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INTRODUCTION

The Braun-Blanquet (BB) cover-abundance scale
is a 5- to 9-division ordinal alphanumeric scale
commonly used in vegetation science to visually
estimate community composition and species domi-
nance (Braun-Blanquet & Pavillard 1922, Braun-
Blanquet 1932). First developed by Braun-Blanquet

in the 1920s, the technique evolved from earlier
use of areal percentages to define plant community
types or  ‘syntaxa’, and quickly became the modern
standard for recording relevé data (Braun-Blanquet
1932, Mueller-Dombois & Ellenberg 1974, Adam-
czyk et al. 2013). The BB scale and its accepted
variants revolutionized the nascent field of phy-
tosociology and set the stage for decades of
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globally accumulated vegetation data (Leps & Had-
incova 1992).

As a field assay, the appeal of the BB scale was
obvious: it provided fast and efficient means of non-
destructively sampling large plots (Braun-Blanquet
advocated up to 10 m2) for both species abundance
and cover, allowing investigators to sample quickly
in multistory environments and to integrate informa-
tion over larger spatial scales than would have been
practical using quantitative metrics, such as above-
and below-ground biomass, productivity or leaf-area
index (Braun-Blanquet 1932, Dobert et al. 2015, Her-
pigny & Gosselin 2015). That BB scores co-varied
with at least some of these measures added to the
scale’s utility and widespread popularity (Dobert et
al. 2015). Moreover, by formalizing the abundance-
cover coefficient at intuitive breaks (i.e. sparse, plen-
tiful, 5, 25, 50, 75%), the scale reduced observer sub -
jectivity and minimized inter-experimenter variation
(Edwards & Tinker 2009).

The central role of the BB scale in phytosociology
led to a lasting presence in terrestrial plant ecology;
however, it was rarely used in marine systems until a
modified version was introduced to seagrass ecology
by Kenworthy et al. (1993; but see Watling et al.
1978, Niell 1979). The 8-division scale preserved the
abundance-to-cover sequence put forth by Braun-
Blanquet (1932), but replaced alphanumeric cate-
gory labels, ‘r’ and ‘+’, with fully numeric ones, 0.1
and 0.5, respectively. Generally applied using smaller,
0.25 to 1 m2 quadrats, the marine variant of the BB
score allowed investigators to census far more sites,
with greater replication over larger geographic dis-
tances, than could have been achieved using alter -
native methods such as seagrass shoot counting, ben-
thic coring or point-intercept coverage estimation
(Kenworthy et al. 1993, Rose et al. 1999, Fourqurean
et al. 2001, Armitage et al. 2006, Hall et al. 2007). For
these reasons, the modified BB scale was chosen to
assess benthic macrophyte distribution and abun-
dance by 2 of the largest and longest running sea-
grass monitoring programs in the USA: the Fisheries
Habitat Assessment Program (FHAP; 1995 to the
present) in Florida Bay and the Florida Keys National
Marine Sanctuary Seagrass Monitoring Program
(FKNMS SMP; 1995 to the present) in the Florida
Keys. Both programs currently represent 20+ yr
repositories of benthic coverage data recorded on the
BB scale (Fourqurean et al. 2001, Durako et al. 2002).

Despite the BB scale’s undeniable value to vegeta-
tion and seagrass ecology, and the ongoing need
to integrate contemporary sampling with historical
datasets, the use of BB data becomes problematic

during statistical analysis. BB data are (1) zero-
inflated—owing to patchy distributions of most tar-
get species (Herpigny & Gosselin 2015), (2) non-
numerical—‘r’ and ‘+’ have no obvious numerical
equivalent (Podani 2006) and (3) categorical —
although conversion to an ordinal scale can be made
(van der Maarel 1979). As Podani (2006) pointed out,
the BB scale arrived well before computer-aided sta-
tistics or modern sampling theory, so the implications
of semi-quantitative data did not factor into its adop-
tion. In the marine realm, many of the earliest uses of
the BB score were either strictly qualitative (Niell
1979) or relied on derived metrics that were them-
selves continuous (but see Watling et al. 1978),
thereby circumventing categorical issues al together
(Kenworthy et al. 1993, Martin-Smith 1993).

To address limitations in the quantitative analysis
of BB scale data, 5 solutions have been proposed: (1)
convert to presence/absence (van der Maarel 1979),
(2) derive and analyze continuous metrics, such as
frequency, abundance and density (Kenworthy et al.
1993), (3) convert to ordinal scale, then only employ
methods appropriate to ordered data (Podani 2005,
Ricotta & Feoli 2013), (4) convert from ordinal to
 continuous and apply conventional statistics (van
der Maarel 2007), including those tailored to zero-
inflated data (Herpigny & Gosselin 2015), and for the
marine variant, (5) ignore data scale altogether and
treat raw BB scores as though continuous (Rose et al.
1999, Armitage & Fourqurean 2006). All of these
approaches have demonstrated success in de scribing
patterns in plant community data. However, an ongo-
ing debate remains regarding the proper balance
between mathematical ad missibility (Podani 2006,
Ricotta & Feoli 2013), which precludes the use of
ratio-scale methods on ordered data, and the value of
reinforcing researcher intuition, since the use of such
methods tends to recover anticipated patterns (Clymo
1980, Ricotta & Avena 2006, but see Podani 2007).

Podani (1984) suggested that the acquisition of
field data can be quite imprecise and may in fact be
the limiting step in any analysis of BB data. Here, we
examine how much information is lost with respect to
quantifying species cover when a BB scale is used.
We then assess which of the approaches common
in the marine literature performs best when used
in simple 1-way ANOVA. Finally, we determine if
either of the log-linear transformations proposed by
van der Maarel (van der Maarel 2005, 2007) offer
advantages over less severe methods. To do this, we
used the FHAP sampling design to simulate coverage
data and BB scores for 2 sample groups along 3 axes
of variation: effect size (difference be tween group
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means), variation about the mean and
the midpoint between the means of 2
sample groups. We then compared the
simulated data to 6 yr of FHAP seagrass
data, and assessed Type I error (α) and
proportional deviance in raw mean dif-
ference effect size after iterative 1-way
ANOVAs between sample populations.
This study represents an attempt to
answer the question of how best to treat
BB scale data in parametric analysis,
offering detailed information on the
capacity of raw BB data and common
transformations to resolve treatment
 differences (i.e. statistical power) in an
experimental design ubiquitous in the
marine literature (Underwood 1997).

METHODS

Ecological data

The FHAP program began in 1995 in response to
the first large-scale die-off reported for Thalassia tes-
tudinum in Florida Bay, Florida (Robblee et al. 1991,
but see Hall et al. 2016 for a recent recurrence). To
track seagrass recovery in discrete sections of the
bay, known as ‘basins’ or ‘lakes’ due to their geomor-
phology and hydrologic isolation by shallow subtidal
carbonate mudbanks, bi-annual (1995 to 2004), then
annual (2005 to present), monitoring of benthic cov-
erage was conducted in 10 to 17 basins (Fig. 1) using
the modified BB scale of Kenworthy et al. (1993; our
Table 1). Each basin represented a range of physico-
chemical conditions and gradients in Florida Bay,
and was partitioned into 29 to 31 tessellated, hexag-
onal grid cells using algorithms developed by the US
Environmental Protection Agency’s (EPA) Environ-
mental Monitoring and Assessment Program (EMAP).
Sampling sites, 1 per grid cell, were randomly chosen
each year and field-located using handheld GPS. At
each site, benthic cover and abundance of all macro-
phytes—by species, taxonomic group and total—
were visually estimated within each of eight 0.25 m2

quadrats, haphazardly distributed within a 10 m
radius of the anchored vessel. Analyses of the BB and
transformed data treated site-level means (n = 8) as
replicate samples for basin-level comparison (n = 29
to 31).

The portion of the dataset used for this study cov-
ered the years 2010 through 2015, included 6 spring
and 1 fall samplings, was comprised of 3222 sampling

sites and represented data from 25 776 quadrats
(8 per site; Fig. 1). For simplicity, only the 6 seagrass
species (T. testudinum, Syringodium filiforme, Halo-
dule wrightii, Ruppia maritima, Halophila engelman-
nii and Halophila decipiens) and the composite
 category: ‘Total Seagrass’ were used for analysis.
These data represent a 6 yr period of post-recovery
seagrass community dynamics along with a limited
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% Cover ranges BB BB2 TxEl OTV vdm05 vdm07

[0] 0 0 0 0 0.24 0.23
(0,0.04] 0.1 r 0.02 1 0.493 0.485
(0.04,0.2] 0.5 + 0.1 2 1.000 1.00
(0.2,5] 1 1 2.5 3 2.027 2.064
– – 2m – 4 4.110 4.260
(5,25] 2 2a 15 5 8.332 8.793
– – 2b – 6 16.427 18.148
(25,50] 3 3 37.5 7 34.246 37.457
(50,75] 4 4 62.5 8 69.427 77.310
(75,100] 5 5 87.5 9 140.752 159.567

Table 1. Braun-Blanquet scales and common conversions, adapted from
van der Maarel (2007). % Cover ranges: the ranges used to convert contin-
uous scale benthic coverage to the marine variant of the Braun-Blanquet
scale; BB: the marine variant of the Braun-Blanquet score developed by
Kenworthy et al. (1993); BB2: the extended Braun-Blanquet scale from
which the ordinal transformations of van der Maarel (1979) originated;
TxEl: the updated midpoint conversion first suggested by Tüxen & Ellen-
berg (1937); OTV: the ordinal transform scale of van der Maarel (1979);
vdm05: the logarithmic transformation of van der Maarel (2005); vdm07: 

the updated logarithmic transformation of van der Maarel (2007)

Fig. 1. Fisheries Habitat Assessment Program (FHAP) sam-
pling hexagons included in the simulation study (2010 to 

2015)
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5-basin fall survey of active die-off during the recent
2015 mortality event (Hall et al. 2016). Therefore, the
comparison dataset captured a wide range of natu-
rally occurring variation in seagrass species composi-
tion, patchiness and coverage.

Simulated data and transformations

To capture the behavior of BB data where actual
percent cover was known, we simulated FHAP meth -
odology for 2 basins using 30 replicate sites per basin
and 8 subsample quadrats per site (Fig. 2A). Three
statistics were varied: (1) standard deviation, (2) effect
size or distance between basin means and (3) mid -
point between the means of both sample groups, in a
fully orthogonal mixture distributed across a wide
range of values (Fig. 2B). Basin means extended from
1 to 100% cover in 1% increments (Pop1: 1 to 99%;
Pop2: 3 to 100%) with corresponding influence on ef-
fect size (1 to 99%) and midpoint (2 to 99.5%). Stan-
dard deviations varied from 1 to 100% in 1% incre-
ments from 1 to 5%, and in 5% increments thereafter.
Treated as axes in 3-dimensional space, the resulting
triangular prism formed a ‘performance space’ within
which all simulated benthic coverage and transformed
metrics were later evaluated (Fig. 3A).

For each unique combination of standard devia-
tion, effect size and midpoint (n = 60 000), 1000 itera-
tions of FHAP sampling were simulated (N = 6 × 107).
Quadrat-level percent coverage values were ran-
domly drawn from normal distributions meeting each
iterative set of specified parameters. Values outside
of [0,100] were substituted for 0 and 100, respec-
tively. All simulated percent cover data were con-
verted to the BB scale of Kenworthy et al. (1993)
using the following ranges: [0] = 0, (0, 0.04] = 0.1,
(0.04, 0.2] = 0.5, (0.2, 5] = 1, (5, 25] = 2, (25, 50] = 3,
(50, 75] = 4 and (75, 100] = 5 (Tüxen & Ellenberg
1937, van der Maarel 2007). From raw BB scores, 3
common percent cover transformations were at -
tempted: the median transformation adapted from
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Fig. 2. A graphical overview of the simulation showing (A)
the pseudoreplicated (n = 8 per site) and replicated (N = 30
per basin) sampling of 2 basins following Fisheries Habitat
Assessment Program (FHAP) methodology and (B) the 3
 underlying population parameters varied during the study:
standard deviation (SD), effect size and midpoint between 

the means of both basins

Fig. 3. (A) The 3-dimensional ‘performance space’ (gray) de-
fined by the systematic sampling of effect size, midpoint
and standard deviation (SD) between the simulated sam-
pling of benthic cover between 2 basins and (B) the approxi-
mate portion of that space (green) where Fisheries Habitat 

Assessment Program (FHAP) data were likely to occur
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Tüxen & Ellenberg (1937), ‘TxEl’, and 2 logarithmic
transformations offered by van der Maarel (2005,
2007), ‘vdm05’ and ‘vdm07’. Both van der Maarel
methods required initial conversion to the ordinal
scale following van der Maarel (1979; our Table 1).
Formulas for vdm05 and vdm07 were as  follows:

(1)

where OTV is the ordinal transform value, C is the
approximate percent cover and a is a weighting fac-
tor equal to 1.415 and 1.380 for vdm05 and vdm07,
respectively (van der Maarel 2007).

For each simulated FHAP scenario, the percent
cover, BB score and all 3 transformations (TxEl,
vdm05 and vdm07) were successively used as the
dependent variable in 1-way ANOVA, testing the
main effect of ‘basin’ on cover, for which the ex -
pected outcome in all cases was a significant differ-
ence in basin means. To quantify performance of each
transformation, we recorded 2 measures of accuracy
from each set of iterated scenarios (n = 1000 per set):
(1) the proportion of significant ANOVAs (at α = 0.05),
providing an empirical estimate of α and (2) the mean
estimated effect size (i.e. the absolute difference be -
tween simulated basin means), which provided an
integrated measure of precision for location statistics
from each basin. For further comparison, mean effect
size differences were converted to proportion deviance
values following:

(2)

where ES is the raw mean difference effect size esti-
mated from each simulated scenario and the known
ES for that scenario. Because BB scores are categori-
cal data but were treated as continuous for the analy-
ses, the actual effect size was converted to the
BB scale (Kenworthy et al. 1993) prior to calculating
deviance.

Mapping ecological data to the performance space

Because the performance space was based on pop-
ulation-level parameters and because we lacked true
percent cover for the FHAP data, our capacity to map
FHAP data directly to the performance space was
limited. However, to best approximate ecological
conditions we matched FHAP BB score behavior at
the site and basin scales to corresponding parameter
combinations from the simulation. To do this, we first
simulated FHAP-style sampling of single basins, pre-

served the ranges in site-level mean and standard
deviation for each unique combination (n = 1000 per
combination; n = 2400 combinations; N = 2.4 × 107)
and matched those simulated ranges to observed
ranges from FHAP data. Through this exercise we
were able to map the standard deviation from the
simulated performance space to FHAP data. To cal-
culate midpoint and effect size locations, we identi-
fied simulation scenarios where both simulated basins
were within FHAP data ranges. The resulting dataset
functioned as a liberal estimate of ecological space
(hereafter, ‘FHAP zone’) within the simulated per-
formance space, thus allowing an honest assessment
of BB score and transformation behavior likely to be
encountered by investigators using field data.

Statistical analysis

All data simulations and univariate statistical
analyses were conducted using the statistical soft-
ware, R version 2.14.1 (R Development Core Team
2012). One- and 2-way ANOVAs were conducted
using the aov function from the package ‘stats’. Post
hoc comparisons were made using Tukey’s honest
significant difference test as implemented by the
package ‘agricolae’. In all cases, statistical signifi-
cance was assessed at α = 0.05.

RESULTS

The FHAP zone

Range matching between sample statistics (x and s)
derived from FHAP data and population parameters
μ and σ) using simulation-derived statistics yielded a
reasonable approximation of the FHAP zone, or the
region of the performance space wherein actual
 ecological data were likely to occur (Fig. 3B). The
FHAP zone occupied 51% of the performance space
(30 732 of 60 000 sets of simulations) and was shifted
somewhat toward the higher end of the standard
deviation and lower end of the midpoint axes across
a wide range of modeled effect sizes. Mean (±1 SD)
‘Effect Size’, ‘Midpoint’ and ‘SD’ occupied by FHAP
data were 31.3 ± 23.6%, 46.4 ± 20.4% and 69.1 ±
32.3%, respectively. As expected for seagrass cover-
age data, there was a positive relationship between
midpoint distance (i.e. the magnitude of the true
mean percent seagrass cover between 2 basins) and
standard deviation along the upper range of mid-
points for any set of standard deviation. In other

(ES ES
ES

simulated known

known
d = −

ln( )
(OTV 2)

C
a

= −
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words, contrasts between basins of increasing sea-
grass coverage tended to involve greater degrees of
within-basin variance, perhaps owing to patchiness
at the highest end of the coverage spectrum. Also,
due to natural variance among the 3 performance
space axes, minimum SD (10%) was 5 to 10× that
of Midpoint (2%) or Effect Size (1%), despite all 3
 covering the balance of their modeled ranges at 10
to 100%, 2 to 99.5% and 1 to 99%, respectively.

Simulated ANOVA

The 4 transformations examined for performance
in simple 1-way ANOVA exhibited efficacy compara-
ble to that of actual percent cover. For the simulated
data, 73.5% of tests found significant differences
between basins using percent cover. Once converted
to BB scores, 70.5% of tests were significant, while
70.4, 70.0 and 70.0% were significant using the
TxEl, vdm05 and vdm07 transformations, respec-
tively. When only considering simulations that fell
within the range of data observed under FHAP, the
likelihood of detecting significant differences fell
closer to 50%, where higher variance may have be -
gun to interact with limitations of the simulated
FHAP sampling; i.e. statistical power may have been
adversely affected by sample density as well as met-
ric or transformation idiosyncrasy. For example, over
26.5% of the performance space sample replication
was insufficient to resolve basin differences using 1-
way ANOVA. This rose to 45% within the FHAP
zone. Yet, there were very few instances where only
percent cover was needed (2.9 and 0.8% for perform-
ance space and FHAP zone, respectively), and these
tended to be aggregated along breakpoints in the BB
scale at the lowest ends of the SD and Effect Size
axes (Fig. 4).

When considering BB transformations along a con-
tinuum of increasing severity (BB < TxEl < vdm05 <
vdm07), raw BB score, treated as though a con -
tinuous variable, outperformed the 3 transformations
across both the performance space at 70.5% and
within the FHAP zone at 54% of simulated scenarios.
For cases where α = 0.05 was achievable, BB score
was the transformation of choice for 99.6% of the
FHAP zone and 99.8% overall (Fig. 4A). Only along a
single plane between where sampling was insuffi-
cient to resolve basin differences (i.e. where even
percent cover was insufficient) and where BB data
performed well were alternate transformations
needed, and here only TxEl and vdm05 were occa-
sionally found (Fig. 4B).

Estimation of effect size

The capacity of transformed percent cover data to
estimate effect size (i.e. a proxy location statistic) was
captured as the proportional deviance between
mean effect size estimated during simulation and the
known effect size for each simulation scenario. Pat-
terns among transformations were different within,
as opposed to outside, the FHAP zone; this inter -
action between zone and transformation was sig -
nificant in a 2-way ANOVA (F12,4633 = 1723.8, p <
0.001; Fig. 5). For percent cover, deviance was higher
within the FHAP zone (0.445 ± 0.148, SD) than out-
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                                      Fig. 4. Results of the ANOVA simulation showing (A) the
identity of the least severe transformation (BB [dark blue] <
TxEl [turquoise] < vdm05 [red] < vdm07 [none]) needed to
resolve basin differences at an empirical α = 0.05, and (B)
the portion of the performance space where actual percent
cover (light brown) was needed and where percent cover
(black) was incapable of effective ANOVA. For clarity,
the TxEl and vdm05 transformations, as well as percent-

cover-only locations, are shown in both panels
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side (0.111 ± 0.146), as it was for BB score (FHAP
zone: 0.725 ± 0.124; outside FHAP: 0.584 ± 0.208)
and TxEl (FHAP zone: 0.490 ± 0.152; outside FHAP:
0.291 ± 0.304). However, this pattern, consistent with
higher variance and ANOVA limitations within the
FHAP zone, reversed for the van der Maarel transfor-
mations, which both exhibited lower proportional
deviance within the FHAP zone. A 1-way ANOVA by
Transformation Type within the FHAP zone (F4,153655 =
25 912, p < 0.001) and post hoc comparison tests
revealed all 4 transformations to be significantly dif-
ferent from each other and raw percent cover, with
vdm07 outperforming all others with a proportional
deviance of 0.279 ± 0.280 (61% lower than raw BB
score and 43% lower than TxEl).

In the performance space, the distribution of trans-
formations, prioritized using the minimum propor-
tional deviance, exhibited clear dominance of vdm07
at 46% of modeled scenarios (Fig. 6A), rising to 75%
within the FHAP zone (Fig. 6B). Conversely, raw BB
was the optimal transformation at only 2% of the per-
formance space and only 6 of 30 732 observations
within the FHAP zone. TxEl and vdm05 occupied 33
and 19% of the performance space, and 9 and 16% of
the FHAP zone, respectively.

DISCUSSION

For nearly a century, the Braun-Blanquet cover-
abundance scale and its accepted variants have
offered practical solutions for recording plant com-
munity composition and coverage, yet as semi-quan-
titative data, their use in modern statistical tests
remains problematic (Podani 2006). We used a series

of 2-group data simulations to empirically estimate 
F-statistic performance in 1-way ANOVA using per-
cent cover, BB scores and 3 BB transformations (TxEl,
vdm05, vdm07) as competing dependent variables.
Modeled scenarios spanned more or less complete
ranges of within-group population parameters (mean
and SD) and among-group characteristics (midpoint
and effect size) providing a holistic picture of trans-
formation effectiveness. By mapping field-acquired
benthic macrophyte data to the simulated perform-
ance space we were able to further refine our assess-
ment to situations encountered by seagrass ecolo-
gists working in sub-tropical systems (i.e. FHAP
zone). Despite improper data type, the 8-division
marine variant of the BB scale (Kenworthy et al.
1993) performed well in parametric statistical tests

19

Fig. 5. Interaction plot of proportional deviance between
simulated and known raw mean difference effect sizes be-
tween 2 simulated FHAP basins. Mean ±1 SD deviance for
actual percent cover and 4 transformations are shown as
 calculated within (dark green) and outside (gray) the FHAP 

zone

                                                                                            Fig. 6. The distribution of prioritized transformations (BB
[dark blue], TxEl [turquoise], vdm05 [red], vdm07 [orange])
both (A) outside and (B) within the FHAP zone following
data simulation. Priority was given to the transformation that
had the least proportional deviance in raw mean difference 

effect size
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when treated as continuous data without prior trans-
formation. Surprisingly, the proportion of total space
where BB data were effective (i.e. α ≤ 0.05) was only
3% less than that of true percent cover, and was
actually better than any of the 3 metric transfor -
mations. Within the FHAP zone, the difference fell to
only 0.9% and there was a similar spread among
competing transformations. This demonstrates that
for the preponderance of typical monitoring program
analyses, data collected in the BB scale can be
directly analyzed using ANOVA without significant
penalty to statistical power.

Although BB data successfully capture important
aspects of sample dispersion, they unfortunately pro-
vide nonsensical estimates of sample group location.
For example, a group mean of 2.5 has neither appro-
priate units nor real world analogy (at least in terms
of percent cover), and so graphical representations of
the data and group differences (i.e. raw mean differ-
ence effect sizes) are difficult to interpret directly.
The simplest remedy is to remap BB data back to
continuous scales based on percent cover, which is
appropriate since areal coverage underpins most of
the logic supporting BB data. We tested 3 such trans-
formations and found that the most recent log-linear
formula by van der Maarel (2007; vdm07) yielded
optimal results, especially within the FHAP zone,
where it was favored in 75% of cases. The reasons for
this are not clear, but some have argued that conver-
sions beyond 100% might better represent the multi-
story nature of vegetation canopies (van der Maarel
2005), something that would certainly apply to the
mixed-meadow seagrass and macroalgal communi-
ties modeled here. Further, for sample groups on the
upper end of the scale, we speculate that having sub-
samples greater than 100% might contribute to more
accurate replicate means and, by consequence, more
accurate sample group means, although we did not
test this specifically, Nevertheless, our results are
congruent with the idea that log-linear transforma-
tions work well in multivariate space (Ricotta & Feoli
2013), because more precise location statistics likely
produce better dissimilarity matrices. Because the
vdm07 transformation maps BB data onto a continu-
ous metric scale recognizable to ecologists who may
not be familiar with BB categories, it has added ben-
efit when graphically representing sample groups in
standard plots or when considering quantitative pre-
dictions of coverage change (i.e. a 45.6% change in a
species coverage is far more interpretable than a 1.2
shift in BB score).

Perhaps our most salient finding was the clear lim-
itation that natural variability places on an otherwise

robust sampling design. Even though the proportion
of the FHAP zone that required data in true percent
cover for α = 0.05 was vanishingly small (0.8%),
nearly half (44.9%) of the zone exhibited within-
group variability beyond the statistical power of our
sampling protocol. This occurred despite percent
cover being precisely known for each subsample,
something not attainable in the field. Not all of the
failed contrasts would have been regarded as ecolog-
ically relevant, but it does suggest that the primary
challenge in estimating benthic macrophyte commu-
nity characteristics remains variability among sam-
ples rather than the accuracy of individual samples.

This has been appreciated for some time. Dethier
et al. (1993) showed that visual estimation techniques
allowed for larger sample sizes, reduced overall sam-
pling error and produced more accurate representa-
tions of benthic communities, than did those based
on more laborious point-count estimates. In addition,
random point sampling is more prone to missing rare
or isolated species than visual surveys (Dethier et al.
1993). Corroborating this, Edwards & Tinker (2009)
compared targeted (a hierarchical suite of approaches
using transects and quadrats tailored to multiple
 taxonomic groups) and coefficient sampling  (TxEl-
transformed BB quadrat data) and found that the
increased replication made possible using visually
based BB data overcame issues of sample accuracy.
Thus, increased replication reduces sampling error
(Dethier et al. 1993) and increases precision (Mellors
1991) more so than comparable efforts using more
quantitative (line- or point-intercept sampling) or
time consuming (shoot-count) and destructive (core
harvesting) methods. Because BB techniques directly
mitigate the biggest issue in ecological sampling:
achieving sample densities sufficient to resolve group
differences, its application in the field provides
investigators with a statistical hedge against spatio -
temporal variability.

Edwards & Tinker (2009) cautioned against the use
of BB data for experiments involving fine spatial
grain or small effect sizes. Such concerns have
caused trepidation among practitioners weighing a
decision to record field data on the BB scale or
attempting to analyze BB datasets. It is reasonable to
expect deficiencies given the subjective, categorical
nature of the scale, and possible human errors asso-
ciated with decision-making near category transi-
tions. Consistent with this, we observed errors for
ANOVA scenarios conducted in the vicinity of BB
category breakpoints, at effect sizes less than 20%
(mean ± 1 SD of 9.4 ± 8.1%) or at very low SD
(median = 3; 13.8 ± 23.8; Fig. 4); however, most of the
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FHAP data were found outside of these bounds.
Therefore, our simulation provides empirical evi-
dence that these common concerns may not be
appropriate for real-world applications of BB tech-
niques in benthic macrophyte systems, especially
when subsamples are taken. Overall, the enhanced
replication outweighs the risk.

Debate regarding mathematical admissibility of BB
data in parametric univariate statistics and multivari-
ate ordinations (Ricotta & Avena 2006, Podani 2007)
is far from resolved, and while the current study does
not directly address it, we can comment on how BB
data should be regarded by field ecologists and
coastal managers tasked with collecting long-term
benthic coverage data at landscape scales. First,
because the use of BB data in modern analysis is not
supported by statistical theory, their behavior must
be empirically estimated. By doing so, we can gain
confidence in how the metric (when used as such)
will perform in a given sampling design. Our results
suggest that BB data can be used as a continuous
metric in simple ANOVA and increased accuracy is
attainable using log-linear (vdm07) transformation.
Second, given ever-present sampling limitations and
pervasive underlying natural variation, we argue
that the value of BB data may be less a matter of
recovering patterns perceived a priori by an investi-
gator (Clymo 1980, Ricotta & Avena 2006, Ricotta &
Feoli 2013) than it is about statistical reliability, and
the consistency with which a given test can resolve
true sample group differences, given ever-present
sampling limitations and pervasive underlying natu-
ral variation.

This study builds upon the idea that sampling
speed (leading to greater replication) can be more
important than sample accuracy (Mellors 1991,
Dethier et al. 1993, Edwards & Tinker 2009), showing
that visually based semi-quantitative BB techniques
are an effective tool in mitigating variability in sea-
grass systems. BB data should therefore not be
viewed as a simple alternative scale to, say, percent
cover, but as a means of achieving greater sample
densities. When used as such, we have shown that
the resulting data can function effectively in common
parametric statistics.
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