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Oregon, while tiger rockfish had the opposite pattern
(Fig. S1 in the Supplement; GLMM, p < 0.05). Within
each region, OYTB exhibited greater settlement to
marine reserves than to unprotected comparison
areas (Fig. 4; GLMM, p < 0.05). Cabezon exhibited
the opposite trend, but only in southern Oregon, with
greater settlement to the unprotected area than to
the marine reserve. Settlement of the remaining taxa
did not differ significantly between reserves and
non-reserve areas (GLMM, p > 0.05).

Effect of upwelling strength and water temperature
on fish settlement

Daily upwelling strength was negatively correlated
with in situ water temperature in both regions
(Fig. S2 in the Supplement; Pearson coefficient of

correlation: northern Oregon: r =
−0.53, p < 0.001, southern Oregon: r =
−0.55, p < 0.001). These correlations
were stronger when upwelling
strength was compared to water tem-
perature the following day (northern
Oregon: r = −0.67, p < 0.001, southern
Oregon: r = −0.66, p < 0.001), indica-
ting that there was a 1 d lag between
changes in upwelling strength and
changes in nearshore water tempera-
tures. Be cause the 15 d sampling
intervals could encompass multiple
cycles of upwelling−relaxation, there
were very few significant correlations
be tween fish settlement and these
environmental parameters (Table 2;
Fig. S3 in the Supplement). Despite
the lack of statistical significance, it is
worth noting that these correlations
tended to be negative with upwelling
strength and positive with water tem-
perature, with the only exception
being OYTB in southern Oregon.

Relationship between fish size and
water temperature

Interannual differences in mean SL
were significant (GAM, p < 0.05) for
cabezon and tiger rockfish in north-
ern Oregon, and for QGBCC in
southern Oregon (Fig. S4 in the Sup-
plement). The mean length of the

settlers varied significantly over the season for all
species (GAM, p < 0.01), but each taxon exhibited
different trends (Fig. 5). For cabezon, the largest
individuals tended to settle in June, while later set-
tlers tended to be smaller. Excluding some outliers
(QGBCC settling before June and OYTB settling
after mid-July), the average length of settling OYTB
and QGBCC increased by 0.11 mm d−1 and 0.09 mm
d−1, respectively, as the season progressed. QGBCC
size at settlement prior to June follows a similar
growing trend. The size distribution of SR exhibited
a sinusoidal pattern over the settlement season,
while tiger rockfish did not exhibit a distinct
pattern. Average monthly temperatures were gen-
erally higher off northern Oregon than off southern
Oregon, likely driven by stronger upwelling in
southern Oregon advecting colder water to the sur-
face (Fig. S5 in the Supplement; Huyer 1983). How-
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Fig. 3. Annual settlement of 5 fish taxa to (A) northern (2012−2016) and (B)
southern (2014−2016) Oregon. Settlement rate was averaged over all replicate
SMURFs within each region per year. Error bars indicate standard error.
Number of sampling collections shown under bars. See Fig. 2 for definitions of 

species complexes. *p < 0.05, **p < 0.01, ***p < 0.001
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ever, there was no significant relationship between
the 90 d averaged water temperature and the mean
SL of the settlers, regardless of the region (Pearson
coefficient of  correlation, p > 0.05 for all taxa; Fig.
S6 in the  Supplement).

DISCUSSION

Patterns of fish settlement

Settlement of juvenile rockfishes along the Oregon
coast was highly variable over the 5 yr of the study.
This interannual variability is consistent with previ-
ous studies conducted along the CCS that evaluated
annual reproductive success at different life stages,
including the abundance of pelagic juveniles (Ral-
ston et al. 2013, Sakuma et al. 2013), settlement of
competent juveniles to nearshore habitats (Wilson et
al. 2008, Caselle et al. 2010a,b, Jones & Mulligan
2014), density of post-settlement recruits (White &
Caselle 2008, Gallagher & Heppell 2010, Dauble et
al. 2012, Markel et al. 2017, Wheeler et al. 2017), and
year-class fluctuations of the adult populations (Brad-
burn et al. 2011). Such variability is typically associ-
ated with interannual and regional differences in
production and survival of larvae and pelagic juve-
niles, resulting from shifts in primary productivity,
SST, alongshore currents, and persistence of ocean
fronts (Bjorkstedt et al. 2002, Woodson et al. 2012,
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Region Cabezon OYTB QGBCC SR Tiger
Year BI T (°C) BI T (°C) BI T (°C) BI T (°C) BI T (°C)

Northern Oregon
2014 0.52 0.11 −0.45 0.15 0.42 −0.47 −0.43 −0.04 −0.42 −0.21
2015 −0.69 0.36 −0.60 0.09 −0.05 0.25 −0.98** 0.36 −0.65 0.82a

2016 0.30 −0.19 0.13 0.02 −0.64a 0.47 −0.56 0.50 −0.56 0.50
2014−2016 −0.09 0.09 −0.04 0.27 −0.15 0.34 −0.39* 0.44a −0.31 0.65*

Southern Oregon
2014 −0.98 0.73 na na −0.35 −0.09 na na na na
2015 −0.50 0.05 0.19 −0.19 −0.32 0.27 0.23 0.22 0.34 0.05
2016 −0.04 −0.21 −0.04 0.21 −0.52 0.86** −0.71 0.96* −0.70 0.95*
2014−2016 −0.27 0.05 0.05 −0.24 −0.36 0.37a −0.27 0.44a −0.23 0.22

ap < 0.1

Table 2. Pearson correlation coefficients between settlement rate (no. of fish SMURF−1 d−1) and mean Bakun index of up-
welling (BI), in situ mean water temperature (T, °C). BI source: NOAA Pacific Fisheries Environmental Laboratory, for 45° N,
125° W (northern Oregon) and 42° N, 125° W (southern Oregon). Environmental parameters were averaged for each sampling
interval, with a 1 d lag for water temperature. See Fig. 2 for definitions of species complexes Bold: significant values (*p < 0.05,

**p < 0.01). na: not applicable

Fig. 4. Settlement rate of OYTB was greater in marine re-
serves of both regions (A, northern; B, southern Oregon),
while settlement of cabezon Scorpaenichthys marmoratus
was greater in the non-reserve (blue) of southern Oregon.
Only data from 2014−2016 were available for southern Ore-
gon. Settlement rate was averaged over all replicate
SMURFs within site and normalized by annual mean settle-
ment from each region to account for the year random effect.
Error bars indicate standard error. Number of sampling
 collections shown under bars. See Fig. 2 for definitions of 

species complexes. *p < 0.05, ***p < 0.001
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Ralston et al. 2013, Wheeler et al. 2017). In our study,
we found that interannual settlement of cabezon was
less variable than rockfish, especially in northern
Oregon, suggesting that annual egg production and
larval survival of cabezon is also less variable among
years. These results are consistent with the life-his-
tory strategy of rockfishes (higher fecundity, lower
early larval survival, and later age at maturity) com-
pared to cabezon (Winemiller & Rose 1992).

As in previous studies, settlement peaks ranged
over a 2 mo window among years. Despite this year-
to-year variation, settlement peaks of our 5 focal taxa
were generally synchronized between northern and
southern Oregon (Fig. 2) and roughly aligned with
previously published data from the central CCS. Set-
tlement peaks of cabezon occurred between late
April and June, consistent with settlement peaks in
central California (Wilson et al. 2008). Similarly, set-
tlement pulses of OYTB also occurred in the same
months (May−June) along the California coast
(Ammann 2004, Wilson et al. 2008, Caselle et al.
2010a, Jones & Mulligan 2014). Pulses of QGBCC
settlement to Oregon also ranged over similar
months (June−August) as KGBC, gopher, black-and-
yellow, and copper rockfishes along southern and
central California (Anderson 1983, Wilson et al.
2008). This latitudinal settlement synchrony is not
consistent with other species along the CCS, such as
the blue rockfish Sebastes mystinus (Laidig 2010),
where settlement tends to occur later towards more
northern latitudes. In general, previous studies of fish
reproduction have shown that fish phenology fre-
quently is shifted later at northern latitudes (Love et
al. 2002, Cope & Key 2009). However, the overall
synchrony observed during our 5 yr settlement time
series indicates that fish settlement along the Oregon
coast occurs earlier than expected. This early settle-
ment may have been driven by anomalously warm
water temperature in the northeast Pacific in
2013−2016, which coincided with an El Niño event
(Bond et al. 2015, Hu et al. 2017). Previous work has
demonstrated that this warm anomaly drove changes
in the community of phyto- and zooplankton, poten-
tially impacting higher tropic levels of the food web
(Peterson et al. 2017). Unfortunately, there are no
published studies evaluating seasonal patterns of
settlement elsewhere along the CCS that coincides
with our study period. By itself, our time series is not
sufficiently long to test whether fish settlement tim-
ing along the Oregon coast has been influenced by
this warm water anomaly. Further, this warm water
anomaly has masked any potential settlement differ-
ences derived from the El Niño that may otherwise
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Fig. 5. Standard length of 5 fish taxa collected 2012−2016
varied as the season progressed. See Fig. 2 for definitions of
species complexes. Regression curve for OYTB excludes 2
outliers. Shading indicates 95% CI. Note different scales for 

y-axes
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have been apparent in our dataset. Additional sam-
pling years in Oregon and upcoming studies of set-
tlement timing elsewhere along the CCS may help
elucidate links between settlement and such large-
scale oceanographic processes. For instance, a multi-
decadal study revealed that, compared to previous
years, pelagic juvenile rockfishes were abundant in
central California during the 2015−2016 El Niño
event but were low in southern and northern Califor-
nia (McClatchie 2016).

Regional differences in settlement rates among
taxa in our study may reflect spatial structure of the
adult populations. Higher cabezon settlement rates
observed in southern Oregon may be driven by the
generally higher adult population density around
Cape Blanco compared to northern Oregon (Cope &
Key 2009). At a finer spatial scale, we found that set-
tlement to marine reserves was similar to the nearby
(<3 km) non-reserve areas for all taxa except
cabezon in southern Oregon (lower in the reserve)
and OYTB in both regions (higher in the reserve).
Different predation pressure on pelagic juveniles
before settlement to SMURFs may lead to differences
in settlement magnitude between reserves and non-
reserves, but this is unlikely to be the case here as
adult fish surveys have revealed no significant differ-
ence in the density of piscivorous fishes between
these newly established reserves and their non-
reserve comparison areas (Huntington et al. 2015).
Previous studies have shown that alongshore hydro-
dynamics interacting with coastal topography can
affect the supply of competent settlers (Jenkins et al.
1997, Markel et al. 2017). In upwelling zones, higher
settlement of invertebrates on the lee of small head-
lands may be due to the formation of a retention
zone, where lower portions of the water column are
recirculated (Mace & Morgan 2006). The local topo -
graphy surrounding the 2 reserves in our study may
create a similarly retentive zone during upwelling
compared to the non-reserve comparison areas
(Fig. 1). Such recirculation may contribute to the ob -
served pattern of higher settlement of OYTB to the
marine reserves, as this group includes species that
occur deeper in the water column than the other
rockfish species. In contrast, species that occur
higher in the water column such as cabezon (Doyle
1992) exhibited no consistent difference in settle-
ment magnitude between marine reserves and non-
reserves. Settlement variation across space may also
be influenced by settlement cues (reviewed in Pawlik
1992, Leis et al. 2011). The proportion of rock and
boulder substrates differ between the reserve and
non-reserve sites in both regions (Huntington et al.

2015); thus it is possible that there are species-
 specific behaviors in response to subtle habitat differ-
ences that lead to contrasting settlement patterns of
cabezon and OYTB between the reserve and non-
reserve sites. More data are needed to consider local-
scale retention structures and habitat heterogeneity
when designing marine reserves. Such data may be
useful for achieving marine reserve goals since most
existing reserves around the world are generally
small (Oregon’s reserves range from 3 to 36.5 km2),
and thus rarely encompass all ecologically important
habitats (Lester et al. 2009).

Understanding settlement differences between
reserves and non-reserves provides valuable infor-
mation for our understanding of how reserves func-
tion (Grorud-Colvert & Sponaugle 2009), both at
reserve implementation and through time. Although
site fidelity (i.e. fish remaining in the same area) of
young recruits has rarely been examined in the CCS,
evidence indicates that adult cabezon and a number
of other rockfishes (including fishes inside Oregon
marine reserves) are sedentary within a specific
home range (e.g. Matthews 1990, Mireles et al. 2012,
Calvanese 2016). Newly settled juveniles of these
species may display a similar site fidelity behavior as
that observed in adults. In these cases, quantifying
settlement of fishes to reserves can help provide an
annual baseline to which subsequent years of settle-
ment data can be compared. Such data will eventu-
ally help us better understand fluctuations in year-
class strength of fishes, and evaluate how protection
of piscivorous fishes affects survival of newly
recruited fish (Hobson et al. 2001).

Effect of upwelling strength and water temperature
on fish settlement

Higher growth rates and survival of larval and
pelagic juvenile rockfishes have been associated
with high primary productivity in coastal upwelling
fronts along the CCS (Bjorkstedt et al. 2002, Wheeler
et al. 2017). Previous studies examining the relation-
ship between upwelling strength and annual settle-
ment of pelagic juveniles have revealed contrasting
patterns depending on the region of study. For
instance, interannual settlement of both OYTB and
KGBC was positively related to upwelling strength in
regions south of Point Conception and north of Cape
Mendocino (Caselle et al. 2010a, Jones & Mulligan
2014), but settlement of only KGBC was positively
related to upwelling strength off central California
(Caselle et al. 2010a, Wheeler et al. 2017). At higher
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latitudes (i.e. Canada), settlement of black rockfish
appears to be associated with strong upwelling, and
weak upwelling favors settlement of quillback and
copper rockfishes (Markel et al. 2017).

For other marine organisms, short (2−6 d) down-
welling (upwelling relaxation) events along the Ore-
gon coast that reverse offshore transport of surface
waters during the settlement season have been asso-
ciated with warmer nearshore water and recruitment
pulses of intertidal organisms to the Oregon coast
(Dudas et al. 2009). Water off most of the California
coast is almost persistently upwelled — during the
relaxation periods, the upwelling intensity weakens,
and only occasionally reverses. Compared to Ore-
gon, downwelling episodes along central California
are less frequent (Huyer 1983), yet settlement of
KGBC to that coast is higher during periods of relax-
ation and warm water events, while OYTB settle-
ment peaks during episodes of strong upwelling and
cold water (A. Ammann, as cited in Caselle et al.
2010b). In our study, multiple cycles of upwelling–
relaxation within each sampling interval hindered
our ability to detect statistical significance between
settlement magnitude and oceanographic events.
However, although not significant for any taxon, set-
tlement of all taxa except OYTB tended to be higher
during downwelling and warm water temperatures
over the 3 yr period (2014−2016). Because OYTB set-
tlers were generally larger, with stronger swimming
capacities than most other taxa analyzed in this study
(Kashef et al. 2014), it is possible that pelagic OYTB
are able to counteract offshore advection during
upwelling. They also occur deeper in the water col-
umn where onshore transport of water can weaken
or reverse during upwelling events (Lenarz et al.
1995).

Relationship between fish size and
water temperature

There was no significant relationship between set-
tler size (SL) and water temperature for any focal
taxon, despite the fact that for most fishes, higher
water temperatures generally result in faster growth
(Houde 1989). This is likely because settler size is a
function of both growth rate and stage duration; thus
otolith microstructure analysis is needed to fully
resolve the relationship between temperature, age,
growth, and size (Sponaugle 2010). The largest ca -
bezon arrived to SMURFs in June, followed by subse-
quently smaller settlers as the season progressed.
Because the pelagic duration of cabezon is 3−4 mo

(O’Connell 1953), and they settled over a 5 mo
period, we clearly sampled juvenile cabezon from
multiple spawning events within the same year.
Therefore, the most plausible hypotheses for de -
creasing lengths of cabezon settlers over the sam-
pling season are that the larvae that hatched later in
the year either grew more slowly because of poor
growing conditions (e.g. food availability) or settled
at younger ages than larvae that hatched earlier in
the year.

For OYTB and QGBCC, mean size-at-settlement
increased significantly as the season progressed,
suggesting that these settlers may have been part of
the same annual cohort that arrived to settle at differ-
ent times during the sampling season. However, we
cannot exclude a temporal shift in the timing of set-
tlement of individual species within this complex.
Early settlers of QGBCC in 2016 were larger than
expected based on the regression curve, suggesting
that early settlers of this complex are likely a differ-
ent species (possibly copper rockfish; Anderson
1983) than the mid- and late-season settlers.

Within individual settlement seasons, the size dis-
tribution of SR was the most variable. Such variability
could be driven by one of the SR species settling at a
different size or time of the year. Indeed, genetically
identified redbanded juveniles (~12%) were signifi-
cantly larger than genetically identified splitnose
juveniles (~88%) that settled simultaneously (August
27−September 11, 2013) to northern Oregon (D.
Ottmann et al. unpubl. data).

This study is the first time-series effort to systemat-
ically measure nearshore fish settlement in the north-
ern CCS. Our findings for Oregon are consistent with
previous research conducted elsewhere in this sys-
tem in showing that settlement of competent pelagic
juvenile fishes is highly variable among years. How-
ever, within-season settlement peaks of most taxa
tended to coincide with short (2−6 d) episodes of
down welling and warm surface waters. The overall
timing of settlement during our study period was
roughly similar to that reported previously for central
and southern California, despite the different up -
welling regimes between California and Oregon.
Such similarity contrasts the previously described
delay (Love 2011) of the reproductive phenology in
higher latitudes of the CCS and may be driven by
abnormally warm water temperatures (Hu et al.
2017) that ex isted during the study period. However,
simultaneous settlement measurements in both geo-
graphical areas would be necessary to directly com-
pare the degree to which there is a settlement delay
along the CCS. Continued long-term monitoring of
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fish settlement is necessary to estimate the contribu-
tion of interannual fluctuations in large-scale oceano -
graphic processes, such as the Pacific Decadal Oscil-
lation or El Niño events, as well as management
influences on fish settlement (Green et al. 2015).
Combining settlement data with the monitoring data
of post-settlement individuals may help refine meas-
urements of post-settlement mortality and identify
the habitats most essential to sustaining healthy fish
stocks.
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