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INTRODUCTION

Seagrass meadows provide a variety of ecosystem
services, including a high capacity to store organic
carbon in their sediments (Fourqurean et al. 2012a).
The estimated carbon burial in seagrass meadows is
48.0−112 Mt yr−1 (Duarte et al. 2013a), making them re-
sponsible for 20% of marine carbon sequestration de-
spite occupying less than 0.2% of the ocean surface
(Ken ne dy et al. 2010, Duarte et al. 2013a). The trapped

carbon can be stored for centuries and millennia
(Duarte et al. 2005, Macreadie et al. 2014, Rozaimi et
al. 2016); however, degradation and/or loss of mead-
ows triggers the release of the trapped carbon (Marbà
et al. 2015) and its re-emission into the atmosphere
(Macreadie et al. 2014), thereby increasing the atmos-
pheric inorganic carbon concentration. The 7% loss of
global seagrass meadows since 1990 (Orth et al. 2006,
Waycott et al. 2009) is mainly due to in creased river
runoff from coastal development (Halpern et al. 2007),
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while in the Indo-Pacific region, overexploitation of
fisheries was identified as a major threat (Fortes 1990,
Tomascik et al. 1997, Nordlund 2007). The high loss of
these ecosystems and their important role in climate
change mitigation necessitate the development of
non-  destructive, rapid ways of estimating carbon over
a range of meadow types, especially in the high-
diversity areas of Southeast Asia.

Organic carbon in seagrass ecosystems is stored in
living and dead above- and belowground seagrass
vegetation, as well as in the sediment. To assess total
carbon storage, it is necessary to develop approaches
of estimating above- and belowground biomass of
the living seagrass vegetation and to quantify stored
carbon. Traditional measurements of the seagrass
biomass include destructive, time-  consuming, physi-
cal removal of the seagrass material from the field,
which is undesirable (Downing & Anderson 1985,
Duarte & Kirkman 2001). Thus, more efficient and
non- destructive methods have been developed using
visual techniques (Mellors 1991, Mumby et al.
1997a), photographs (Long et al. 1994, Kutser et al.
2007), percentage of seagrass cover (Heidel baugh &
Nelson 1996, Carstensen et al. 2016), and a combina-
tion of remote sensing and percentage of seagrass
cover correlations (Armstrong 1993, Mumby et al.
1997b, Phinn et al. 2008, Knudby & Nordlund 2011,
Lyons et al. 2015). Only the last ap proach can be
applied over a large areal extent, using the gener-
ated relationship between percentage of seagrass
cover and aboveground biomass and applying it over
the whole area of the seagrass meadow. The problem
with this approach is the low accuracy of biomass pre-
diction within the meadows of several seagrass spe-
cies (Knudby & Nordlund 2011). On the other hand,
estimations of belowground biomass have been lim-
ited, with the few successful estimations using a cor-
relation with blade counts (Heidelbaugh & Nelson
1996) and the strong positive relationship between
above- and belowground biomass on a global scale
(Duarte & Chiscano 1999). While the prediction from
aboveground biomass using a linear model was not
suitable for temperate species in Australia (Lyons et
al. 2015) and tropical species in Kenya (Githaiga et
al. 2017), belowground biomass predictions with low
prediction error have been made for mangrove tree
species (Njana et al. 2015) using an allometric model-
ing technique. Therefore, novel models should be
tested on seagrass meadows.

To quantify the carbon stored in living vegetation,
similar methods as those used for sediment have
been suggested, including a C, H, N elemental ana-
lyzer and loss on ignition (LOI) (Fourqurean et al.

2014). However, if the budget is limited and no extra
equipment is available, the estimation of the carbon
content can be performed using a carbon conversion
value of 0.34 (Duarte 1990). This conversion value is
the average of the carbon content of the leaves of 27
seagrass species on a global extent (Duarte 1990),
with a few replications for the tropical Indo-Pacific
species (Cymodocea serrulata, Enhalus acoroides,
Halo dule uninervis, Halophila ovalis, Halophila stip-
ulacea, Syringodium isoetifolium, Thalassia hemp -
richii). However, the average values of the carbon in
above- and belowground living vegetation for tropi-
cal species is lower than the global average for most
species (Supriadi et al. 2014, Phang et al. 2015).
Recently, Stankovic et al. (2017) indicated a signifi-
cant correlation (p < 0.01, R2 = 0.9763) between the
aboveground biomass and carbon content of 3 tropi-
cal species using a simple linear model. Therefore,
novel approaches are required that can link non-
destructive, time efficient ways of data collection for
several types of seagrass meadows and the carbon
storage within the ecosystem.

In contrast to mangrove and terrestrial ecosystems,
which store half of the carbon in living biomass
(Fourqurean et al. 2012a), most of the organic carbon
in seagrass ecosystems is stored in the sediment
within the meadow, with twice the amount of organic
carbon storage per hectare compared to terrestrial
soils (Duarte et al. 2005, Kennedy & Björk 2009,
Fourqurean et al. 2012a). The average estimates of
global stocks of organic carbon in the sediment are
9.8 to 19.8 Pg C (Fourqurean et al. 2012a), which is
roughly equal to the combined amount of organic
carbon stored in marine tidal marshes and mangrove
forests (Fourqurean et al. 2012a). Many factors influ-
ence the amount of stored organic carbon in the sed-
iment of seagrass ecosystems (Mateo et al. 2006,
Mcleod et al. 2011). Samper-Villarreal et al. (2016)
suggested that higher structural canopy complexity,
higher turbidity, and shallower and lower wave
action sites have higher carbon content, which corre-
sponds with the significant but weak correlation of
canopy complexity and organic matter in Tang Khen
Bay, Phuket (J. Panyawai unpubl. data). Ricart et al.
(2017) determined that sedimentary organic carbon
is influenced by the landscape configuration as well
due to its greater capacity to retain autochthonous
carbon and to accumulate higher portions of finer
sediments (Miyajima et al. 2017).

To predict organic carbon content in seagrass sedi-
ment, several methods have been attempted. Githa -
iga et al. (2017) determined that aboveground bio-
mass is not a suitable proxy for organic carbon in the
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sediment prediction. Armitage & Fourqurean (2016)
re  ported that sedimentary organic carbon can be
successfully estimated from above- and below-
ground carbon in T. testudinum tissues as the link
be tween plants’ productivity and soil carbon storage
is already established in terrestrial ecosystems (Kir-
wan & Mudd 2012). Serrano et al. (2016) and Dahl et
al. (2016) found that grain size was associated with
the organic carbon content, where finer-size parti-
cles, <16 µm fractions (Secrieru & Oaie 2009) and
<0.074 mm (Dahl et al. 2016), could be used to pre-
dict total organic carbon (%); however, Gillis et al.
(2017) and Samper-Villarreal et al. (2016) did not find
any correlation. Serrano et al. (2016) also concluded
that mud content (<63 µm) is a good predictor for
organic carbon for smaller species such as Halodule,
Halo phila, and Zostera spp., while it was a poor pre-
dictor for larger, long-living seagrass species, sug-
gesting that the size of the species and its biomass
has a positive correlation with organic carbon in the
sediment. Gullström et al. (2018) found that organic
carbon was strongly negatively linked to sediment
density, where higher storage is found in the less
compacted sediments due to microbial activity,
which can be suppressed by the lack of oxygen
(Belshe et al. 2017). Furthermore, Fourqurean et al.
(2012b) reported that organic carbon (%) in the sedi-
ment has a positive relationship with the organic
matter from LOI, and they developed a model for
predicting sedimentary organic carbon on a global
set of data with high R2. However, R2 of this model
varies regionally (Four qurean et al. 2012b, Phang
et al. 2015, Samper- Villarreal et al. 2016), as the

meadow structure and sediment in ecosystems have
different properties.

Our objective in this study was to explore a rapid,
non-destructive approach to predict carbon storage
in the seagrass ecosystem with limited resources,
which can help to estimate blue carbon. This can be
achieved by a series of linked equations, in a step-
wise structure, where the predictor for the first unit
(% coverage of the plant) is necessary and the output
is used as the predictor for the next unit.

MATERIALS AND METHODS

Study site

The study was conducted along the west coast of
southern Thailand in Phuket, Trang and Krabi
Provinces (Fig. 1). In total, 5 of the largest seagrass
meadows (>2.5 km2) with the highest seagrass diver-
sity were located and selected as study areas. In each
study area, the type of patch was distinguished as
monospecific (Enhalus acoroides) and mixed species
(E. acoroides and Thalassia hemprichii or Cymodo -
cea serrulata). These species were selected, as Stan -
kovic et al. (2017) found that large (E. acoroides) and
medium-sized (T. hemprichii and C. serrulata) species
store more carbon in the plants as well as in the sedi-
ment, compared to smaller species. In total, we sam-
pled 48 patches (6 replicates per patch type from each
study area). Field collection was carried out from April
2015 to December 2016 to cover 2 seasons, which led
to 96 samples in total. The south of Thailand has 2 sea-

sons, rainy (May− October) and sum-
mer (December− April), that are based
on the southwest monsoon occurrence
(from mid-May to mid-October) (Thai
Meteorological Department, https://
www. tmd. go. th/ en/).

Field collection

In each study area, 6 replicates per
patch type of biomass and sediment
samples were taken. Qua drats (50 ×
50 cm2) were randomly placed in each
replicate, with a distance of at least
100 m. The percent coverage within
the quadrats was re corded following
McKenzie & Campbell (2002). All liv-
ing vegetation from a quadrat was col-
lected and placed in pre-labeled bags
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and kept at 4°C until a laboratory was reached. Sed-
iment samples were collected using stainless steel
cores (5 cm diameter × 1 m length), which were
placed in the same area of the quadrats. Cores were
covered with duct tape before being hammered into
the sediment. As a core was removed from the sedi-
ment, the bottom and top parts of the core were cov-
ered using rubber stoppers so that the oxygen intru-
sion to the deepest layers was minimal. Sediment
samples were cut off at 3 cm intervals (Fourqurean et
al. 2012b) by peeling duct tape from top to bottom
(n = 2679 sediment subsamples). Each subsample
was packed in pre-labeled bags and kept at 4°C until
a laboratory was reached.

Laboratory study

Biomass samples from each patch type were sepa-
rated into above- (leaves) and belowground (roots
and rhizomes) parts (n = 288). Leaf blades were man-
ually scraped to remove epiphytes, and cleaned
material was dried in an oven at 60°C until a constant
weight was achieved. The dry weights of the above-
and belowground parts were recorded. Since there is
little variation in organic carbon content in living
vegetation (Duarte 1990), only a small number of
samples (n = 48), including roots, rhizomes, and leaves,
were used for organic carbon analysis. Be tween 20
and 30 mg of each vegetative part was crushed into
powder using a mortar and pestle, and 10 mg of sub-
samples were used for carbon analysis (% carbon) as
determined by a CHNS/O Analyzer (Thermo Quest,
Flash EA 1112 Series) at the Central Equipment Divi-
sion, Faculty of Science, Prince of Songkla University
(PSU). Carbon content, as particulate organic carbon
from above- and belowground parts for each patch
type, was calculated as:

Carbon content (g) = 
carbon (%) × dry weight of sample (g)

(1)

Sediment subsamples were oven-dried at 60°C
until their weights were constant. Approximately
15 g from each subsample (n = 240) was ground into
fine powder, and 20 mg of the ground subsample
was used for organic carbon (Corg) analysis, which
was performed using the same method mentioned
above for plant parts. Particulate organic carbon
content (g) in each sediment subsample was calcu-
lated using Eq. (1). Inorganic carbon analysis was
performed with ~5 g of fine ground powder, using
acidification with 1 N HCl. The rest of the fine
ground subsample powder was weighed and used

for %LOI analysis. The samples were heated in a
furnace at 450°C and kept for 4−8 h (Heiri et al.
2001). %LOI was calculated as:

%LOI = [(dry mass before combustion − dry mass after 
combustion) / dry mass before combustion] × 100 (2)

Model structure and analyses

To predict carbon estimates in the seagrass ecosys-
tem, the whole model is divided into 3 units: (1) bio-
mass prediction, (2) carbon in the living vegetation
prediction, and (3) carbon in the sediment prediction
(Fig. 2). Both monospecific and mixed patch types
were explored separately. All statistical analyses were
performed using the open source language R (R Stu-
dio Team 2015). All relationship models be tween 2
variables were tested using linear regression analy-
sis. For each model, both untransformed and trans-
formed data (log and square-root transformations)
were tested. The model with the lowest Akaike’s infor-
mation criterion (AIC) value was selected. When sev-
eral models had ΔAIC <2, the simpler model was
chosen as a prediction model.

In the first unit, biomass values (for both above-
and belowground, ‘AG’ and ‘BG’) were predicted
using 2 models: ‘cover-AG’ and ‘AG-BG’ models
(Fig. 2). In the first model (cover-AG), aboveground
biomass (in g dry weight [DW] m−2) was predicted
from seagrass coverage (i.e. cover, %). In the second
model (AG-BG), belowground biomass (g DW m−2)
was predicted from aboveground biomass. For both
models, data from 45 quadrats per patch type were
tested.

For the second unit, carbon in the living vegetation
was predicted from the biomass value. Two methods
were tested using 20 samples per patch type (Fig. 2).
The first method created a conversion factor follow-
ing procedures described in detail by Howard et al.
(2014). Average values of organic carbon for above-
and belowground biomass for each patch type were
calculated separately and used as the conversion fac-
tor. The second method was the model to predict car-
bon in the living vegetation (Mg ha−1) from total bio-
mass (g DW m−2) (‘biomass-carbon’ model).

In the last unit, organic carbon in sediment (Corg)
was predicted. Two models were tested: ‘LOI-Corg’
and ‘plant-Corg’: (Fig. 2). The first model (LOI-Corg)
predicted organic carbon in sediment per sample
based on organic matter from the LOI technique from
100 sediment samples per patch type. The results of
Corg (%) from the C, H, N analyzer and the LOI (%)
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data were transformed to g cm−2. In the second model
(plant-Corg), organic carbon in sediment (Mg ha−1)
per core was predicted from plant attributes (e.g.
seagrass coverage, above- and belowground bio-
mass) from ~45 samples per patch type. The key dif-
ference between these 2 models is that the LOI-Corg

model requires field data collection for calculating
LOI and uses it as a predictor variable, while the sec-
ond model can use plant attributes such as % cover
and above- and belowground biomass, which can be
easily calculated using the previously mentioned
units. Moreover, the first model predicts the organic
carbon per subsample, so further calculations of the
total carbon pool in the sediment are necessary,
while the plant-Corg model predicts the organic car-
bon per sample (core), which is the amount of carbon
stored in 1 m of sediment.

Model evaluation

To provide the expected prediction error and pre-
dictive performance of the selected models, the mod-
els were evaluated using overall RMSE, R2, and 95%
CI of beta-coefficients of predictor variables. Be -
tween 3 and 20 samples were used for RMSE calcula-
tions for each model. Moreover, residual plots of the
selected model were tested.

To demonstrate predictive performance of the
selected models on the landscape scale, data were

gathered from Tha Rai Island in Nakhon Si Tham-
marat Province in July 2017. Middle and lower inter-
tidal areas were selected for data collection, as there
were similar species compositions for mixed (E. aco -
ro ides, T. hemprichii, and Halodule uninervis) and
mono specific (E. acoroides with few patches of H.
uninervis) patches. Eleven replicates of the coverage
data and 1 replicate of sediment to 60 cm depth were
obtained per patch type. Sediment data were later
extrapolated up to 1 m depth, as the model predicts
organic carbon in sediment up to 1 m depth.

RESULTS

Modeling units

For the biomass prediction unit (cover-AG and
AG-BG models), a linear model with untransformed
data was chosen as the model predictor for both
mono specific and mixed species patches (Table S1a−d
in the Supplement at www. int-res. com/ articles/ suppl/
m596 p061_ supp. pdf). All predicted equations are
shown in Table 1.

For the carbon in the living vegetation prediction
unit, monospecific patches had average carbon val-
ues of 32% for aboveground parts and 30% for
belowground parts, suggesting conversion factors of
0.32 and 0.30, respectively. For mixed-species
patches, average carbon values were 34 and 32%,
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respectively, suggesting conversion factors of 0.34
and 0.32. Similarly to the first unit, a linear model
with untransformed data was chosen as the model
predictor for both patch types in the biomass-carbon
unit (Table S1e,f). The predicted equations for both
patch types are shown in Table 1.

For the sedimentary carbon prediction unit, simi-
larly to the first 2 units, a linear model with untrans-
formed data was chosen for the LOI-Corg model as the
model predictor for both patch types (Table S1g,h). In
contrast, for the plant-Corg model, a linear model with
log-transformed data was chosen as the model pre-
dictor for both patch types (Table S1i,j). All predicted
equations are shown in Table 1.

Model performance and evaluation

Models of monospecific patches with R2 values of
83, 89, 41, and 87 had higher R2 values than models
of mixed patches, with R2 values of 60, 45, 32, and 79
for cover-AG, AG-BG, LOI-Corg, and plant-Corg mod-
els, respectively (Table 1). However, R2 values had
the same value (99%) in both patch types for the bio-
mass-carbon model. The overall RMSE of monospe-
cific patch models was lower than that for mixed
patches for cover-AG, AG-BG, biomass-carbon, and
LOI-Corg models as well, while it was higher for
monospecific conversion factor and plant-Corg mod-
els (Table 1).

On the landscape scale (at Tha Rai Island), cover-
age of the seagrass varied between 10 and 65% in
monospecific meadows and between 50 and 80% in
mixed meadows. Collected sedimentary organic car-

bon was 65.39 and 66.29 Mg ha−1 in monospecific
and mixed species meadows, respectively. When car-
bon was extrapolated to 1 m depth, carbon estima-
tions were 130.78 Mg ha−1 in monospecific and
132.58 Mg ha−1 in mixed species meadows. Follow-
ing a stepwise structure of the models (Fig. 3), pre-
dicted average organic carbon in sediment was (mean
± SD) 149.95 ± 21.68 and 124.32 ± 5.38 Mg ha−1 in
monospecific and mixed species meadows, respec-
tively. Overall RMSE was 27.91 in monospecific and
6.31 in mixed meadows.

DISCUSSION

Biomass prediction (cover-AG and AG-BG models)

The biomass prediction unit was built up on the al-
ready established knowledge of the relationships be -
tween coverage and above- and belowground bio-
mass (Armstrong 1993, Heidelbaugh & Nelson 1996,
Mumby et al. 1997b, Duarte & Chiscano 1999). In the
case of the cover-AG model, the relationship between
plant coverage and the aboveground biomass has
been established for several years (Armstrong 1993,
Heidelbaugh & Nelson 1996, Mumby et al. 1997b,
Fonseca et al. 2002, Knudby & Nordlund 2011, Lyons
et al. 2015, Carstensen et al. 2016). However, our
model, which separates monospecific species from
the mixed-species patches, has higher R2 values and
smaller marginal error values, while the other models
of total biomass (Phinn et al. 2008, Knudby & Nord-
lund 2011, Lyons et al. 2015) reported medium and
low R2 values with an overall RMSE > 26.
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Model                        Equation                                                                                                    95% CI             R2 (%)      Overall
                                                                                                                                                                                                 RMSE

Cover-AG                         Monospecific: AG = 1.90157 + 1.02125 × cover                                0.8715−1.1710           83           10.99
                                  Mixed: AG = 9.033 + 0.771 × cover                                                   0.5709−0.9711           60           20.29

AG-BG                                Monospecific: BG = 29.419 + 5.125 × AG                                         4.5568−5.7461           89           20.86
                                  Mixed: BG = 26.5542 + 2.8491 × AG                                                 1.8899−3.8083           45           27.00

Biomass-Carbon         Monospecific: Carbon = −0.1016756 + 0.0144978 × Biomass          0.0137−0.0153           99           1.59
                                  Mixed: Carbon = −0.0606922 + 0.0139800 × Biomass                      0.0134−0.0145           99           1.83

LOI-Corg
                             Monospecific: Corg = 10.1740 + 0.1714 × LOI                                   0.1276−0.2151           41           1.95

                                  Mixed: Corg = 10.21697 + 0.13441 × LOI                                           0.0804−0.1884           32           8.79

Planta- Corg
                      Monospecific: Corg = −139.53 + 122.96 × log(BG)                             122.85−123.06           87           22.81

                                  Mixed: Corg = −112.46 + 102.28 × log(BG)                                        102.37−112.36           79           22.50

aVarious plant attributes

Table 1. Summary table for all of the selected models. For all models, p < 0.01. Cover: plant coverage (%); AG (BG): above-
ground (belowground) biomass (g dry weight [DW] m−2); biomass: AG + BG biomass (g DW m−2); carbon: carbon content in 

plants (Mg ha−1); LOI: loss on ignition (g cm−2): Corg: organic C in sediment (g cm−2)
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The second biomass model, AG-BG, is the model
that successfully and with a small margin of error
predicted belowground biomass from the above-
ground biomass. This result is supported by the
model of Githaiga et al. (2017) that also successfully
predicted belowground biomass from aboveground
biomass (only for Enhalus acoroides meadows). Like-
wise, Congdon et al. (2017) successfully predicted
belowground biomass from coverage of the plants for
Thalassia testudinum, Halodule wrightii, and Syrin -
go dium filiforme. However, Lyons et al. (2015) sug-
gested that the prediction is not appropriate using a
simple linear model, due to the plants’ variability in
phenology (Maxwell et al. 2014).

The existing relationship between above- and
belowground biomass (Duarte & Chiscano 1999)
was based on the global data set, with monospecific
and mixed species pooled together, resulting in a
high variation of the above- and belowground ratio
(0.005−  8.56), and thus a lower correlation. Similarly,
our re sults in both models (cover-AG and AG-BG)
resulted in better performance of monospecific spe-
cies models than for mixed species. These same
patterns of lower model performance in the mixed
species patch might suggest that mixed species
patches are more complex and that more input
information for the model is necessary. Since Lyons
et al. (2015) observed a reduction in the margin of
error of the aboveground biomass prediction in the
‘species’ and ‘dominant species’ models in the
mixed patches, it could be suggested that each spe-
cies component of the biomass should be separated
for future modeling.

Carbon in the living vegetation prediction
 (conversion factor and biomass-carbon model)

We suggested 2 methods of predicting organic car-
bon within the seagrass tissues. The first included
creating conversion factors, while the second tested
the relationship between organic carbon and bio-
mass. While the global average value of organic car-
bon is assumed to be approx. 35% (Duarte 1990,
Four qu rean et al. 2012a), the average value of the
Southeast Asian region was lower at 27.5% (Phang et
al. 2015). The difference of the average carbon con-
tent in seagrass tissues between global averages and
the Southeast Asian region created the need for a
specific carbon conversion factor for the region.

Although the conversion factor is very useful in
carbon calculations, the linear regression model be -
tween organic carbon within the plants and biomass
(biomass-carbon model) provides better results with a
very strong correlation and a low error margin. The
results from Stankovic et al. (2017) showed a very
strong correlation (p < 0.01) as well, which suggests a
linear increase in carbon within the tissues of the
plants based on their structural components, form,
and role in the ecosystem (Duarte 1990, Wirach wong
& Holmer 2010, Rustam et al. 2017). However, when
the data are separated between patch types, results
show smaller errors and stronger relationships. Since
both methods provided satisfactory results, in our
study we can conclude that the relationship between
biomass and organic carbon within the plants is not
species- specific and is not influenced by the type and
structure of the seagrass patch.
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Model type
Monospecific species

Fig. 3. Model structure with results for all 3 units: biomass prediction, carbon in living vegetation prediction, carbon in 
sediment prediction. See Table 1 for abbreviations
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Carbon in the sediment prediction 
(LOI-Corg and plant-Corg models)

The LOI-Corg model is a moderately good predictor
of organic carbon in sediment, corresponding to the
results of Phang et al. (2015). On the other hand,
studies from temperate zones have reported much
stronger relationships, with R2 ≥ 0.80 (Fourqurean et
al. 2012a,b, Samper-Villarreal et al. 2016). Because
results differ regionally, it is possible that sediments
in tropical seagrass meadows experience mass loss
during the LOI process even with no organic carbon
present in the sediment, which could be due to the
structural water and/or soluble salts in the sediment
(EPA 1990).

The second model (plant-Corg) showed that the
belowground biomass of the plants could be a mod-
erately good predictor of organic carbon in the sedi-
ment. The large belowground biomass of the longer-
living species such as E. acoroides and T. hemprichii
(Duarte et al. 1998) produces a significant contribu-
tion to the total carbon pool (Supriadi et al. 2014),
suggesting that belowground biomass has a positive
correlation with or ga nic carbon in the sediment (Ser-
rano et al. 2016). While monospecific patches consist
of a long-living single species, mixed patches consist
of 2 species and are more structurally complex with
2 layers of canopy and roots. Rattanachot & Prathep
(2015) reported that the redox potential and the
organic carbon in the sediment were not different
between monospecific and mixed-species patches,
suggesting that root complexity has little influence
on organic carbon in the sediment. However, Stank -
ovic et al. (2017) concluded that monospecific patches
of larger-sized species store more carbon within their
sediments than smaller species. Samper-Villarreal et
al. (2016) proposed that seagrass structural complex-
ity of the canopy is the key driver in non-turbid
waters that correlates with the organic carbon in the
sediment, suggesting that carbon in the seagrass sed-
iments increases as structural complexity increases.
Canopy complexity is an important factor in water
flow attenuation, as it limits resuspension of the
organic particles to the water column (Koch 2001,
Hendriks et al. 2008). The trapped carbon from exter-
nal sources via canopy complexity is added to the
overall carbon accumulation in the sediment (Kennedy
et al. 2010, Duarte et al. 2013b). These results suggest
that both patch types demonstrate a high possibility
of carbon sequestration and accumulation in the sed-
iment via larger biomass sizes in monospecific or via
canopy complexity in mixed species patches. Further
investigation of the correlation of the belowground

biomass and structural complexity and organic car-
bon in the sediment should be made for more precise
conclusions and more accurate models.

Landscape-scale model and its advantages

The stepwise structural model proposed in this
study is the first model that can predict the organic
carbon pool in seagrass ecosystems using only the
coverage of plants. The lower values of the error mar-
gin on the landscape scale show that the series of the
proposed linked relationships can successfully pre-
dict organic carbon, which can have several advan-
tages compared to other approaches. Time and cost
for the research can be greatly decreased. Field work
for data collection can be reduced (for collecting
information about species coverage), and post-field
data processing in the laboratory (e.g. for organic
carbon analysis) is not required. Time and cost can
even be less if remote sensing imagery is applied, as
field trips can be limited to ground-truth data collec-
tion. This advantage is especially important for many
countries in Southeast Asia where research budgets
are limited. Another key advantage is its applicabil-
ity over a large area. Finally, although the model-
based approach is assumed to provide less accurate
results than visual/destructive sampling methods,
the subjective estimates and human error during
sampling cannot be quantified, while the model error
is repeatable and quantifiable.

The models proposed in this study should be used
with caution, as they are applicable only to a few
 species. Users should be aware of model errors and
limitations and should apply mixed-species patches
separately from monospecific species patches. Our
pro posed models address only autochthonous or -
ganic carbon sources, but in the seagrass ecosystems,
allochthonous sources play important roles (Four -
qurean et al. 2012a), so their contributions should not
be neglected.

Although the models have certain limitations, they
can be used in various situations. Managers can use
them as a tool to promote and enhance seagrass
health, conservation, and restoration, and to set con-
servation priorities. They can also be used by local
people or government officers who want to promote
seagrass meadows within national greenhouse gas
schemes via carbon credits. As seagrass ecosystems
contribute to climate change mitigation, the pro-
posed models can be used for modeling of seagrass
distribution in future climates and to de velop effi-
cient climate change mitigation strategies. However,
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it is necessary to continue to test the relationships
between coverage, biomass and organic carbon —
especially in mixed-species patches — so that bio-
mass and carbon storage can be as successfully pre-
dicted as in monospecific patches, and to improve the
prediction of sedimentary organic carbon. We hope
that this approach can be used as a stepping stone for
future research studies within the SE Asian region,
as this region is failing to match the pace of current
blue carbon  studies.
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