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INTRODUCTION

Understanding the patterns and drivers of biodi-
versity in the world’s oceans is a fundamental area of
research in marine ecology and biological oceano -
graphy (Hutchinson 1961), with implications for geo-
chemical cycling (Lotze et al. 2006, Lomas et al.
2014), food-web dynamics (Turner 2004, Duffy &
 Stachowicz 2006, Hughes et al. 2008), and the pro-
ductivity of fisheries (e.g. Beaugrand et al. 2002, 2003).
Central to this work is the accurate quantification or
delineation of species and species diversity, a process
that has historically relied on morphology but can be

challenging in species-rich groups or for taxa that
lack obvious or reliable morphological characters
(e.g. Hillis 1987, Knowlton 1993, Norris 2000, Bick-
ford et al. 2007). Species diversity has been shown to
vary substantially among marine fauna (e.g. Titten-
sor et al. 2010, but see Peijnenburg & Goetze 2013),
but whether or not this is due to idiosyncratic fea-
tures of the biology and ecology of particular taxo-
nomic groups, a lack of data, or bias in the types of
taxa examined is not always clear, and species diver-
sity is likely to be substantially underestimated across
less-studied marine fauna (Knowlton 1993, Bick ford
et al. 2007, McManus & Katz 2009).
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For holoplanktonic marine species residing in open
and coastal oceans, the paradigm has long been that
the relative lack of observable species diversity (mor-
phological conservatism) was due to a combination
of factors, including the general lack of geographic
 barriers, strong ocean currents, and poor swimming
ability of plankton that results in high dispersal and
high gene flow over large ocean distances (e.g. Nor-
ris 2000, Goetze & Ohman 2010, Peijnenburg &
Goetze 2013). Application of novel molecular genetic
technologies over the last 2 decades has challenged
this view of the plankton, with studies repeatedly
demonstrating substantial ‘unseen’ diversity and deep
intraspecific genetic divergences among ‘populations’
of morphologically static groups over ocean-basin
scales or even smaller distances (100s to 1000s of
kilometers; e.g. Bucklin et al. 1996, Lee 2000, Sáez et
al. 2003, Halbert et al. 2013). It is now clear that sib-
ling or cryptic species (genetically divergent clades
with similar or indistinguishable morphology) are
common among the plankton and zooplankton, hav-
ing been identified in many pelagic phyla including
cnidaria (Schroth et al. 2002, Holland et al. 2004,
Warner et al. 2015), foraminifera (Darling & Wade
2008, Aurahs et al. 2009) coccolithophores (Sáez et al.
2003), picoeukaryotes (Slapeta et al. 2006), chaeto -
gnaths (Peijnenburg et al. 2006), and crustaceans
(e.g. copepods; Bucklin et al. 1996, Lee 2000, Chen &
Hare 2008, Goetze & Ohman 2010, Halbert et al.
2013). Varying degrees, rates, and geographic scales
of divergence and diversity have been found among
and within zooplankton groups (Bickford et al. 2007,
Halbert et al. 2013, Peijnenburg & Goetze 2013), sug-
gesting that the underlying drivers of species diver-
sity are complex and that general patterns may be
hard to predict. Nevertheless, the existence of cryptic
species within such broad taxonomic groups within
the plankton suggests even more species diversity
than previously thought, and zooplankters have
a great propensity to adapt and evolve relatively
quickly in response to ecological and anthropogenic
change (Peijnenburg & Goetze 2013).

Species diversity and morphological crypsis
in copepods

Much research effort has recently been focused on
the characterization of species diversity in marine
copepods, an ecologically significant group of small
crustaceans with high abundances and wide distribu-
tion among the world’s oceans and coastal seas (e.g.
Beaugrand et al. 2003, Turner 2004, Calbet 2008). Pre-

vious genetic studies of open-ocean copepod species
have revealed striking patterns of re stricted gene flow
on ocean-basin scales and that many putative ‘cos-
mopolitan’ species are actually comprised of multiple,
genetically distinct lineages (e.g. Bucklin et al. 1996,
Goetze & Ohman 2010,  Halbert et al. 2013, Viñas et al.
2015). Consistent with phylogeographic studies of
other zooplankton, patterns and scales of divergence
appear to vary  substantially among cryptic species
groups, and sometimes in unpredictable ways. For
 example, a circumglobal phylogeographic survey of
Eu calanoidea revealed that while ocean basins often
served as boundaries among cryptic lineages, the
deeper relationships of sister taxa did not correspond
to geographic expectations at the hemispheric level
or expectations based on current patterns of ocean
 circulation (e.g. Rhinocalanus nasutus; Goetze &
Ohman 2010).

Coastal and freshwater copepod species also show
high levels of endemism and crypsis, though some-
times at smaller geographic scales (e.g. Lee 2000, Lee
& Frost 2002, Caudill & Bucklin 2004, Marrone et al.
2013). For example, genetic analysis of Eurytemora
affinis populations across the United States, Europe,
and Asia have revealed 8 sibling species with con-
served morphology, and crosses have further shown
wide variation in the level of reproductive isolation
among ‘populations’ (Lee 2000). Interestingly, repro-
ductive success was greatest among 2 of the more
genetically distant clades, suggesting weak correla-
tion between reproductive isolation and genetic dis-
tance. These phylogeographic studies highlight the
high and likely undersampled diversity of copepods,
as well as the complex histories of divergence and
biogeography that shape their current genetic (re -
productive) interactions. Despite greater apprecia-
tion of the extent of species diversity among cope-
pods, the ecological and evolutionary drivers of this
diversity and how it varies geographically and across
taxonomic groups remains poorly understood.

Cryptic diversity in Acartia tonsa

A particularly interesting example of cryptic speci-
ation exists for the calanoid copepod A. tonsa, a
numerically dominant species that is found in many
of the world coastal oceans and estuaries (Razouls
1965) and is tolerant of a wide range of environments
and stressors (e.g. González 1974, Brylinski 1981,
Cervetto et al. 1999). Initial molecular work using the
mitochondrial 16S marker revealed 4 distinct genetic
clades with ≥10% divergence across the Northwest
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Atlantic, which led authors to conclude that little
genetic exchange likely occurred among these line-
ages (Caudill & Bucklin 2004). Subsequent sequen-
cing of the mitochondrial cytochrome c oxidase sub-
unit I (COI) gene, nuclear internal transcribed spacer
(ITS) region, and 16S in other studies showed that 3
or more lineages occurred throughout the range of
the species in the Western Atlantic and Europe, with
phylogenetic structure on the scale of ~1000−2000 km
(Chen & Hare 2008, 2011, Drillet et al. 2008a, Chen
2009). The 3 lineages in the NW Atlantic sort by
salinity, with a ‘fresh’ (F) lineage found at salinities
below ~10, a ‘saline’ (S) lineage found primarily from
15 to 25 salinity and an ‘intermediate’ (X) lineage
residing at salinities of 10−22 (Chen & Hare 2008
[their Fig. 1], 2011, Chen 2009). Recent phylogeo-
graphic work along the Atlantic coast of South Amer-
ica has also recovered the F and S lineages as well as
novel clades (haplotypes) that may represent addi-
tional cryptic lineages (da Costa 2011). In Chesapeake
Bay, only the F and S lineages have been observed,
and these co-occur in the mesohaline and oligohaline
salinity zones (Kemp et al. 2005). Concordant diver-
gence data from the mitochondrial COI and nuclear
ITS regions indicate possible reproductive isolation
between these lineages (Chen & Hare 2008).

Phenotypically, there appear to be some differences
in morphology, biology, and physiology that likely
cor respond with the genetically divergent lineages.
For example, while adult sizes vary seasonally, S lin-
eage adults of both sexes are always larger than F
lineage adults (females are consistently larger than
males for both lineages), and less variability in size
exists for the X lineage adults (Chen 2009). The pres-
ence of deeply divergent lineages may also explain
previous observations of substantial phenotypic (bio-
logical) differences among samples and experiments.
Drillet et al. (2008b) found statistically different rates
of development, egg production, and free amino acid
pools between 2 mitochondrial lineages with 10−17%
divergence (which was not correlated to distance
or proximity). Development rates also varied among
cultures of A. tonsa from Chesapeake Bay (Heinle
1966, Zillioux & Wilson 1966), the Baltic Sea (Berg -
green et al. 1988), and southern Europe (Leandro et
al. 2006), which may also be linked to divergent
 lineages found in these systems.

Despite the preponderance of genetic data on di -
vergence and the preliminary observations of pheno-
typic differences among lineages, experimental work
on the status of lineage boundaries and the nature
of reproductive isolation among them is lacking for A.
tonsa. This is not an uncommon situation in the analy-

ses of cryptic species in the marine environment. Broad
phylogeographic surveys across ocean basins or coastal
populations may not permit further experimental work,
and crossing experiments can be time consuming and
logistically challenging (but see Lee 2000). However,
because genetic divergence is not a reliable predictor
of reproductive isolation (e.g. Lee 2000, Edmands 2002),
crossing experiments must be performed to directly in-
vestigate reproductive status and whether or not viable
offspring are produced in crosses between lineages
(e.g. the biological species concept; Edmands 2002,
Coyne & Orr 2004). Crosses can also provide inference
on the nature and possible timing of divergence. For
example, if crosses among divergent lineages show
hybrid breakdown in the second filial generation (F2),
or complete sterility of the first filial generation (F1),
one can infer something about the extent and nature of
post-zygotic isolation (Kozak et al. 2012). Further, if
 observations of mating behavior can be made (e.g.
Goetze & Kiørboe 2008), inferences about pre-mating
isolation or mate choice may also be made.

In this study, we examined the reproductive status
of the F and S lineages of A. tonsa in Chesapeake Bay
through a series of crossing experiments, quantifying
egg production and nauplii hatching success from
within and between lineage crosses. In the process of
doing this work, methods were developed to ensure
the virgin status of females before crosses and to
 follow single pair matings over time. In addition,
detailed measurements of morphology (e.g. prosome
length, mass) and chemical composition (CHN analy-
sis) were made on adults of the 2 lineages to examine
potential phenotypic differences and provide addi-
tional information to support molecular divergence
and reproductive isolation data.

MATERIALS AND METHODS

Collection and culture

Acartia tonsa were collected by plankton tows with
a 200 µm mesh, 50 cm diameter ring net at multiple
shallow water sites in Chesapeake Bay in summer
2014 and throughout 2015 and 2016 (Fig. 1). To
sample for the ‘saline’ (S) lineage, tows were typically
conducted at higher-salinity sites: Muddy Hook Cove
(Honga River) on Hooper’s Island, MD (38.259756° N,
76.179033° W; 12−15 salinity) and Tyler’s Cove (Fish-
ing creek), in Dorchester County, MD (38.351239° N,
76.229659° W; 10−15 salinity). Tows for the ‘fresh’ (F)
lineage were made on the Choptank River at the
Horn Point Lab dock, Cambridge, MD (38.593436° N,
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76.128732° W; 7−12 salinity), or (for ‘Set 2’ experi-
ments) at Ganey’s Wharf, Preston, MD (38.804989° N,
75.909184° W; 0.2−3 ppt). Sampling at lower and
higher salinities increased the likelihood of getting
‘pure’ tows of F or S lineages, respectively, facilitating
the subsequent creation of lineage-specific cultures
used in Set 2 experiments (see below). However,
these initial tows typically had a mix of each lineage;
thus, the first set of crosses made from these cultures
required lineage typing of all adults after crossing ex-
periments (see below). Tows were sorted to remove
other plankton and debris, and A. tonsa adults were
identified under a stereo dissecting microscope and
then placed in aquaria vessels (3 l glass pickling jars)
at their ambient salinities (8−15) or at intermediate
salinities when combining tows (~10−12). Aquaria
were maintained on a 12 h light− dark cycle, with
feeding of Rhodomonas salinas at least every other
day and water changes as needed to remove debris,
fecal pellets, and excess algae (approximately weekly).
Copepods used to determine the lineage composition
of initial tows, and adult copepods from Set 1 and 2
crossing experiments were stored in 95% ethanol
prior to DNA extraction.

Lineage typing

The genetic lineage of individual copepods (either
F or S) was determined using a restriction fragment
length polymorphism (RFLP) assay of the mitochon-
drial COI locus (Chen & Hare 2008, Chen 2009).

DNA was extracted from individual copepods in
100 µl volumes using either a 5% Chelex solution
(e.g. Chen & Hare 2008) or a custom extraction buffer
with 0.5% tween, 1× PCR buffer (Promega GoTaq),
and 10 mg proteinase K (Plough & Hedgecock 2011,
Plough et al. 2014). Chelex extractions were boiled at
98°C for 8 min while proteinase K extractions were
incubated at 56°C for 3 h followed by a 15 min boil
(95°C); extractions were stored at −20°C until PCR
reactions were performed. A 710 bp portion of the
COI locus was PCR amplified with universal inverte-
brate primers (Folmer et al. 1994) following the cycle
conditions of Chen & Hare (2008) in 25 µl volumes
with 4 µl of DNA, 1 unit GoTaq (Promega), 2.5 mM
MgCl2, 0.2 mM dNTPs, and 0.08 µM of each primer.
For the RFLP assay, PCR amplicons from individual
copepods were digested with 1−5 units of HaeIII
enzyme (New England Biolabs), which cleaves (cuts)
DNA at 2 positions in the F haplotype that have the
HaeIII recognition site (‘GGCC’), yielding a large
fragment of 466 bp and 2 smaller fragments of 140 bp
and 104 bp—the S lineage haplotype has no HaeIII
recognition sites and thus is not digested by the
enzyme (Chen & Hare 2008). PCR amplicons of un -
known-lineage copepods were di gested alongside
negative controls (PCR amplifications of water
blanks) and positive control amplifications of se -
quence-verified, pooled F and S lineage DNA, to
ensure that the enzyme was active and cut when
expected (see Figs. S1−S4 in the Supplement at
www. int-res. com/ articles/ suppl/ m597 p099 _ supp. pdf).
Digested PCR products were run on 1.5% agarose
gels along with 100 bp ladder (and controls), stained
with ethidium bromide, and visualized on the UVP
Gel Doc-it 2.0 system. A novel, A. tonsa-specific COI
primer set was also developed for lineage-typing
copepods in Set 2 experiments and for morphological
and elemental comparisons (see below). The ampli-
con generated is slightly shorter (477 bp), but still
retains a HaeIII recognition site that is diagnostic for
F versus S lineages (355 and 122 bp fragments gener-
ated when digesting F haplotypes). PCR with this
primer set used the same conditions as the Folmer set
described in Chen & Hare (2008) and the sequences
are: AtonsaCo1_F (5’-TTG GAG ATG AYC AAA TTT
AYA ACG-3’) and AtonsaCo1_R (5’-AAA TTT CGG
TCK GTT AAY AAY A-3’).

Crosses and establishment of pure cultures

Crosses within and between the 2 lineages were
performed in 2 sets of experiments that were carried
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Fig. 1. Map of Acartia tonsa sampling sites in Maryland,
mid-Chesapeake Bay (enlarged), with inset of the  mid-
Atlantic region. GW: Ganey’s Wharf; HPL: Horn Point Lab; 

TC: Tyler’s Cove; MHC: Muddy Hook Cove
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out in the summer−fall of 2014 (Set 1) and the
spring−summer of 2015 and 2016 (Set 2). In the first
set of experiments (Set 1), individual copepedites or
nauplii were isolated from mixed-lineage cultures
and reared in groups (5−10 nauplii) or in isolation
until maturity at intermediate salinities (10−12). Once
mature, copepods were sexed and a single male and
female were placed in 35 mm diameter well plates
(Corning Costar 6 well plates) that were fitted with
7.5-cm-tall polycarbonate towers in each well for a
total volume of approximately 30 ml of fresh seawa-
ter. Crossing experiments were conducted at ~10 ppt.
The towers were originally developed for egg pro-
duction experiments and had 200 µm mesh that was
suspended 5 mm from the bottom of the well plate,
which allowed eggs to fall through to the bottom of
the well but kept adult copepods above, reducing the
potential cannibalization of eggs and nauplii (Hop -
croft et al. 2005; see Fig. S5 in the Supplement). Tens
of pairs were created in this way without prior knowl-
edge of lineage; however, only matings with viable
parents (both alive after 24 h) were included in the
data analysis. In these ‘successful’ matings, wells
were monitored for the first appearance of eggs, and
after 24 h, adults were removed and fixed in ethanol
for genotyping to lineage. After adult removal, eggs
were counted and returned to the well plate to follow
hatching success over the next 48 h. After genotyp-
ing adults from each paired cross in Set 1, egg pro-
duction and hatching rate data could be designated
to either the within-lineage cross type, F×F (F lineage
male × F lineage female) and S×S (S lineage male ×
S lineage female) or the between-lineage (hybrid)
cross type, F×S (F lineage male × S lineage female)
and S×F (S lineage male × F lineage female)

The second set of crossing experiments (Set 2, run
in spring−summer 2015 and 2016) used individuals
from PCR-validated, ‘pure’ F and S cultures, which
were created from surviving, known-lineage nauplii
from within-lineage crosses (from Set 1 experiments)
or subsequent tows in low- or high-salinity locations
(Fig. 1), from which a portion of the population was
verified for lineage via the HaeIII RFLP test before
being introduced to a given pure lineage culture.
Once established, individuals from the F and S cul-
tures were also tested periodically with the PCR−
RFLP assay to ensure that only the expected lineage
was present (n = 20). The pure lineage cultures were
maintained at a common, intermediate salinity (7 ppt)
throughout 2015 and 2016 when these experiments
were being performed. Periodically, collections of A.
tonsa from the Choptank River were made to supple-
ment the pure cultures, and in these cases, copepods

were slowly stepped up or down in salinity to 7 ppt
over a period of days to allow acclimation from their
ambient salinities, if necessary.

With pure lineage cultures available, copepodites
were collected from each culture and reared in isola-
tion until maturity so that sex could be determined
before making pairings. Individuals that were ob -
served to be females were monitored to ensure that
they did not produce fertilized eggs and were truly
‘virgin’ before pairing with males. Because males
may attempt mating with late-stage, immature cope-
podite females (Lonsdale et al. 1988), raising cope-
podites in isolation provided an extra check on po -
tential within-lineage ‘contamination’ from deposited
spermatophores that may have occurred prior to
paired mating experiments (e.g. Burris & Dam 2015).
After sex determination, males and females were
paired for within and between-lineage crosses and
placed in 30 ml of fresh seawater at 7 ppt within ster-
ile 35-mm-diameter well plates fitted with 7.5-cm-tall
polycarbonate towers. In ‘successful’ matings (par-
ents alive for ≥48 h and each sex represented), egg
production, hatching rate, and nauplii survival were
recorded every 24 h, at which time the media in each
column was pipetted out, the well bottom cleaned
of fecal matter and excess algae, and fresh Rhodo -
monas added. After 72 h, the adults were removed,
rinsed in deionized water, and fixed in ethanol for
genotyping. The columns were removed as well for
easier counting of eggs and nauplii. Experiments
were allowed to run for up to 5 d. All adults from ‘suc-
cessful’ Set 2 crosses were validated with the RFLP
assay to ensure that the correct lineage was repre-
sented by each parent (see Figs. S1 & S2 in the
 Supplement for lineage typing results for some
crosses). As an additional validation of the RFLP test,
and to further confirm the status of putatively pure F
and S lineage cultures, we PCR amplified 12−16 indi-
viduals from each culture that were still alive at the
end of all experiments in 2016 (cultures were contin-
ued for a few months after experiments ended), and
performed both the HaeIII RFLP test and Sanger
sequencing on the same amplicon, to verify RFLP
assay performance (see Figs. S3 & S4 in the Supple-
ment). Bidirectional sequencing for this test was
 performed at the Arizona State University DNA lab.
In no cases did the RFLP test or analysis of raw
sequences reveal contamination of either culture,
and the 2 methods produced corresponding lineage
results for all individuals tested (Figs. S3 & S4 in the
Supplement). Sequences generated from the lineage
validation are archived in Genbank (accession nos.
MH376311–MH376338).
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Virgin egg production

Virgin female egg production was examined as a
control to assess the egg production and hatching
success of virgin females in the absence of mates, to
provide a comparison against egg production data
from crosses. Approximately 10 CI−CIII copepodites
were isolated in clear 60 ml plastic jars and followed
until maturity using the same light, temperature, and
feeding conditions as their parent cultures. Five of
this group developed into females and were moni-
tored subsequently. Once mature, the 5 females were
placed in fresh jars for monitoring of egg production
and maintained there for 10 d. Every 24 h, eggs were
counted and removed to a ‘group’ jar, which held all
the eggs produced by a given female, and which
received the same daily examination and aeration as
the jars with females. Females whose eggs hatched
into nauplii were not considered virgin females, and
were removed from the experiment (n = 1). Females
not producing nauplii in their ‘group’ jars (n = 4)
were kept under experimental conditions for up to
240 h for a full count of egg production.

Morphological and CHN analyses of lineages

Adult males and females examined for prosome
length and CHN content were selected from each
lineage-specific culture and imaged under a Leica
S6D stereo dissecting microscope, on which was
mounted a Canon EOS Rebel T1i fitted with a Martin
Microscopes MM-SLR adapter at 4× magnification.
All individuals were measured for length (prosome)
using Image J 1.5 (Schneider et al. 2012) and after
pictures were taken, subsets of these individuals
were either placed into vials of ethanol for genotyp-
ing to confirm lineage as described previously (see
HaeIII RFLP lineage-typing results in Figs. S1 & S2
in the Supplement), or were placed onto  pre-
combusted glass fiber filters for CHN analysis. Each
filter for CHN analysis contained 8−12 individuals of
the same sex and from the same lineage. Pooling was
done to ensure enough material for a robust meas-
urement signal. At the time of collection, there were
enough females from each culture so that 3 filters
from each lineage were used for CHN analysis; how-
ever, there were only enough males for one filter per
lineage. Filters were folded in half, and dried at 50°C
for at least 7 d, then kept in a desiccator until analysis
on an Exeter Analytical (EAI) CE-440 Elemental
Analyzer. Images of each individual were tracked so
that we were able to calculate mean and standard

deviation of the prosome lengths from each CHN
 filter and the individuals that were used for haplo-
type analysis. Mean prosome lengths from each filter
were then regressed against the C and N weight
measurements for that filter to compare the relation-
ship between prosome length and weight for the
 different lineages.

Statistical analyses

All statistical analyses and graphics were done in
R v. 3.3.0 (R Core Team 2016) using base statistical
packages, ‘ggplot2’ (Wickham 2009) and ‘PMCMR’
(Pohlert 2014). Maps of sampling locations were
made in Matlab (R2017a, MathWorks). Variation
in egg production rate (EPR) among experiments
and cross types was assessed with 1-way ANOVAs;
 however, non-parametric analyses (Kruskal-Wallis
rank sum test and post-hoc Kruskal-Nemenyi tests;
Pohlert 2014) were used to examine differences in
hatching rate among cross types and experiment
sets because the data failed assumptions of normal-
ity even after multiple transformations (e.g. arcsine
square-root).

RESULTS

Crossing experiments

Of approximately 40 paired matings set up among
Acartia tonsa adults from the 2 sets of experiments,
27 resulted in viable or ‘successful’ experiments, in
which both parents were alive for at least 24 h after
pairing and each sex was represented—data from
crosses that lacked either of these characteristics
were not analyzed. Of these 27 successful matings,
15 were within-lineage crosses (F×F or S×S), 12 were
hybrid crosses (S×F or F×S), and all produced eggs
(Table 1). Daily EPR was fairly similar among cross
types, averaging 38.25, 39.25, and 31.48 for F×F, F×S,
and S×S, respectively (Fig. 2). Within cross types,
EPR was highly variable among females, and no
 significant differences in mean EPR were observed
among cross types (ANOVA p = 0.6854) nor was
there a significant difference in mean EPR between
experiment sets (Set 1 vs. Set 2, ANOVA p = 0.986).

Hatching rate was highest for the within-lineage
cross-types, averaging 0.52 and 0.46 for F×F (n = 8)
and S×S (n = 7), respectively, while mean hatching
rate was much lower for the between-lineage crosses
(0.02, n = 12; Fig. 3). Only 1 out of the 12  between-
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lineage crosses produced any nauplii (3 nauplii;
Table 1), though eggs were observed in all 12 crosses
(Table 1). Non-parametric statistical analyses indi-
cated that hatch rate varied significantly among cross
types (Kruskal-Wallis ranked sum test, p < 0.001)
and post-hoc comparisons (Kruskal-Nemenyi tests)
showed that mean hatch rate in the between-lineage
crosses was significantly different from that of the 2
within-lineage crosses (p = 0.006 for F×F vs. F×S, p =
0.012 for S×S vs. F×S) but hatch rate was not different

between the F×F and S×S cross types (p =
0.995).

Virgin egg production

Virgin egg production in the absence of a
mate was followed for 4 females over 10 d. As
shown in Fig. 4, egg pro duction began around
Day 3 and continued through the 10 d of the
experiment, with peak egg production be -
tween Day 5 and Day 8 and a decline there-
after. Total egg production ranged from 236 to
445 eggs (mean 339.74) or a mean production
rate of ~34 eggs d–1, similar to EPR estimates
from the crossing experiments.

Morphological and CHN 
measurements

Morphological and chemical measurements
of laboratory raised cultures of A. tonsa re-
vealed substantial differences between the 2
lineages. Image analysis of 104 adult copepods
showed that the mean size (prosome length) of
copepods from the F lineage was significantly
lower than the S lineage for both females
(mean F vs. S, 0.757 vs. 0.877 mm; T-test p <
0.0001), and males (mean F vs. S, 0.674 vs.
0.772 mm, T-test p < 0.0001; Fig. 5). F lineage
copepods were about 13−14% smaller (males
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Expt. ID Cross Eggs EPR Nauplii Hatch rate (%) Expt

1 F×F 25 25.00 15 0.6 Set 1b

2 F×F 23 23.00 12 0.52 Set 1
3 F×F 34 34.00 22 0.65 Set 1
4 F×F 26 26.00 16 0.62 Set 1
5 F×F 62 62.00 43 0.69 Set 1
6 F×F 54 18.00 24 0.44 Set 2
7 F×F 180 60.00 118 0.66 Set 2
8 F×F 174 58.00 0 0 Set 2
9 S×Fa 18 18.00 0 0 Set 1
10 S×F 16 16.00 3 0.19 Set 1
11 S×F 42 42.00 0 0 Set 1
12 S×F 90 90.00 0 0 Set 1
13 S×F 58 58.00 0 0 Set 1
14 S×F 156 52.00 0 0 Set 2
15 S×F 58 19.33 0 0 Set 2
16 S×F 54 18.00 0 0 Set 2
17 S×F 85 28.33 0 0 Set 2
18 S×F 96 32.00 0 0 Set 2
19 S×F 140 46.67 0 0 Set 2
20 S×F 152 50.67 0 0 Set 2
21 S×S 30 30.00 21 0.7 Set 1
22 S×S 31 31.00 17 0.55 Set 1
23 S×S 23 23.00 16 0.7 Set 1
24 S×S 102 34.00 58 0.57 Set 2
25 S×S 24 24.00 0 0 Set 2
26 S×S 117 39.00 0 0 Set 2
27 S×S 166 55.33 115 0.69 Set 2
aAll hybrid or between-lineage crosses are represented as F×S,
though a mix of crosses in both directions (F male × S female or S
male × F female) were performed.

bSet 1 experiments allowed ~24 h of egg production or mating
time before removing parents; Set 2 experiments allowed 72 h
before parents were removed.

Table 1. Daily egg production rate (EPR) and hatching rate among 
cross types

Fig. 2. Box and whisker plots for Acartia tonsa daily egg
 production rate (eggs per female per day) among cross types.
Filled circles represent data points from females in Set 1; tri-
angles represent females from Set 2 experiments. Thick lines
within boxes represent the median egg production rate for a
given cross type, lines bounding boxes below and above rep-
resent the 25% and 75% quartiles, respectively, and the
lower and upper whiskers extend to the smallest/largest value
less than 1.5 times the interquartile range from the box hinge
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and females considered separately). Regression of
carbon and nitrogen content per copepod against size
(Fig. 6) produced strong linear relationships for fe-
males (µg C per copepod = 42.7252 × [prosome length
in mm] − 30.6504; µg N per copepod = 2.6368 × [pro-
some length in mm] −1.4574) that were highly signifi-
cant (p = 0.0007 and adjusted r2 = 0.95 for nitrogen;
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Fig. 4. Individual, daily egg production for 4 virgin Acartia
tonsa females over 10 d. Each daily data point represents 

new egg production since the previous time point Fig. 6. Chemical composition data and regression results for
(A) nitrogen and (B) carbon. Each point represents CHN
analysis results from a pool of adult copepods (n = 8 or
more), triangles represent males and circles represent fe-
males. F lineage points are blue and S lineage points are
red. The black line and grey shaded area represent the fit-
ted least squares regression line and 95% confidence inter-
val of the slope for each elemental analysis (female data
only; r2 = 0.95 for nitrogen, r2 = 0.92 for carbon). Dashed lines
show the relationship between prosome length and elemen-

tal analysis from Thompson et al. (1994)

Fig. 3. Box and whisker plot of Acartia tonsa hatching rate
among cross types for all mating experiments (n = 27). Thick
lines within boxes represent the median hatching rate
among matings for a given cross type, lines bounding boxes
below and above represent the 25% and 75% quartiles, re-
spectively, and the lower and upper whiskers extend to the
smallest/largest value less than 1.5 times the interquartile
range from the box hinge. Filled circles and triangles repre-

sent data points from Set 1 and Set 2, respectively

Fig. 5. Box and whisker plots of size (prosome length) meas-
urements for male and female Acartia tonsa. F lineage in blue
and S lineage in red—measurements for each indi vidual
copepod are plotted over the box and whisker plot. Thick
lines within boxes represent the median length for a given
 lineage/sex, lines bounding boxes below and above represent
the 25% and 75% quartiles, respectively. The lower and up-
per whiskers extend to the smallest/largest value less than 1.5 

times the interquartile range from the box hinge
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p = 0.002 and adjusted r2 = 0.90 for carbon). When
comparing the slopes of the relationships between fe-
male prosome length and elemental content with pre-
vious work for A. tonsa in Narragansett Bay (Thomp-
son et al. 1994), the slope for nitrogen appeared to be
similar but the slope for carbon was not as steep. Indi-
viduals used in the present study had shorter
prosome lengths than in that previous study (Thomp-
son et al. 1994). Only 1 pooled filter of males was ana-
lyzed for each lineage, so regression analysis was not
 conducted. Substantial differences were also found
between lineages in the per copepod carbon and ni-
trogen content (Table 2). For example, F lineage
copepods had 74−85% less carbon per individual and
35−48% less nitrogen per individual (males and fe-
males) compared with the S lineage (Table 2). The ra-
tio of carbon to nitrogen also varied between
lineages, with the S lineage showing 2−3-fold higher
C:N ratios in males and females (Table 2). Because
both genotyping and CHN analyses are destructive to
the organisms, we were not able to do both analyses
on individuals. However, PCR genotyping of individ-
uals from the respective cultures (N = 30 and 27 for F
and S, respectively) confirmed expected lineages for
copepods from those cultures (see Figs. S1 & S2 in the
Supplement).

DISCUSSION

Reproductive isolation between F and S lineages

Based on the almost complete lack of nauplii
 hatching success in the 12 between-lineage (hybrid)
crosses, reproductive isolation between the F and S
lineages appears to be quite strong. A single hybrid
cross did produce 3 nauplii (3/16 eggs hatched;

Table 1), but given the results from the
other 11 crosses, it is possible that these
were not ‘hybrid’ offspring but instead
were accidentally introduced from an -
other within-lineage crossing vessel. Acar -
tia tonsa nauplii are quite small (~70 µm)
and thus could have been accidently
entrained in a drop of water splashed
between towers or vessels. In contrast,
within-lineage crosses produced viable
offspring (nauplii) in 12 of 15 crosses and
these crosses were conducted concur-
rently with the between-lineage crosses,
which in dicates that experimental condi-
tions were amenable to successful repro-
duction by both of the lineages. The lack

of hatching success in the 3 within-lineage crosses
may be due to a number of potential factors that were
artefacts of our experimental setup, including poor
condition of 1 or both adults, mis-sexing of one of the
adults (e.g. 2 females present), or accidental separa-
tion of adults (caught in mesh or between tower and
vessel walls) during the experiment, all of which
could limit or prevent successful mating. However, A.
tonsa reared in culture have shown variable hatching
success that is dependent on a variety of factors,
including temperature, salinity, prey quantity, and
diet quality (Støttrup et al. 1986, Jónasdóttir 1994,
Holste & Peck 2006), so some variability in hatching
rate is perhaps not surprising. The finding of com-
plete or nearly complete reproductive isolation be -
tween the F and S lineage is consistent with previous
molecular data that showed deep divergences be -
tween the lineages (~18% at COI and 12% at ITS;
Chen & Hare 2008). However, the degree of genetic
divergence among cryptic species or lineages does
not always correlate with reproductive isolation or
offspring fitness, and few studies actually test repro-
ductive success between lineages in lab-based ex -
periments (e.g. Lee 2000, Edmands 2002). Lee (2000)
found that neither divergence nor geographic dis-
tance were great predictors of repro ductive success
when crossing cryptic lineages of the freshwater
copepod Eurytemora affinis. Our results show clearly
that crosses between the 2 divergent lineages of A.
tonsa are far less successful than within-lineage
crosses, which provides strong evidence that some
form of reproductive isolation is occurring be tween
the 2 lineages.

Additional information about the biology and eco -
logy of the 2 A. tonsa lineages may provide insight
into the causes and development of the observed re -
productive isolation. While the 2 lineages do overlap
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Prosome Carbon Nitrogen C:N
length (µm) (µg) (µg)

Females (S) 877 ± 59 6.55 ± 0.82 0.84 ± 0.04 7.85 ± 1.14
(F) 757 ± 27 1.69 ± 0.57 0.54 ± 0.03 3.11 ± 1.06
Malesa (S) 772 ± 31 6.16 0.64 9.58
(F) 673 ± 16 0.89 0.33 2.67
aCHN estimates for males (F and S) were done on a single set of indi -
viduals (n = 9 and 11, respectively) so standard deviations were not
 calculated

Table 2. Summary of length measurements and chemical composition
(CHN) results. Prosome length measurements are means ± standard devi-
ation for all individuals measured (n = 45 for S females, n = 27 for F
females, n = 23 for S males, and n = 9 for F males). Carbon and nitrogen
values represent means across copepod pool (n = 3 for females with at least 

8 individuals per pool) ± standard deviation
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in spatial distribution at lower (oligohaline) salinities
in the Chesapeake Bay (~5−15 ppt; Table 4-1, Figs. 4-3
to 4-9 in Chen 2009), the F lineage is found primarily
in salinities below 10 while the S lineage is found pri-
marily above 12 ppt. Thus, subtle spatial or ecologi-
cal separation  (‘micro-allopatry’; e.g. Smith 1965,
Fitzpatrick et al. 2008) may have contributed to the
development of reproductive  isolation and subse-
quent deep genetic divergence (Edmands 2002). In
addition, morphological and chemical composition
data from this study show that the 2 lineages are
actually quite morphologically distinct, differing sig-
nificantly in size and in chemical composition (e.g.
carbon per adult and C:N ratio). Differences in size
among lineages had been suggested previously by
Chen (2009), but differences in the chemical compo-
sition of the 2 lineages had not been considered—the
CHN data are the first such data to show differences
in chemical makeup between the lineages of A. tonsa.
Taken together, the morphological observations from
this study and Chen (2009) suggest that the 2 line-
ages are likely only ‘pseudo-cryptic’ (e.g. Lajus et al.
2015), as more detailed analyses of morphology and
chemistry revealed clear differences among the S
and F lineages.

The substantial (~15%) difference in size between
lineages is particularly interesting because it could
have very direct effects on mating behavior and
 compatibility between the lineages. For example,
increased relative differences in size between F
females and S males could result in reduced copula-
tory success, or perhaps prevent mating from initiat-
ing in the first place. Size differences may be indi -
cative of additional morphological or behavioral
di vergence that would result in mating incompati -
bility, including pheromone production and hyrdo-
mechanical cues (e.g. Bagøien & Kiørboe 2005,
Goetze & Kiørboe 2008, Ceballos & Kiørboe 2010,
2011). Mate choice and mating behavior are impor-
tant in copepods, and some evidence exists for sexual
selection (Titelman et al. 2007, Ceballos & Kiørboe
2010, 2011, Ceballos et al. 2014); thus, subtle differ-
ences in behavior and chemical or acoustic cues
between these lineages may prevent successful mat-
ing (Titelman et al. 2007, Goetze & Kiørboe 2008).
While more study is needed of the specific reproduc-
tive characteristics that may differ among the F and S
lineages, other studies have identified significant
 differences in vital rates (egg production, develop-
ment) among divergent A. tonsa clades in the East-
ern Atlantic (e.g. Drillet et al. 2008b), lending further
support to the idea that there are prominent biologi-
cal differences among cryptic A. tonsa lineages. Syn-

thesizing the results of the data from this study and
the ecological, biological, and genetic data published
previously, there is strong evidence that these 2 line-
ages (and possibly other A. tonsa lineages) are re -
productively isolated and likely represent separate
species.

Nature and timing of reproductive barriers

Considering the strong indication that the F and S
lineages do not interbreed and may represent sepa-
rate species, it is instructive to consider the nature
and timing in which these reproductive barriers
might have arisen. Indeed, substantial effort in speci-
ation research has been focused on identifying the
reproductive barriers between diverging lineages
or species, particularly whether they are pre-zygotic
(e.g. pre-mating ecological isolation, mating incom-
patibilities, or gametic incompatibilities; e.g. Coyne
& Orr 2004, Presgraves 2010, Kozak et al. 2012) or
post-zygotic (e.g. hybrid breakdown or inviability,
Dobzhansky-Muller interactions; Orr & Turelli 2001),
which may provide some inference about the timing
or extent of isolation. Prezygotic barriers are demon-
strated to evolve first for some species (e.g. Coyne &
Orr 1997, Bolnick & Near 2005, Stelkens et al. 2010),
although the opposite has also been shown (e.g.
Hendry et al. 2009, Kozak et al. 2012). Whether pre-
or post-zygotic isolation develops more quickly may
also depend on whether species are in sympatry ver-
sus allopatry, and in lab settings, its inference may be
affected by the environmental conditions in which
hybrids are reared (intrinsic vs. extrinsic post-zygotic
isolation; Schluter 2001, Kozak et al. 2012).

For A. tonsa lineages in Chesapeake Bay, a lack of
hatching success in ‘hybrid’ crosses in the lab sug-
gests that post-zygotic isolation is either complete
(embryos have zero fitness; Fig. 3) or it is not in play
because pre-zygotic barriers are acting before fertil-
ization. If pre-zygotic barriers are the major drivers of
reproductive isolation here, there are still a number
of potential mechanisms that could be acting at vari-
ous points in the mating and reproductive process.
Incompatibility isolation could occur during mating,
in which behavior might differ between lineages such
that spermatophores are never transferred (Titelman
et al. 2007, Goetze & Kiørboe 2008). Reproductive
morphology might also differ such that mating is
attempted, but fertilization is impossible or mechani-
cally compromised. Alternatively, mating and fertil-
ization may be possible, but gametic incompatibility
prevents egg and sperm from forming a viable zygote
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(Orr & Turelli 2001, Edmands 2002, Coyne & Orr
2004). Because we did not track mating behavior dur-
ing crosses, it is impossible to determine which pre-
zygotic barrier might be most significant. Previous
studies of mating behavior between congeneric ver-
sus more distant copepod species have shown a sur-
prising amount of fluidity or lack of specificity in
 mating interactions; thus, significant genetic distance
may not dictate divergent mating behaviors or mat-
ing incompatibilities. For example, Goetze & Kiørboe
(2008) and Goetze (2008) showed that pheromone
and hydromechanical pre-contact mating cues lack
species specificity, suggesting that species recogni-
tion likely occurs during contact with chemical cues
or is dictated by morphological differences. A. tonsa
use hydromechanical cues, not pheromones, to locate
mates (Bagøien & Kiørboe 2005), so it is possible that
these cues may differ among lineages and if suffi-
ciently divergent, would prevent the initiation of
mating. We did not attempt to monitor behavior dur-
ing matings, but we did image females under the
microscope for the last 7 crosses during mating (at
the end of the 72 h period with the male), and we
observed that the females from all 4 hybrid crosses
lacked attached spermatophores, while 67% of fe -
males from within-lineage cultures did have attached
spermatophores (C. Fitzgerald unpubl.), which is
consistent with Burris & Dam (2015), who found that
approximately 80% of A. tonsa females observed in
Long Island Sound had attached spermatophores at
any given time. Our observations are not fully quan-
titative, but they do suggest a potential mechanism of
pre-zygotic isolation acting at the mating or  pre-
mating stage (behavioral or morphological) that pre-
vented attachment or transfer of spermatophores.
Further analysis of mating behavior will be required
to provide a more comprehensive assessment of
the mechanisms of pre-zygotic isolation using high-
frequency videography or other detailed behavioral
assessment.

The timing of divergence between the 2 lineages
remains unknown, but our crossing results and previ-
ous molecular data suggest that isolation is probably
not recent. Previous molecular analyses indicate that
the 2 COI haplotype groups are ~13−17% divergent,
and a molecular concordance test between COI and
the ITS2 locus demonstrated complimentary, recipro-
cal monophyly for both genes (Chen & Hare 2008),
which is indicative of long-term isolation. Assuming
an average rate of divergence of 2.4% per million yr
for animal mitochondrial DNA (e.g. Rand 1994,
Edmands 2002), one can estimate that the 2 lineages
may have been separated for as long as ~6−7 million

yr, though this estimate is likely to be only very
roughly correct (Coyne & Orr 1997, Sasa et al. 1998).
Substantial variation in evolutionary rates exist among
taxa and among genes, and COI may not be the ideal
marker to estimate divergence, as it does not always
resolve known or expected species within some
cope pod taxonomic groups (e.g. Blanco-Bercial et al.
2014). Coalescent modeling of divergence timing
across various demographic scenarios may provide a
better approach to test hypotheses about the timing
and nature of lineage divergence; however, caution
must be exercised in the interpretation of isolation
with migration models (Hey & Nielsen 2007, Hey
2010), when inferring speciation timing (e.g. Gag-
giotti 2011, Strasburg & Rieseberg 2011). Given that
the 2 A. tonsa lineages in Chesapeake Bay overlap in
time and space in lower-salinity waters, it might be
tempting to refer to them as sympatric species, but
distinguishing between sympatric speciation (specia-
tion with gene flow) or allopatric speciation followed
by secondary contact will require more analysis and
may prove difficult (e.g. Bolnick & Fitzpatrick 2007,
Fitzpatrick et al. 2008, Gaggiotti 2011). Overall, more
detailed genomic analyses and observation of mating
behavior will be needed to elucidate the nature and
timing of reproductive isolation between the lineages
of A. tonsa in Chesapeake Bay.

Potential ecological and food-web implications of
cryptic divergence

The findings of substantial differences in size,
chemical composition, and biology between the 2 lin-
eages of A. tonsa have serious implications for their
potential value as prey items and thus for trophic
dynamics in estuarine ecosystems. In Chesapeake
Bay, A. tonsa is a critical food source for a number of
important fisheries species, including larval striped
bass and bay anchovy (e.g. Houde & Secor 2009,
Martino & Houde 2010, Shideler & Houde 2014), and
a change in the size or the amount of energy ob -
tained from consumption of A. tonsa may be impor-
tant for early larval survival of these fishes. The
13−14% smaller size and roughly 70% reduction in
carbon content of F lineage males and females may
translate to significantly less energy acquired per
copepod consumed, and thus a shift in the relative
abundance of the 2 lineages could have a significant
effect on larval fish energetics and recruitment (e.g.
Cowan et al. 1993, Mazur et al. 2007). While the S
 lineage is found across a wider range of salinities
(~5−30 ppt) and is thus present throughout much of
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Chesapeake Bay, it is relatively less common in the
more fresh and brackish environments (<7 ppt;
where F is common) that serve as nursery sites of
 larval striped bass (North & Houde 2003, Martino &
Houde 2010, Shideler & Houde 2014). Varying envi-
ronmental or climatic factors that affect the amount
of freshwater in the bay may influence the relative
frequency of the 2 lineages and thus the quality of
copepod prey available. For example, in wet years
with increased precipitation and greater freshwater
flow, the bay-wide proportion of A. tonsa that are F
lineage may increase, resulting in smaller adult indi-
viduals and lower prey quality for fish (less food per
copepod consumed). Annual variation in precipita-
tion or freshwater flow conditions in Chesapeake
Bay have previously been associated with changing
plankton community composition, which correlated
to changes in indices of production or recruitment of
striped bass and other fish (e.g Kimmel et al. 2009,
2012, Wood & Austin 2009), but this may have been
driven more by shifts in the extent and location of the
estuarine turbidity maximum (e.g. North & Houde
2003) rather than simply the change of salinity and its
effect on A. tonsa distribution and prey quality. Of
course, other prey items are also significant in the
diets of striped bass larvae (e.g. Eurytemora carol -
leeae and Bosmina spp; North & Houde 2003, Houde
& Secor 2009, Martino & Houde 2010) and prey size
or carbon content in A. tonsa may be a weak predic-
tor of ‘quality’ for particular fish species. Further, it is
possible that additional biological or chemical prop-
erties that differ between A. tonsa lineages, such as
lipid composition, may be more important. Analyses
of potential differences in amount and composition of
lipids between the lineages are ongoing, but our cur-
rent data show that the C:N ratio varies between the
lineages, which relates to lipid content in other co -
pepod species (e.g. Campbell et al. 2001). More in -
formation about how divergent lineages of A. tonsa
respond to environmental change and differ in their
quality as prey items may be important for under-
standing early survival of fish species in Chesapeake
Bay and other estuaries on the US east coast, and will
be the subject of upcoming studies.

CONCLUSIONS

Laboratory crossing experiments between 2 cryptic,
divergent lineages of the copepod Acartia tonsa in
Chesapeake Bay revealed strong, potentially com-
plete reproductive isolation that may be pre-zygotic.
This result supports previous molecular data and

analyses that suggested long-term reproductive isola-
tion between the lineages. Additional detailed ana -
lyses of the morphology and chemical composition
of the 2 lineages revealed substantial differences in
length (14% smaller for F lineage) and carbon content
(~70% lower in F lineage) that could significantly im-
pact the quality of each lineage as prey items. Based
on our crossing data, the morphological analyses, and
synthesizing previous molecular and biological data
on A. tonsa, we suggest that these cryptic lineages
may be different species. However, ad ditional molec-
ular analyses and perhaps coalescent modeling will
be needed to understand the  timing and nature of di-
vergence and speciation. Finally, the results of this
study should motivate future work to understand the
ecological effects of cryptic divergence in zooplank-
ton in coastal eco systems, specifically how future cli-
mate shifts and environmental stress may alter the
abundances of cryptic lineages and their value as
prey items, which has serious implications for trophic
dynamics and fisheries production.
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