain of Coolia due to strong mor-
phological similarities amongst species within the
genus. Cells from 100 ml of the Coolia culture (UTSR7)
were pelleted by centrifugation at 1000 × g (10 min),
and DNA was extracted using a PowerSoil DNA
Extraction Kit (Mo Bio), following the manufacturer’s
instructions. Extracted DNA was sent to a commer-
cial service (Australian Genomic Research Facility,
Queensland, Australia) where the D1–D3 region of
the large subunit (LSU) rDNA was amplified using
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primers D1R-F (Scholin et al. 1994) and D3-R (Nunn
et al. 1996), following the conditions described by
Rhodes et al. (2014). Amplification products (~950
bp) were purified and sequenced in both directions.

Phylogenetic analyses were conducted in Gene -
ious v9.1.5 (Kearse et al. 2012). Publicly available
sequences of Coolia spp. and Ostreopsis spp. were
downloaded from GenBank (www.ncbi.nlm. nih. gov)
and aligned with the sequences obtained from this
study using the MUSCLE algorithm (maximum num-
ber of iterations = 8) (Edgar 2004), with Ostreopsis
spp. sequences used as outgroups. Sequences were
truncated to 756 bp, and a maximum likelihood phy-
logenetic tree was generated using PHYML with
1000 bootstraps (Guindon & Gascuel 2003) using a
GTR substitution model and an estimated gamma
distribution. Bayesian analyses were performed
using MrBayes 3.2.6 (Huelsenbeck & Ronquist 2001)
by means of the GTR+G (general-time reversible
with gamma-shaped among-site variation) model
using 4 simultaneous runs with 4 chains each for
3.1 × 106 generations, sampling every 1000 trees, and
the first 1000 trees were discarded as burn-in.

RESULTS

Presence of epibenthic dinoflagellates in the PH100
time series (1965−2013)

There were no occurrences of epibenthic dinofla-
gellates from the genera Gambierdiscus, Fukuyoa,
Ostreopsis, or Coolia in the PH100 microalgal time
series; however, Amphidinium and Prorocentrum,
which include both pelagic and epibenthic species,
were detected. Amphidinium spp. occurred in 17 of
267 (6%) samples and Prorocentrum spp. occurred in
78 of 267 (30%) samples. Exclusively epibenthic Pro-
rocentrum taxa (e.g. P. lima) occurred in 3 of 267
samples (1%).

Presence of epibenthic dinoflagellates on
ocean rafts

Fifteen raft samples were collected from the
oceanographic region influenced by the EAC and
associated ocean water masses off the continental
shelf of New South Wales, Australia (i.e. >200 m iso-
bath). Thirteen of the fifteen rafts were collected in
an eddy and the remaining 2 were collected in the
EAC (see Table S1 in the Supplement at www. int-
res. com/ articles/ suppl/  m596 p049 _ supp. pdf). Twelve

samples were macrophytes, including seagrasses
(Posidonia spp. and Zostera spp.) and macroalgae
(Hormosira spp. and Sargassum spp.). We also found
1 sample of pumice, a terrestrial plant fragment
(small tree branch), and a sheet of plastic.

The composition and abundance of microalgal as-
semblages associated with rafts of seagrass, macro-
algae, and the plastic sheet were very similar, but
distinct from the assemblages present on the pumice
and small tree branch (ANOSIM, p < 0.01; Fig. 2).
The top 6 taxa driving these differences included the
diatoms Grammatophora marina, Licmorpha cf. ab-
breviata, Navicula spp., Plagiotropis sp., Leptocylin-
drus sp., and the dinoflagellate Amphidinium spp.

Raft size and complexity were positively correlated
with both the abundance (R2 = 0.27) and diversity
(R2 = 0.38) of associated microalgal taxa, with larger
and more complex rafts (of any type) harbouring
more abundant and diverse microalgal assemblages
(Fig. 3a,b).

Overall, the microalgal assemblage associated with
rafts was dominated by diatoms (Fig. 4a), with many
taxa classified as epibenthic (e.g. Bacillaria paxillif-
era, Cocconeis sp., Cylindrotheca closterium, G. ma -
ri na, L. cf. abbreviata, Navicula spp., and Stria tella
spp.) (Table 1). Some pelagic taxa were also present,
possibly due to their entrainment by the complex
3-dimensional structures of some rafts. Potentially
harmful epibenthic dinoflagellate taxa were the next
most abundant group, with Prorocentrum cf. clipeus,
P. lima, P. rhathymum, and Coolia spp. associated
with 5 of 15 rafts (33%), and Amphidinium spp. asso-
ciated with all rafts. As clonal isolates of microalgae
were only established from 1 of 15 raft samples, the
overall proportion of rafts from which we confirmed a
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Fig. 2. Non-metric multi-dimensional scaling plot showing
differences in the composition of the microalgal assemblage 

associated with different rafts based on raft type
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potentially toxic epibenthic dinoflagellate species was
6%. ‘Other’ taxa (cyanobacteria) were also present in
some samples (Table 1, Fig. 4), contributing the least
to the total microalgae abundance (Fig. 4b).

The viability of microalgal cells was confirmed by
the establishment of 4 clonal isolates from raft sam-
ples. Cells of Amphidinium cf. carterae, A. cf. oper -
cu latum, P. lima, and Coolia sp. (Fig. 5) were estab-
lished into culture after being isolated from a
macroalgal raft of Sargassum sp. found drifting in the
EAC.

The identity of the Coolia isolate was confirmed
using the LSU D1-D3 region, a widely used marker
region of the rDNA capable of distinguishing Coolia
species (Leaw et al. 2010, Jeong et al. 2012, Karafas
et al. 2015). Phylogenetic analysis of the LSU D1-D3
rDNA revealed that the raft strain grouped with other
strains of C. palmyrensis from tropical locations
around the world (Fig. 6), confirming its identity and
likely low-latitude origin.

DISCUSSION

Planktonic microorganisms are not typically con-
sidered to be dispersion-limited in the ocean, due to
their small size, vast population sizes, and pelagic
lifestyle, all of which facilitate their transport in ocean
currents (McManus & Woodson 2012). However,
epibenthic dinoflagellates are closely associated with
the benthos or substrates such as macrophytes, and
therefore, planktonic dispersal of free-living (unat-
tached) cells is less likely. In this study, we used 2
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lines of evidence to show that rafting is
a natural mechanism for long-distance
transport of epibenthic dinoflagellates:
(1) the relatively high prevalence of
epibenthic taxa associated with drifting
macrophytes collected on an oceano-
graphic voyage; and (2) their virtual ab-
sence in the water column at a coastal
site over ~50 yr.

Earlier investigations demonstrated
the association of epibenthic dinofla-
gellates with biotic or abiotic rafts in
shallow and sheltered waters (Bomber
et al. 1988b, Masó et al. 2003), but it
was not known if these organisms could
remain associated with and be trans-
ported by rafts in open ocean environ-
ments. In this study, we found intact
cells of 6 taxa of epibenthic dinoflagel-
lates from 3 genera (Coolia, Prorocen-
trum, and Amphidinium) on macro-
phyte rafts drifting in a major western
boundary current and confirmed their
viability by establishing laboratory cul-
tures of species from all 3 genera. We
have therefore demonstrated that vi-
able cells of epi benthic dinoflagellates
can remain associated with macrophyte
rafts as they are transported offshore,
confirming that rafting represents a
natural means by which these organ-
isms could expand their distribution,
particularly from tropical to more tem-
perate locations when entrained in
ocean boundary currents.
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Class                   Genus/species                                                         Habitat 
                                                                                                         preference

Bacillario-          Achnanthes longipes C. Agardh, nom. illeg.          NA
phyceae           Amphora spp. Ehrenberg ex Kützing, 1844              +

                           Bacillaria paxillifera (O.F. Müller) T.Marsson           +
                           Climacosphenia moniligera Ehrenberg                   NA
                           Cocconeis sp. Ehrenberg, 1836                                  +
                           Cylindrotheca closterium (Ehrenberg)                      +
                           Reimann & J.C. Lewin
                           Grammatophora marina (Lyngbye) Kützing             +
                           Haslea sp. Simonsen, 1974                                         +
                           Lauderia annulata Cleve                                             –
                           Leptocylindrus spp. Cleve, 1889                                –
                           Licmophora cf. abbreviata C. Agardh                       +
                           Licmophora spp. C. Agardh, 1827,                            +
                           nom. et typ. cons
                           Melosira sp. C. Agardh, 1824, nom. cons.                 +
                           Melosira varians C. Agardh                                        +
                           Navicula spp. Bory, 1822                                             +
                           Nitzschia longissima (Brébisson) Ralfs                      +
                           Plagiotropis sp. Pfitzer, 1871                                     NA
                           Pleurosigma W. Smith, 1852, nom. et typ. cons.       +
                           Striatella sp. C. Agardh, 1832                                     +
                           Striatella cf. unipunctata (Lyngbye) C. Agardh        +
                           Synedra sp. Ehrenberg, 1830                                    NA
                           Unidentified pennate                                                NA

Dinophyceae     Amphidinium cf. operculatum                                    +
                           Amphidinium spp. É. Claperède                               +
                           & J. Lachmann, 1859
                           Heterocapsa sp. F. Stein, 1883                                    –
                           Prorocentrum cf. clipeus Hoppenrath                        +
                           Prorocentrum lima (Ehrenberg) F. Stein                   +
                           Prorocentrum rhathymum A. R. Loeblich III,           +
                           Sherley & Schmidt
                           Coolia palmyrensis Karafas, Tomas & York              +

Cyanophyceae  Unidentified Oscillatoriales                                      NA

Table 1. Microalgal taxa associated with rafts collected in the East Australian
Current (EAC) and associated water masses. +: epibenthic; –: planktonic; NA: 

not available or not applicable

Fig. 5. Images of clonal epibenthic dinoflagellate cultures isolated from a Sargassum sp. raft sample collected drifting in the East
Australian Current: (a) Coolia palmyrensis, (b) Prorocentrum lima, (c) Amphidinium cf. operculatum, and (d) Amphidinium cf.

carterae. Scale bar = 10 µm
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New cultures of epibenthic dinoflagellate species
from the genera Amphidinium, Prorocentrum, and
Coolia were established from a Sargassum sp. raft
sample collected in this study. Prorocentrum is a very
diverse genus that includes both planktonic and
epibenthic species (Hoppenrath et al. 2013) and is
widely distributed throughout Australia (Morton et

al. 1992, Heil et al. 2004, Murray et al. 2007) and the
world (Hoppenrath et al. 2013). Similarly, Amphi-
dinium is broadly distributed in Australia (Murray &
Patterson 2002, Murray et al. 2004) and globally (Ber -
land et al. 1992, Lee et al. 2003). Amphidinium is con-
sidered primarily epibenthic but is frequently re -
ported in the plankton, likely due to misidentification
or taxonomic uncertainty (Jørgensen et al. 2004,
Murray et al. 2004). In comparison, species from the
genus Coolia have only been found associated with
benthic environments and, although the genus has a
seemingly global distribution, some species have a
more restricted range (Leaw et al. 2016). There are
limited records of the distribution and taxonomic
identity of Coolia, particularly from Australia, moti-
vating the detailed investigation of the Coolia isolate
in this study.

This investigation provides the first report of C.
palmyrensis in temperate Australia. C. palmyrensis is
a newly described, mildly toxic species (Karafas et al.
2015) and has thus far only been reported to have a
tropical distribution, recorded at Palmyra Atoll in the
North Pacific Ocean and the Dominican Republic in
the Caribbean Sea (Karafas et al. 2015). However,
sequences available in GenBank suggest that the
distribution might extend to Hong Kong, Fiji, and
Spain. C. palmyrensis has also been found in a sam-
ple from the Central Great Barrier Reef region in
Australia (originally described as Coolia sp. by
Momi gliano et al. 2013 but later classified as C.
palmyrensis; Karafas et al. 2015, Gómez et al. 2016,
Leaw et al. 2016). While there has not been a com-
prehensive survey of the distribution of C. palmyren-
sis in Australia, this species has never been described
from temperate locations (Leaw et al. 2016), suggest-
ing the probable tropical origin of the Sargassum sp.
raft sample from which the C. palmyrensis strain was
isolated.

Other raft samples in this study were collected in
an oceanic eddy located at approximately 32° S. At
latitude 30−32° S, the EAC generally separates from
the coast to form the eastward flowing Tasman Front,
with the remaining southward flow forming a series
of mesoscale eddies (Mata et al. 2006). These eddies
can entrain coastal water and organisms, and trans-
port rafts of marine macrophytes and debris. The
implication is that the raft samples collected in the
eddy may have been transported directly offshore
from temperate latitudes rather than upstream tropi-
cal locations. Prevailing wind direction and strength
can also influence the dispersal of floating material
(Ruiz-Montoya et al. 2015) and should be considered
when assessing the potential source of raft material.
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Fig. 6. Maximum likelihood tree of the Coolia culture (UTSR7,
highlighted in bold) isolated from Sargassum sp. raft sample
collected drifting in the East Australian Current, showing
alignment of the partial LSU rDNA sequences (D1–D3 re-
gion). Values at the nodes represent maximum likelihood 

bootstrap and Bayesian posterior probability support
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The size and complexity of raft samples collected in
this study was positively correlated with both the
abundance and diversity of microalgal taxa, as has
been commonly found in a wide range of studies
 considering many different taxa (Thiel & Gutow
2005a,b). Sargassum spp., Posidonia spp., and Zos -
tera spp. were the most common types of rafts, and
the general abundance and widespread distribution
of these macrophyte taxa in Australia (Christianson
et al. 1981, Kirkman 1997) suggest that they may
have the highest capacity to act as rafts in this region.
Furthermore, if storm intensity and frequency in -
crease (Barnard et al. 2015), the rate of detachment of
coastal macrophytes may rise (Witman 1987, Sey-
mour et al. 1989), thereby increasing the supply of
rafts and potential for transportation of associated
organisms (Macreadie et al. 2011).

Masó et al. (2003) were the first to assess whether
rafts of abiotic origin, specifically marine plastic
debris, could harbour harmful microalgae taxa. They
found the epibenthic dinoflagellates Ostreopsis spp.
and Coolia spp. associated with plastic debris col-
lected along the Catalan coast in the western Medi-
terranean. We found that the microalgal assemblage
associated with the plastic raft sample had a very
similar composition to that of seagrass and macro-
algae, indicating the likely coastal origin of the plas-
tic. This reveals the capacity of anthropogenic mar-
ine debris to act in a manner like that of macrophyte
rafts, a concern given that abiotic materials such as
plastic have low decomposition rates, can stay afloat
for extended periods, and are becoming increasingly
more abundant in our oceans (Derraik 2002). The
ability of millimetre-sized marine plastics to act as
habitat for microorganisms has also recently been
investigated (Reisser et al. 2014). Although small,
these materials were found to have microalgal cells
associated with their surface and may therefore also
act as rafts and could also aid in the dispersal of
harmful epibenthic dinoflagellates. Pumice was
another type of raft collected during our study. Many
small clasts of pumice can be generated in a single
volcanic event and can travel vast distances in ocean
currents, making this material an effective rafting
agent (Bryan et al. 2012) that should also be consid-
ered in the future.

In this study, we contrasted the abundance of
potentially harmful epibenthic dinoflagellates on
rafts with those in the plankton at a time-series loca-
tion. Epibenthic dinoflagellates were virtually absent
from the long-term coastal phytoplankton monitoring
site located ~5 km from the coast. Although it seems
unlikely that an epibenthic species would be ad -

vected as free-living cells in the plankton, dispersal
of these organisms in ocean currents has been sug-
gested, particularly along the east coast of Australia
(Heimann et al. 2011, Murray et al. 2014, Sparrow et
al. 2017). Here we found that the epibenthic dinofla-
gellate P. lima was documented in only 3 of 267 sam-
ples over approximately a 50 yr period (1978, 1979,
and 2008). This occurrence rate is very low, but
shows that some unassociated epibenthic dinoflagel-
late cells can be found in surface waters. Therefore,
we cannot rule out that planktonic transport via drift-
ing of free-living cells may occur for these taxa, but it
seems far less likely compared to rafting.

CONCLUSION

Here, we have shown for the first time that epiben-
thic dinoflagellates remain viable when transported
offshore while associated with rafts of both biotic and
abiotic origin. Rafting is therefore an effective disper-
sal mechanism for harmful epibenthic dinoflagellates
and could facilitate geographic range expansions.
However, whether rafted epibenthic dinoflagellate
cells can be delivered to shallow waters and success-
fully colonise new coastal habitats remains an open
question and should be a fruitful area of future
research.
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