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INTRODUCTION

Many marine organisms undergo an early pelagic
stage before recruiting to benthic populations to
complete their lifecycle. In these cases, settlement of
late-stage larvae or pelagic juveniles to bottom-asso-
ciated structures (e.g. reefs, vegetation canopy, inter-
tidal substrates) is a necessary precursor to recruit-
ment to the population (Roughgarden et al. 1988,

Doherty & Fowler 1994). Here we use the term ‘set-
tlement’ to describe when pelagic juveniles are first
observed in association with a near-benthic structure
and the term ‘recruitment’ to denote the subsequent
process of newly settled juveniles entering a benthic
population. Examination of the processes involved in
the movement or settlement of pelagic stages to the
benthos should enhance our understanding of re -
cruitment and population dynamics (King & McFar-
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ABSTRACT: For most benthic marine organisms, settlement of pelagic offspring to bottom-associ-
ated habitats is a necessary step in the replenishment of adult populations. Quantifying spatial
and temporal variation in settlement is therefore important to fully understand population dynam-
ics, inform fisheries management targets, and design effective spatial management strategies.
Data on nearshore patterns of fish settlement are lacking for the northern California Current
 System (CCS), which is characterized by complex oceanographic currents and a seasonal, inter-
mittent upwelling regime. Thus, to quantify spatial and temporal patterns of fish settlement in the
northern CCS in relation to oceanographic conditions, we measured settlement of 5 fish taxa to 2
regions of the Oregon coast over 5 settlement seasons (late spring to early fall, 2012−2016). Tem-
poral patterns of settlement reflected taxon-specific degrees of episodic settlement, with cabezon
Scorpaenichthys marmoratus exhibiting the most uniform settlement across each season, and
splitnose Sebastes diploproa and redbanded S. babcocki rockfishes exhibiting the most episodic
settlement. Fish settlement tended to be greater during short periods of downwelling (upwelling
relaxation events) for all but the largest fish taxa. Within settlement season, variation in size-at-
settlement tracked taxon-specific temporal patterns of arrival but was unrelated to water temper-
ature. Differences in fish settlement between small marine reserves and nearby unprotected areas
was region- and taxon-specific, highlighting the fact that size and habitat heterogeneity should be
considered in the design of marine reserves. These findings provide a deeper understanding of
settlement patterns across the mosaic of environmental variability in eastern boundary currents
such as the CCS.
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lane 2003). Such data can also be valuable for
applied management of populations. For example,
most studies evaluating the effects of marine re -
serves are based on changes in the abundance of the
adult population (Lester et al. 2009). These changes
may be the result of reduced adult mortality due to
management, but may also arise from changes in the
number of new individuals entering the population.
Settlement of young is rarely constant among years
in the ocean due to high interannual variation in
early-life survival and stochastic oceanographic pro-
cesses that alter the dispersal pathways of offspring
(Wilson 2001, Ralston et al. 2013, Shulzitski et al.
2016). For instance, settlement timing of most coral-
reef fishes is synchronized with the lunar phase.
However, oceanographic features, such as the pas-
sage of mesoscale eddies, and biological factors, such
as pre-settlement condition of the fishes, superim-
poses additional noise on this synchrony (D’Alessan-
dro et al. 2007, Rankin & Sponaugle 2014, Shulzitski
et al. 2015).

In the California Current System (CCS), an eastern
boundary current flowing along the US west coast
from British Columbia to Baja California, complex
oceanographic processes such as cycles in upwelling
strength and seasonal shifts in alongshore currents
(Huyer 1983, Lynn & Simpson 1987, Checkley & Barth
2009) exacerbate the challenges of identifying proxi-
mate sources of settlement variation (e.g. Shanks &
Eckert 2005, Caselle et al. 2010b). Examination of
nearshore fish settlement in such complex systems re-
quires high-frequency monitoring programs across
multiple years and locations (White & Caselle 2008,
Wilson et al. 2008, Shanks 2009, Caselle et al. 2010a,
Jones & Mulligan 2014). Such studies have shown
that fish settlement to nearshore habitats of the
central and southern CCS is highly variable across
time and space (10s to 100s of km; Caselle et al. 2010a,
Jones & Mulligan 2014, Markel et al. 2017), largely
due to changes in upwelling strength, alongshore cur-
rents, and oceanographic conditions that affect larval
transport and pre-settlement mortality (Petersen et al.
2010, Wheeler et al. 2017). For species like rockfishes
Sebastes spp., which are viviparous and have a rela-
tively high fecundity, differences in mortality rates
during the pelagic stage amplify variability in the
number of individuals that survive to settlement
(Winemiller & Rose 1992, Love et al. 2002, Ralston et
al. 2013). Adults are long-lived and the quality of off-
spring varies with age: older females release larger
clutches of high-condition larvae that are more likely
to survive than those from younger females (Sogard et
al. 2008).

Variable settlement of offspring to coastal habitats
along the CCS is a consequence of interactions be -
tween alongshore currents and coastline morphology
(e.g. prominent headlands creating retention zones),
latitudinal differences in physical parameters that
may alter the growth and development of the fish (i.e.
water temperature and day length), and variation in
upwelling strength or regime (Boehlert 1981, Lenarz
et al. 1995, Wing et al. 1998, Shanks & Eckert 2005,
Checkley & Barth 2009). In particular, strong along-
shore winds south of Cape Mendocino, northern
 California, USA, are predominantly equatorward
(upwelling-favorable), with a relatively weak inver-
sion between Cape Mendocino and Point Conception
(southern California) in winter. There is a more dras-
tic inversion of alongshore winds north from Cape
Mendocino, with stronger northward (downwelling-
favorable) winds in winter and southward winds in
summer (Huyer 1983). Here, wind-stress relaxation
events reverse the upwelling-driven offshore trans-
port more frequently than in lower latitudes, result-
ing in 2−6 d cycles of downwelling that have been
associated with increased settlement of intertidal
organisms (Dudas et al. 2009).

Although recruitment of nearshore fishes to coastal
benthic populations has been examined throughout
the CCS (West et al. 1994, Carr & Syms 2006, Gal-
lagher & Heppell 2010, Dauble et al. 2012, Markel et
al. 2017), settlement has only been systematically
monitored and described along the California coast
(Wilson et al. 2008, Caselle et al. 2010a, Jones & Mul-
ligan 2014). To examine how patterns of juvenile fish
settlement vary along the Oregon coast, we analyzed
spatial and temporal variability in fish settlement to
nearshore, rocky-reef habitats in 2 regions (sepa-
rated by >200 km) over 5 annual recruitment seasons
(2012−2016). Settlement was examined relative to
oceanographic conditions and compared between
protected marine reserve sites and non-reserve sites
within each region to inform our understanding of
settlement within these managed areas.

MATERIALS AND METHODS

Field sampling

Juvenile fishes were collected from 2 nearshore
regions of the northern CCS: northern and southern
Oregon (233 km apart; Fig. 1). These regions were
selected to compare settlement of larvae and pelagic
juveniles above and below the biogeographic break
at Cape Blanco, and to complement long-term eco-
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logical monitoring currently underway in Oregon’s
marine reserves (established between 2012 and
2016). Newly settled juvenile fishes were collected
using standardized monitoring units for the recruit-
ment of fishes (SMURFs; Ammann 2004). These col-
lectors consist of black polyvinyl chloride mesh
folded inside a long (100 × 35 cm) cylinder of garden
fencing, forming a 3-D structure that simulates
 natural settlement substrates such as a kelp canopy.
In each region, up to 8 replicate SMURFs were
deployed 1 m below the surface by attaching them to
a mooring anchored in sandy substrates at a bottom
depth of ~15 m, 390−1200 m from shore. The distance
between SMURFs was >300 m, and the deployment
locations were selected at a conservative distance
offshore of underwater boulders and kelp canopy to
ensure direct pelagic settlement of fishes to SMURFs
as opposed to movement from other surrounding
substrates. To evaluate potential differences in fish
arrival to protected and unprotected sites, in each
region, half of the SMURFs were deployed at a mar-

ine reserve site and the other half at a nearby (<3 km)
non-reserve site selected as a comparison area to the
reserve based on similar depths, relief, and habitats.
In one location (Otter Rock), the outer limit of the
marine reserve is <15 m and has some rocky reefs;
thus we had to deploy the moorings outside of the
reserve, but in direct proximity to it, in sand patches
with no settlement habitats between these and the
reserve borders. We note that juveniles that settle to
SMURFs have just completed their pelagic stage and
arrived to these nearshore habitats. Thus, we assume
they have not experienced any effects of the reserve
yet (regardless of whether the SMURFs are inside or
at the periphery of the reserve). Instead, settlement
to SMURFs is a relative measure of new fishes
 arriving to these habitats. For logistical reasons, the
specific position of several SMURFs at the northern
Oregon region was modified during the first 2 yr of
the study. Similarly, some SMURFs were occasionally
lost, especially during the first year, which affected
the number of replicates for each site. New fish set-

133

Fig. 1. Sampling locations in 2 nearshore regions: (A) northern (2012−2016) and (B) southern (2014−2016; Oregon (upper right
inset), USA. Within each region, newly settled pelagic juveniles were sampled in replicate standardized monitoring units for
the recruitment of fishes (SMURFs) grouped at either a marine reserve (green) or an unprotected comparison area (dark blue).
For Otter Rock Marine Reserve, SMURFs were located outside of the reserve to align with the 15 m bottom depth. Red points
indicate all locations where SMURFs were deployed between 2012 and 2016. In 2012−2013, one SMURF was located between
the marine reserve and the non-reserve and was removed from the analysis that compared settlement between reserve and 

non-reserve
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tlers were collected every 2 wk during the summer
settlement season (Love 2011), which started in April−
June (weather-dependent) and extended through
September of 2012−2016 in northern Oregon and
2014−2016 in southern Oregon. Earlier studies have
demonstrated that the presence of fishes in SMURFs
coincides with subsequent recruitment of juvenile
fishes to the benthic habitat (Ammann 2004, White &
Caselle 2008, Markel et al. 2017). These studies
showed that most fish taxa experience little to no loss
from SMURFs over a 2 wk deployment interval. In
light of this finding, and because we did not observe
adult rockfishes (potential predators) surrounding
our SMURFs, we assume that loss of settlers in our
study is comparable to that of previous studies. To
retrieve SMURF samples, 2 snorkelers used a butter-
fly-style net (BINCKE; Anderson & Carr 1998) to
enclose each SMURF and bring it to the vessel. Col-
lected fish were euthanized with 2 mM tricaine
methanesulfonate (MS-222) buffered in 6 mM
sodium peroxide, placed on ice, and transported to
the lab for further processing.

Sample processing

Fishes were identified to species and their standard
length (SL) measured to the nearest mm with
calipers. Species identification was based on meristic
characteristics (Anderson 1983, Matarese et al. 1989,
Moser 1996); however, meristics are not always suffi-
cient for the conclusive identification of some rock-
fish juveniles (Caselle et al. 2010a, Woodson et al.
2012, Jones & Mulligan 2014, Markel et al. 2017, E.
Anderson & J. C. Garza unpubl. data). We conserva-
tively grouped these species into 3 complexes:
OYTB, which included olive Sebastes serranoides,
yellowtail S. flavidus, and black S. melanops rock-
fishes; QGBCC, which included quillback S. maliger,
gopher S. carnatus, black-and-yellow S. chrysome-
las, copper S. caurinus, and china S. nebulosus rock-
fishes; and SR, which included splitnose S. diploproa
and redbanded S. babcocki rockfishes. We used the
OYTB and QGBCC complexes to facilitate compar-
isons with previous research conducted off of Califor-
nia that used similar groupings (KGBC; Wilson et al.
2008, Caselle et al. 2010a), but we note that our
QGBCC complex includes china and quillback rock-
fishes, and omits kelp rockfish S. atrovirens to
accommodate regional variation in species occur-
rence. To confirm the presence of species within
these complexes, we sent 598 (7.7%) samples of what
appeared to be different morphotypes of each com-

plex to be genetically identified at the NOAA South-
west Fisheries Science Center in Santa Cruz, Califor-
nia. A combination of microsatellite (Pearse et al.
2007), mtDNA, and restriction site-associated DNA
(RAD) sequencing techniques were employed for this
purpose. Aspects of species’ life histories are consis-
tent with these morphological groupings. Elsewhere
along the CCS, juvenile olive, yellowtail, and black
rockfishes settle to similar substrates (kelp mats, eel-
grass, boulders, and oil platforms) during overlap-
ping times of the year (mid spring and summer) at
sizes that range from 2.5 to 6.3 cm SL (Love et al.
2002, Love 2011). The species grouped in the
QGBCC complex typically settle to kelp canopy at
smaller sizes (1.5−3.5 cm SL) and arrive to nearshore
habitats at overlapping times from spring to fall (with
copper rockfish possibly settling earlier in the season
than the other species of the complex; Anderson
1983). Larval release by OYTB species generally
occurs earlier in winter than for the QGBCC species.
Splitnose and redbanded rockfish juveniles display
rafting behavior to drifting kelp during their pelagic
stage. Although splitnose rockfish has a particularly
long (up to 1 yr) pelagic stage and may settle almost
year-round, most juveniles settle in late summer in
Oregon, overlapping with the settlement time of red-
banded rockfish. In fact, throughout the study, no SR
settlers appeared before June 15. Given the ecologi-
cal similarities among the species in these 3 com-
plexes, and limited resources available for genetic
identification, we report the settlement patterns of
rockfish complexes.

Data analysis

Patterns of fish settlement

To analyze spatial and temporal patterns of juve-
nile fish settlement, we applied generalized linear
mixed effects models (GLMMs; Zuur et al. 2013) with
a negative binomial distribution (Table 1). These
models included offsets for the number of SMURFs
and days per sampling interval to account for a vari-
able number of replicates and length of each sam-
pling interval. The offsets are model variables with a
known coefficient (slope) of 1 that adjusts the
observed fish count with the effect of the sampling
effort (sampling days and number of SMURFs), so
observed fish count is evaluated at an effort unit of 1
SMURF and 1 d (Zuur et al. 2013). Therefore, our
model outputs can be interpreted as the variation in
settlement rate, where settlement rate is the number
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of fish SMURF−1 d−1. Our analyses focused on 5 taxa
that comprised over 98% of the samples collected in
this study: cabezon Scorpaenichthys marmoratus,
OYTB, QGBCC, SR, and tiger rockfish Sebastes
nigrocinctus. To reduce zero-inflated data, we nar-
rowed settlement windows for each taxon by exclud-
ing months when settlement was very low or absent
across all years of the study (see Fig. 2). The data
windows included days prior to July 1 for OYTB, after
June 1 for QGBCC, and after July 1 for SR and tiger
rockfishes. Because cabezon settled throughout all of
the sampled months, settlement for this species was
analyzed over the entire settlement season (April to
September). The timing of each settlement pulse was
considered to be the midpoint of each ~15 d deploy-
ment period.

To evaluate differences among SMURF locations
within region, we applied an initial GLMM with ran-
dom effects to account for interannual and within-
settlement season variation. This model did not
include an offset for the number of SMURFs, as it
evaluated the individual performance of each sam-
pling location. Fish settlement was not affected by
the mooring location within region (northern Ore-
gon: χ2

8 = 10.76, p = 0.22; southern Oregon: χ2
7 = 5.82,

p = 0.56), so thereafter we assumed each SMURF was
independent from other SMURFs and we analyzed
the data using SMURFs within region or sites as
replicates. To evaluate annual differences in settle-
ment of each taxon for each region separately, we
applied a second GLMM with only 1 random effect to
account for within-settlement season variation. To
examine regional differences in settlement patterns
for each taxon, we applied a third GLMM using data
from 2014−2016 that included annual and within-
 settlement season variation as random effects. For
each region separately, we applied a fourth GLMM
to evaluate differences in settlement of each taxon

between the marine reserves and their comparison
non-reserve areas (sites), accounting for annual and
within-settlement season variation by including the
same 2 random effects.

Effect of upwelling strength and water temperature
on fish settlement

To evaluate upwelling strength at our respective
northern and southern Oregon sites, we obtained
Bakun index values of daily upwelling at 45° N,
125° W (northern Oregon) and 42° N, 125° W (south-
ern Oregon) from the NOAA Pacific Fisheries Envi-
ronmental Laboratory. This index represents daily
averages of wind-driven cross-shore transports com-
puted from the Fleet Numerical Meteorology and
Oceanography Center (www. usno. navy. mil/ FNMOC).
Positive values indicate offshore transport in units of
m3 s−1 along each 100 m of coastline.

In situ water temperature at ~3 m depth was re -
corded at each SMURF mooring from 2014−2016
with HOBO® Water Temp Pro v2 and Odyssey®

Conductivity & Temperature Logger sensors. Tem-
perature was recorded hourly and averaged to obtain
the mean daily average for each region. We exam-
ined the relationship between water temperature
and Bakun index of upwelling by calculating a Pear-
son correlation coefficient. We then calculated the
mean settlement rate (no. of fish SMURF−1 d−1) for
each region separately, and examined the relation-
ship between settlement rate of each taxon and mean
Bakun index and mean water temperature (sepa-
rately) over each sampling interval. Water tempera-
ture values lagged Bakun index values by 1 d (see
‘Results’) so the data were offset to account for this
lag. Correlations were calculated separately for
2014−2016, and for the 3 years combined.
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Model                  Equation

M1                       Niyd = β0 + β1 × LSiyd + offset(Iiyd) + ay ~ N(0,σ2
year) + bd ~ N(0,σ2

day) + εiyd ~ N(0,σ2)
M2                      Nid = β0 + β1 × Yid + offset(Iid) + offset(NSid) + bd ~ N(0,σ2

day) + εid ~ N(0,σ2)
M3                      Niyd = β0 + β1 × Riyd + offset(Iiyd) + offset(NSiyd) + ay ~ N(0,σ2

year) + bd ~ N(0,σ2
day) + εiyd ~ N(0,σ2)

M4                      Niyd = β0 + β1 × Siyd + offset(Iiyd) + offset(NSiyd) + ay ~ N(0,σ2
year) + bd ~ N(0,σ2

day) + εiyd ~ N(0,σ2)
M5a,b                 Li = β0 + β1 × Yi + ƒ(Di) + εi ~ N(0,σ2)

Table 1. Models used in analysis of settlement patterns of pelagic juvenile fish along the Oregon coast. N: number of settlers;
LS: location of the standardized monitoring unit for the recruitment of fishes (SMURF) within region; offset(I): offset for the
variable length of the sampling interval (days); ay ~ N(0,σ2

year): random effect of year; bd ~ N(0,σ2
day): random within-settlement

season effect (day of the year); ε: error; β0: intercept; β1: slope of the subsequent explanatory variable; Y: year; offset(NS): offset
for the variable number of SMURFs; R: region (northern vs. southern Oregon); S: site (marine reserve vs. non-reserve area); L:
mean standard length of each fish collection (Model M5a) or standard length of each individual fish (Model M5b); ƒ(D): 

smoother for the within-settlement season (day of the year) variability in fish length
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Relationship between fish size and
water temperature

To evaluate temporal differences in the size at
which each taxon settled to the SMURFs, we applied
2 generalized additive models (GAM; Zuur 2012)
with a normal distribution that included a discrete
variable for year and a smoothing parameter for
within-settlement season variation in fish length
(Table 1, Models M5a,b). The interannual variation
in size-at-settlement was analyzed for each study
region separately, using the average length of each
fish collection to avoid data redundancy. To analyze
within-settlement season variation, we combined the
data from both regions and used individual fish
measurements as data points. Because growth of
poikilotherms is typically related to temperature, we
examined the relationship between region-specific
SL of settlers and regional water temperature. We
obtained daily offshore sea surface temperature
(SST) data for 2012−2016 from the NOAA National
Data Buoy Center at Stns #46050 and #46015, located
35 and 20 km offshore of our northern and southern
Oregon sites. For each region, we regressed the
mean SL of the fish collected in each sampling event
against the mean water temperature during the pre-
vious 90 d, which is the shortest pelagic larval dura-
tion of our analyzed taxa.

All analyses were conducted in R v3.2.1 (R Core
Team 2015) using packages ‘plyr’ v1.8.3 (Wickham
2011), ‘lme4’ v1.1-10 (Bates et al. 2015), ‘mgcv’ v1.8-
6 (Wood 2001), and ‘zoo’ v1.7-13 (Zeileis & Grothen-
dieck 2005). Figures were created using ARCGIS
v10.2 (Esri 2014) and R package ‘ggplot2’ v2.0.0
(Wickham 2009).

RESULTS

Patterns of fish settlement

In total, 7768 fishes (Table S1 in the Supplement
at www. int-res. com/ articles/ suppl/ m598p131 _ supp.
pdf) were collected over the 5 yr of the study.
Within complexes, different species had different

overlapping morphological traits, and specimens
that we  initially grouped into similar morphotypes
were not consistently identified as the same species
using genetics. Genetic results confirmed the pres-
ence of all species within the SR and QGBCC com-
plexes in both our sampling regions. We genetically
identified 3 gopher and 1 black-and-yellow rock-
fishes in northern Oregon (these species had never
been reported north of Cape Blanco; Love 2011),
and 4 gopher and 2 black-and-yellow rockfishes in
southern Oregon. However, we do not know
exactly how many of these were collected through-
out our study series, as due to funding constraints,
only a subset of the samples was genetically identi-
fied. There is a lack of published information on
the early life history and settlement of china and
quillback rockfishes (Love 2011, but see Markel et
al. 2017), which makes these collections particularly
novel. For the OYTB complex, genetic results con-
firmed the presence of only yellowtail and black
rockfishes. However, the presence of olive rockfish
in our samples cannot be discounted because
adults are reported off southern Oregon. The 5
focal fish taxa exhibited different settlement pat-
terns across the settlement season (Fig. 2). Cabezon
settled throughout the season, but peaked between
late April and late June. The highest settlement of
OYTB occurred between May and early June, with
very low numbers settling afterwards. Settlement of
QGBCC peaked between June and August for
most years, but there were additional early and
late-season settlement pulses in 2016. In years
where SR and tiger rockfish were abundant, these
species tended to settle later in the settlement sea-
son, starting in July and increasing towards
 September, possibly peaking beyond our sampling
season.

With the exception of cabezon, settlement of most
sampled taxa was highly variable across years
(GLMM, p < 0.05), with annual means ranging from 0
to 1.5 fish SMURF−1 d−1 in some taxa (Fig. 3). Settle-
ment rates did not differ significantly between the 2
regions for OYTB, QGBCC, and SR (GLMM, p >
0.05). However, cabezon had a significantly higher
settlement rate in southern Oregon than in northern
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Fig. 2. Settlement of 5 fish taxa to northern (left panels; 2012−2016) and southern Oregon (right panels; 2014−2016) nearshore
habitats during the settlement season (spring and summer). Settlement rate was averaged over all replicate SMURFs within
each site (2 sites per region). Shading indicates 95% CI. Note different scales for y-axes. From top to bottom: cabezon
 Scorpaenichthys marmoratus; species complex OYTB (olive Sebastes serranoides, yellowtail S. flavidus, and black S.
melanops rockfishes); species complex QGBCC (quillback Sebastes maliger, gopher S. carnatus, black-and-yellow S. chryso -
melas, copper S. caurinus, and china S. nebulosus rockfishes); species complex SR (splitnose Sebastes diploproa and 

redbanded S. babcocki rockfishes); and tiger rockfish Sebastes nigrocinctus

http://www.int-res.com/articles/suppl/m598p131_supp.pdf
http://www.int-res.com/articles/suppl/m598p131_supp.pdf
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Oregon, while tiger rockfish had the opposite pattern
(Fig. S1 in the Supplement; GLMM, p < 0.05). Within
each region, OYTB exhibited greater settlement to
marine reserves than to unprotected comparison
areas (Fig. 4; GLMM, p < 0.05). Cabezon exhibited
the opposite trend, but only in southern Oregon, with
greater settlement to the unprotected area than to
the marine reserve. Settlement of the remaining taxa
did not differ significantly between reserves and
non-reserve areas (GLMM, p > 0.05).

Effect of upwelling strength and water temperature
on fish settlement

Daily upwelling strength was negatively correlated
with in situ water temperature in both regions
(Fig. S2 in the Supplement; Pearson coefficient of

correlation: northern Oregon: r =
−0.53, p < 0.001, southern Oregon: r =
−0.55, p < 0.001). These correlations
were stronger when upwelling
strength was compared to water tem-
perature the following day (northern
Oregon: r = −0.67, p < 0.001, southern
Oregon: r = −0.66, p < 0.001), indica-
ting that there was a 1 d lag between
changes in upwelling strength and
changes in nearshore water tempera-
tures. Be cause the 15 d sampling
intervals could encompass multiple
cycles of upwelling−relaxation, there
were very few significant correlations
be tween fish settlement and these
environmental parameters (Table 2;
Fig. S3 in the Supplement). Despite
the lack of statistical significance, it is
worth noting that these correlations
tended to be negative with upwelling
strength and positive with water tem-
perature, with the only exception
being OYTB in southern Oregon.

Relationship between fish size and
water temperature

Interannual differences in mean SL
were significant (GAM, p < 0.05) for
cabezon and tiger rockfish in north-
ern Oregon, and for QGBCC in
southern Oregon (Fig. S4 in the Sup-
plement). The mean length of the

settlers varied significantly over the season for all
species (GAM, p < 0.01), but each taxon exhibited
different trends (Fig. 5). For cabezon, the largest
individuals tended to settle in June, while later set-
tlers tended to be smaller. Excluding some outliers
(QGBCC settling before June and OYTB settling
after mid-July), the average length of settling OYTB
and QGBCC increased by 0.11 mm d−1 and 0.09 mm
d−1, respectively, as the season progressed. QGBCC
size at settlement prior to June follows a similar
growing trend. The size distribution of SR exhibited
a sinusoidal pattern over the settlement season,
while tiger rockfish did not exhibit a distinct
pattern. Average monthly temperatures were gen-
erally higher off northern Oregon than off southern
Oregon, likely driven by stronger upwelling in
southern Oregon advecting colder water to the sur-
face (Fig. S5 in the Supplement; Huyer 1983). How-
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Fig. 3. Annual settlement of 5 fish taxa to (A) northern (2012−2016) and (B)
southern (2014−2016) Oregon. Settlement rate was averaged over all replicate
SMURFs within each region per year. Error bars indicate standard error.
Number of sampling collections shown under bars. See Fig. 2 for definitions of 

species complexes. *p < 0.05, **p < 0.01, ***p < 0.001
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ever, there was no significant relationship between
the 90 d averaged water temperature and the mean
SL of the settlers, regardless of the region (Pearson
coefficient of  correlation, p > 0.05 for all taxa; Fig.
S6 in the  Supplement).

DISCUSSION

Patterns of fish settlement

Settlement of juvenile rockfishes along the Oregon
coast was highly variable over the 5 yr of the study.
This interannual variability is consistent with previ-
ous studies conducted along the CCS that evaluated
annual reproductive success at different life stages,
including the abundance of pelagic juveniles (Ral-
ston et al. 2013, Sakuma et al. 2013), settlement of
competent juveniles to nearshore habitats (Wilson et
al. 2008, Caselle et al. 2010a,b, Jones & Mulligan
2014), density of post-settlement recruits (White &
Caselle 2008, Gallagher & Heppell 2010, Dauble et
al. 2012, Markel et al. 2017, Wheeler et al. 2017), and
year-class fluctuations of the adult populations (Brad-
burn et al. 2011). Such variability is typically associ-
ated with interannual and regional differences in
production and survival of larvae and pelagic juve-
niles, resulting from shifts in primary productivity,
SST, alongshore currents, and persistence of ocean
fronts (Bjorkstedt et al. 2002, Woodson et al. 2012,
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Region Cabezon OYTB QGBCC SR Tiger
Year BI T (°C) BI T (°C) BI T (°C) BI T (°C) BI T (°C)

Northern Oregon
2014 0.52 0.11 −0.45 0.15 0.42 −0.47 −0.43 −0.04 −0.42 −0.21
2015 −0.69 0.36 −0.60 0.09 −0.05 0.25 −0.98** 0.36 −0.65 0.82a

2016 0.30 −0.19 0.13 0.02 −0.64a 0.47 −0.56 0.50 −0.56 0.50
2014−2016 −0.09 0.09 −0.04 0.27 −0.15 0.34 −0.39* 0.44a −0.31 0.65*

Southern Oregon
2014 −0.98 0.73 na na −0.35 −0.09 na na na na
2015 −0.50 0.05 0.19 −0.19 −0.32 0.27 0.23 0.22 0.34 0.05
2016 −0.04 −0.21 −0.04 0.21 −0.52 0.86** −0.71 0.96* −0.70 0.95*
2014−2016 −0.27 0.05 0.05 −0.24 −0.36 0.37a −0.27 0.44a −0.23 0.22

ap < 0.1

Table 2. Pearson correlation coefficients between settlement rate (no. of fish SMURF−1 d−1) and mean Bakun index of up-
welling (BI), in situ mean water temperature (T, °C). BI source: NOAA Pacific Fisheries Environmental Laboratory, for 45° N,
125° W (northern Oregon) and 42° N, 125° W (southern Oregon). Environmental parameters were averaged for each sampling
interval, with a 1 d lag for water temperature. See Fig. 2 for definitions of species complexes Bold: significant values (*p < 0.05,

**p < 0.01). na: not applicable

Fig. 4. Settlement rate of OYTB was greater in marine re-
serves of both regions (A, northern; B, southern Oregon),
while settlement of cabezon Scorpaenichthys marmoratus
was greater in the non-reserve (blue) of southern Oregon.
Only data from 2014−2016 were available for southern Ore-
gon. Settlement rate was averaged over all replicate
SMURFs within site and normalized by annual mean settle-
ment from each region to account for the year random effect.
Error bars indicate standard error. Number of sampling
 collections shown under bars. See Fig. 2 for definitions of 

species complexes. *p < 0.05, ***p < 0.001
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Ralston et al. 2013, Wheeler et al. 2017). In our study,
we found that interannual settlement of cabezon was
less variable than rockfish, especially in northern
Oregon, suggesting that annual egg production and
larval survival of cabezon is also less variable among
years. These results are consistent with the life-his-
tory strategy of rockfishes (higher fecundity, lower
early larval survival, and later age at maturity) com-
pared to cabezon (Winemiller & Rose 1992).

As in previous studies, settlement peaks ranged
over a 2 mo window among years. Despite this year-
to-year variation, settlement peaks of our 5 focal taxa
were generally synchronized between northern and
southern Oregon (Fig. 2) and roughly aligned with
previously published data from the central CCS. Set-
tlement peaks of cabezon occurred between late
April and June, consistent with settlement peaks in
central California (Wilson et al. 2008). Similarly, set-
tlement pulses of OYTB also occurred in the same
months (May−June) along the California coast
(Ammann 2004, Wilson et al. 2008, Caselle et al.
2010a, Jones & Mulligan 2014). Pulses of QGBCC
settlement to Oregon also ranged over similar
months (June−August) as KGBC, gopher, black-and-
yellow, and copper rockfishes along southern and
central California (Anderson 1983, Wilson et al.
2008). This latitudinal settlement synchrony is not
consistent with other species along the CCS, such as
the blue rockfish Sebastes mystinus (Laidig 2010),
where settlement tends to occur later towards more
northern latitudes. In general, previous studies of fish
reproduction have shown that fish phenology fre-
quently is shifted later at northern latitudes (Love et
al. 2002, Cope & Key 2009). However, the overall
synchrony observed during our 5 yr settlement time
series indicates that fish settlement along the Oregon
coast occurs earlier than expected. This early settle-
ment may have been driven by anomalously warm
water temperature in the northeast Pacific in
2013−2016, which coincided with an El Niño event
(Bond et al. 2015, Hu et al. 2017). Previous work has
demonstrated that this warm anomaly drove changes
in the community of phyto- and zooplankton, poten-
tially impacting higher tropic levels of the food web
(Peterson et al. 2017). Unfortunately, there are no
published studies evaluating seasonal patterns of
settlement elsewhere along the CCS that coincides
with our study period. By itself, our time series is not
sufficiently long to test whether fish settlement tim-
ing along the Oregon coast has been influenced by
this warm water anomaly. Further, this warm water
anomaly has masked any potential settlement differ-
ences derived from the El Niño that may otherwise
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Fig. 5. Standard length of 5 fish taxa collected 2012−2016
varied as the season progressed. See Fig. 2 for definitions of
species complexes. Regression curve for OYTB excludes 2
outliers. Shading indicates 95% CI. Note different scales for 

y-axes
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have been apparent in our dataset. Additional sam-
pling years in Oregon and upcoming studies of set-
tlement timing elsewhere along the CCS may help
elucidate links between settlement and such large-
scale oceanographic processes. For instance, a multi-
decadal study revealed that, compared to previous
years, pelagic juvenile rockfishes were abundant in
central California during the 2015−2016 El Niño
event but were low in southern and northern Califor-
nia (McClatchie 2016).

Regional differences in settlement rates among
taxa in our study may reflect spatial structure of the
adult populations. Higher cabezon settlement rates
observed in southern Oregon may be driven by the
generally higher adult population density around
Cape Blanco compared to northern Oregon (Cope &
Key 2009). At a finer spatial scale, we found that set-
tlement to marine reserves was similar to the nearby
(<3 km) non-reserve areas for all taxa except
cabezon in southern Oregon (lower in the reserve)
and OYTB in both regions (higher in the reserve).
Different predation pressure on pelagic juveniles
before settlement to SMURFs may lead to differences
in settlement magnitude between reserves and non-
reserves, but this is unlikely to be the case here as
adult fish surveys have revealed no significant differ-
ence in the density of piscivorous fishes between
these newly established reserves and their non-
reserve comparison areas (Huntington et al. 2015).
Previous studies have shown that alongshore hydro-
dynamics interacting with coastal topography can
affect the supply of competent settlers (Jenkins et al.
1997, Markel et al. 2017). In upwelling zones, higher
settlement of invertebrates on the lee of small head-
lands may be due to the formation of a retention
zone, where lower portions of the water column are
recirculated (Mace & Morgan 2006). The local topo -
graphy surrounding the 2 reserves in our study may
create a similarly retentive zone during upwelling
compared to the non-reserve comparison areas
(Fig. 1). Such recirculation may contribute to the ob -
served pattern of higher settlement of OYTB to the
marine reserves, as this group includes species that
occur deeper in the water column than the other
rockfish species. In contrast, species that occur
higher in the water column such as cabezon (Doyle
1992) exhibited no consistent difference in settle-
ment magnitude between marine reserves and non-
reserves. Settlement variation across space may also
be influenced by settlement cues (reviewed in Pawlik
1992, Leis et al. 2011). The proportion of rock and
boulder substrates differ between the reserve and
non-reserve sites in both regions (Huntington et al.

2015); thus it is possible that there are species-
 specific behaviors in response to subtle habitat differ-
ences that lead to contrasting settlement patterns of
cabezon and OYTB between the reserve and non-
reserve sites. More data are needed to consider local-
scale retention structures and habitat heterogeneity
when designing marine reserves. Such data may be
useful for achieving marine reserve goals since most
existing reserves around the world are generally
small (Oregon’s reserves range from 3 to 36.5 km2),
and thus rarely encompass all ecologically important
habitats (Lester et al. 2009).

Understanding settlement differences between
reserves and non-reserves provides valuable infor-
mation for our understanding of how reserves func-
tion (Grorud-Colvert & Sponaugle 2009), both at
reserve implementation and through time. Although
site fidelity (i.e. fish remaining in the same area) of
young recruits has rarely been examined in the CCS,
evidence indicates that adult cabezon and a number
of other rockfishes (including fishes inside Oregon
marine reserves) are sedentary within a specific
home range (e.g. Matthews 1990, Mireles et al. 2012,
Calvanese 2016). Newly settled juveniles of these
species may display a similar site fidelity behavior as
that observed in adults. In these cases, quantifying
settlement of fishes to reserves can help provide an
annual baseline to which subsequent years of settle-
ment data can be compared. Such data will eventu-
ally help us better understand fluctuations in year-
class strength of fishes, and evaluate how protection
of piscivorous fishes affects survival of newly
recruited fish (Hobson et al. 2001).

Effect of upwelling strength and water temperature
on fish settlement

Higher growth rates and survival of larval and
pelagic juvenile rockfishes have been associated
with high primary productivity in coastal upwelling
fronts along the CCS (Bjorkstedt et al. 2002, Wheeler
et al. 2017). Previous studies examining the relation-
ship between upwelling strength and annual settle-
ment of pelagic juveniles have revealed contrasting
patterns depending on the region of study. For
instance, interannual settlement of both OYTB and
KGBC was positively related to upwelling strength in
regions south of Point Conception and north of Cape
Mendocino (Caselle et al. 2010a, Jones & Mulligan
2014), but settlement of only KGBC was positively
related to upwelling strength off central California
(Caselle et al. 2010a, Wheeler et al. 2017). At higher
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latitudes (i.e. Canada), settlement of black rockfish
appears to be associated with strong upwelling, and
weak upwelling favors settlement of quillback and
copper rockfishes (Markel et al. 2017).

For other marine organisms, short (2−6 d) down-
welling (upwelling relaxation) events along the Ore-
gon coast that reverse offshore transport of surface
waters during the settlement season have been asso-
ciated with warmer nearshore water and recruitment
pulses of intertidal organisms to the Oregon coast
(Dudas et al. 2009). Water off most of the California
coast is almost persistently upwelled — during the
relaxation periods, the upwelling intensity weakens,
and only occasionally reverses. Compared to Ore-
gon, downwelling episodes along central California
are less frequent (Huyer 1983), yet settlement of
KGBC to that coast is higher during periods of relax-
ation and warm water events, while OYTB settle-
ment peaks during episodes of strong upwelling and
cold water (A. Ammann, as cited in Caselle et al.
2010b). In our study, multiple cycles of upwelling–
relaxation within each sampling interval hindered
our ability to detect statistical significance between
settlement magnitude and oceanographic events.
However, although not significant for any taxon, set-
tlement of all taxa except OYTB tended to be higher
during downwelling and warm water temperatures
over the 3 yr period (2014−2016). Because OYTB set-
tlers were generally larger, with stronger swimming
capacities than most other taxa analyzed in this study
(Kashef et al. 2014), it is possible that pelagic OYTB
are able to counteract offshore advection during
upwelling. They also occur deeper in the water col-
umn where onshore transport of water can weaken
or reverse during upwelling events (Lenarz et al.
1995).

Relationship between fish size and
water temperature

There was no significant relationship between set-
tler size (SL) and water temperature for any focal
taxon, despite the fact that for most fishes, higher
water temperatures generally result in faster growth
(Houde 1989). This is likely because settler size is a
function of both growth rate and stage duration; thus
otolith microstructure analysis is needed to fully
resolve the relationship between temperature, age,
growth, and size (Sponaugle 2010). The largest ca -
bezon arrived to SMURFs in June, followed by subse-
quently smaller settlers as the season progressed.
Because the pelagic duration of cabezon is 3−4 mo

(O’Connell 1953), and they settled over a 5 mo
period, we clearly sampled juvenile cabezon from
multiple spawning events within the same year.
Therefore, the most plausible hypotheses for de -
creasing lengths of cabezon settlers over the sam-
pling season are that the larvae that hatched later in
the year either grew more slowly because of poor
growing conditions (e.g. food availability) or settled
at younger ages than larvae that hatched earlier in
the year.

For OYTB and QGBCC, mean size-at-settlement
increased significantly as the season progressed,
suggesting that these settlers may have been part of
the same annual cohort that arrived to settle at differ-
ent times during the sampling season. However, we
cannot exclude a temporal shift in the timing of set-
tlement of individual species within this complex.
Early settlers of QGBCC in 2016 were larger than
expected based on the regression curve, suggesting
that early settlers of this complex are likely a differ-
ent species (possibly copper rockfish; Anderson
1983) than the mid- and late-season settlers.

Within individual settlement seasons, the size dis-
tribution of SR was the most variable. Such variability
could be driven by one of the SR species settling at a
different size or time of the year. Indeed, genetically
identified redbanded juveniles (~12%) were signifi-
cantly larger than genetically identified splitnose
juveniles (~88%) that settled simultaneously (August
27−September 11, 2013) to northern Oregon (D.
Ottmann et al. unpubl. data).

This study is the first time-series effort to systemat-
ically measure nearshore fish settlement in the north-
ern CCS. Our findings for Oregon are consistent with
previous research conducted elsewhere in this sys-
tem in showing that settlement of competent pelagic
juvenile fishes is highly variable among years. How-
ever, within-season settlement peaks of most taxa
tended to coincide with short (2−6 d) episodes of
down welling and warm surface waters. The overall
timing of settlement during our study period was
roughly similar to that reported previously for central
and southern California, despite the different up -
welling regimes between California and Oregon.
Such similarity contrasts the previously described
delay (Love 2011) of the reproductive phenology in
higher latitudes of the CCS and may be driven by
abnormally warm water temperatures (Hu et al.
2017) that ex isted during the study period. However,
simultaneous settlement measurements in both geo-
graphical areas would be necessary to directly com-
pare the degree to which there is a settlement delay
along the CCS. Continued long-term monitoring of
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fish settlement is necessary to estimate the contribu-
tion of interannual fluctuations in large-scale oceano -
graphic processes, such as the Pacific Decadal Oscil-
lation or El Niño events, as well as management
influences on fish settlement (Green et al. 2015).
Combining settlement data with the monitoring data
of post-settlement individuals may help refine meas-
urements of post-settlement mortality and identify
the habitats most essential to sustaining healthy fish
stocks.
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