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INTRODUCTION

Species’ foraging choices and consequently their
nutrient acquisition influence their somatic growth
rates, which, in places of high nutrient availability,
can expedite the attainment of sexual maturity and
reduce the time spent in vulnerable early life stages
(Stearns 1992, Guiñez & Castilla 2001, Harrison et
al. 2011). Diet variability, whether in type, quality,
and/or quantity, can often contribute to observed dif-
ferences in species’ growth rates (Pyke 1984, Bjorndal

1985, Kubis et al. 2009). Species’ diets are often re-
ported as a species-specific trait; however, individ-
ual- and/or population-level species variations in diet
have been attributed to geographic location, age/size
class, and food availability (Tinker et al. 2008, Arnould
et al. 2011, Vélez-Rubio et al. 2016). An understand-
ing of differences in intra-species diet, with a focus on
diet selection and potential drivers, can elucidate the
factors that influence critical life traits and ultimately
inform species management (Fuentes et al. 2006, Kim
et al. 2012, Kiszka et al. 2015).
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Several approaches have been used to infer marine
turtle resource use and foraging ecology, including
gut content analysis of stranded and deceased indi-
viduals (Meylan 1988, Seney & Musick 2007), fecal
analysis (Bjorndal 1980), esophageal lavage (Fuentes
et al. 2006), biotelemetry (Taquet et al. 2006), and
video observation (Burkholder et al. 2012). Stable
isotope analysis has also been used to infer the forag-
ing ecology of marine turtles (Godley et al. 1998,
Wallace et al. 2009, Vander Zanden et al. 2013). Sta-
ble isotope ratios of predator tissues, particularly for
stable carbon (δ13C) and nitrogen (δ15N), reflect that
of the forage items consumed by individuals (Hobson
& Clark 1992). When consumer and prey tissues are
sampled, mixing models can be used to infer the
 contribution of sampled items to a population’s diet
(Parnell et al. 2013). Subject to variation between
eco system types and the ecological processes pres-
ent, carbon isotope ratios are reflective of the base-
line resource values within the food web (Craig 1953,
DeNiro & Epstein 1978), whereas nitrogen isotope
ratios experience stepwise enrichment between
trophic levels, reflecting the trophic position of con-
sumers (DeNiro & Epstein 1981, Minagawa & Wada
1984, Post 2002). 

Comparisons of environmental factors and trophic
dynamics between prey and consumers have aided
in answering vital ecological and trophic niche ques-
tions. Carbon and nitrogen reflect baseline environ-
mental resources and trophic interactions between
consumer and prey, respectively, and thus provide
the fundamental axes to construct isotopic niche
spaces (Newsome et al. 2007, Jackson et al. 2011).
Not to be confused with a trophic niche, a species’
isotopic niche provides fundamental ecological infor-
mation, and has been considered a viable proxy for
a species’ ecological niche (Jackson et al. 2011).
 Further, measures of isotopic niche width can be ob -
tained from variability in population isotopic space, a
reflection of potential inter-population diet variability
and foraging strategy (Bearhop et al. 2004). Popula-
tions with a large isotopic niche width may reflect a
generalist diet where there is individual specializa-
tion and group clustering around specific forage
items in the isospace (Bearhop et al. 2004, Bolnick et
al. 2007), while populations with a small isotopic
niche width may be employing a more specialist or
generalist diet. Abundant utilization of a select few
items by all individuals would result in a specialist
population (Bearhop et al. 2004, DiBeneditto et al.
2017). Conversely, individuals may consistently for-
age on a wide variety of prey items, resulting in
a generalist population (Vander Zanden et al. 2010).

Implementation of these strategies may occur in
response to a variety of factors, including, but not
limited to, variability in forage item richness and/or
competition (Bolnick et al. 2003).

Green turtles Chelonia mydas are considered the
only herbivorous species of marine turtles, specializ-
ing on seagrasses and macroalgae in many areas,
particularly in the western Atlantic and Caribbean
Sea (Bjorndal 1997, DiBeneditto et al. 2017, Hol-
loway-Adkins & Hanisak 2017). Recent studies, how-
ever, have suggested that there is more plasticity in
green turtle diet, with demonstrated omnivory across
several age classes in various geographic locations
(Hatase et al. 2006, Amorocho & Reina 2007, Lemons
et al. 2011). This variability in intra-species foraging
ecology seems to be influenced by local and envi -
ronmental factors (Cardona et al. 2009, González
 Carman et al. 2012, Santos et al. 2015).

Although recent studies have increased our under-
standing of the variability in green turtle diet, knowl-
edge of diet selection is still limited. Information on
diet selection, the comparison of prey use/consump-
tion with availability of items to consumers (Johnson
1980), can enhance our understanding of the roles of
marine turtles in marine ecosystems and, at a finer
scale, inform how nutrition and diet influence growth
and productivity of marine turtles (Bjorndal 1997,
Kubis et al. 2009, Sampson et al. 2017). As a result,
inferences into the selection of ideal nutrients and
maximized somatic growth by green turtles can be
made. However, only a few studies have explored the
diet selection of green turtles, warranting further
research into this topic (Fuentes et al. 2006, López-
Mendilaharsu et al. 2008, Sampson et al. 2017).

Here, we coupled stable isotope analysis with a
diet preference index (Johnson 1980) to provide
 further insights into the diet selection and foraging
plasticity of juvenile green turtles. Our goal was to ex -
plore whether turtles at 2 foraging sites within Bimini
present similar foraging ecology and diet selection
across both sites. This research provides a foundation
for further studies in the Bahamas and provides base-
line data to explore how foraging  ecology influences
key life traits at each site.

MATERIALS AND METHODS

Study site

This study was conducted in Bimini, Bahamas
(Fig. 1). Bimini (25° 44’11.36’’ N, 79° 16’ 53.98’’ W) is
the western-most island in the Bahamas chain and is
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located on the Great Bahama Bank, approximately
86 km east of Miami, Florida, USA. The western edge
of the 2-island chain is directly adjacent to the east-
ern edge of the Gulf Stream. Bimini is comprised of
a northern and a southern island, separated by a
0.15 km wide channel on the western side of the
chain. All sides of the islands are mangrove-fringed,
except for the western sides which are white sand
beaches (Jennings et al. 2012, Gledhill et al. 2015).
Surveys and captures of marine turtles were con-
ducted at 2 locations: South Bimini, an open coastal
seagrass bed, approximately 0.5 km south of the
island; and Bonefish Hole, a mangrove tidal estuary
located on the north island, approximately 0.22 km2

and on average 1.5 m in depth (Fig. 1). Dense sea-
grass beds, dominated by Thalassia testudinum and
Halodule wrightii, with sparse patches of sand/silt
bottoms can be found at each site, providing foraging
grounds for green turtles.

Turtle capture and sampling

Vessel transects and marine turtle captures were
conducted during 2 sampling trips in 2016: June
(Bonefish Hole, 2 d; South Bimini, 3 d) and July
(Bonefish hole, 4 d; South Bimini, 5 d). Transects and
turtle captures were conducted on either a 17 ft
(~5.2 m) Sundance skiff with a 50 HP outboard motor
or on a 20 ft (~6.1 m) Sundance center-console vessel

with a 115 HP outboard motor. Turtles
were captured using the ‘rodeo’ tech-
nique (Limpus & Walter 1980, Fuentes
et al. 2006, Hazel et al. 2013). Upon
capture, each turtle was brought to
the boat and body measurements were
taken, including straight and curved
carapace lengths (±0.1 cm; SCL and
CCL, respectively), following proto -
cols described by Balazs (1999). Body
weight (W, ±0.1 kg) was obtained using
a hanging balance (Pesola, PHS100).
Body condition index (BCI = W/SCL3)
was calculated to evaluate the size ver-
sus weight relationship of each turtle
(Bjorndal et al. 2000). Each individual
turtle was tagged with 2 Inconel flipper
tags, one on the trailing edge of each
front flipper (National Band and Tag
Company, Style 681), and a passive
integrated transponder was inserted
sub-dermally in the front left flipper
(PIT tag, Biomark, GPT12; Balazs 1999).

Captured turtles were also checked for the presence
of fibropapillomatosis (FP), which is a herpes virus
characterized by the growth of external and internal
tumors (Smith & Coates 1938, Landsberg et al. 1999).
We assigned a total tumor count and Balazs tumor
score (1: light, 2: moderate, 3: heavy) for all turtles on
which tumors were observed (Work & Balazs 1999).
Epidermis (i.e. skin) samples were collected from the
dorsal surface of the neck using a sterile razor blade
(Lemons et al. 2011). This technique allowed for
 collection of epidermis only and no underlying con-
nective tissue (Lemons et al. 2011). Epidermis sam-
ples were then placed in a vial with dry salt for
preservation and stored at room temperature. Salt
has no effect on isotopic values of tissues and was
most feasible, logistically, for international trans-
portation (Arrington & Winemiller 2002). Differences
in SCL, CCL, weight, and BCI between the study
sites were explored using a Welch’s t-test. A Mann-
Whitney U-test was then conducted to determine if
there was a significant difference between CCL size
class distributions at each site.

Habitat characterization

Habitat surveys and forage item collection were
conducted at both Bonefish Hole and South Bimini
using the plot-based (quadrat) method. Fifteen sites
(4 at Bonefish Hole and 11 at South Bimini; Fig. 1)
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Fig. 1. Bimini, Bahamas, showing the habitat sampling sites surveyed at Bone-
fish Hole and South Bimini in July 2016
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were selected from sites originally used by Hussey
(2003) to characterize Bimini’s habitat, ensuring spa-
tial variability in habitat type was represented ade-
quately in the current sampling. Upon reaching a
site, 2 standard quadrats (1 m2) were cast in opposite
directions, for a total of 4 quadrats site−1 (Fuentes et
al. 2006). For each quadrat, forage percent coverage
and epiphyte percent coverage were visually esti-
mated while snorkeling. Potential green turtle forage
items were collected at each sampling location and
preserved in dry salt for transport. Forage item
 samples were labeled by sample number and site of
 collection and were later identified to species.

Stable isotopes 

Sample preparation

All marine turtle epidermis and putative prey sam-
ples were prepared by first removing residual dry
salt using a soft-bristled toothbrush. Each sample
was then placed in a drying oven for 1 h at 60°C to
ensure that all moisture was completely removed
(Lemons et al. 2011, Levin & Currin 2012). Epidermis
samples were then cut into smaller pieces and homo -
genized using a sterile scalpel blade. Forage items
were homogenized using a mortar and pestle. All
epidermis and forage samples were lipid- ex tracted,
using an accelerated solvent extractor (Model 200,
Dionex) with petroleum ether (3 cycles of 5 min
of heating followed by 5 min of static purging) at
the Paleoclimatology, Paleoceanography and Bio-
geochemistry Laboratory at the University of South
Florida College of Marine Science (Reich & Seminoff
2010, Vander Zanden et al. 2013).

Stable isotope analysis

Samples for stable isotope analysis were measured
using a Mettler Toledo micro balance and placed into
Costech 3.5 × 5 mm tin cups. Roughly 0.5−0.7 mg of
epidermis and 1.5 mg of forage items were placed
into tin cups. Samples were then converted to N2 and
CO2 via a Carlo-Erba NA2500 Series 2 Elemental
Analyzer (Thermoquest Italia) and analyzed in a con-
tinuous flow isotope ratio mass spectrometer (Delta
PlusXP, Thermofinnigan) at the University of South
Florida. Sample ratios were expressed in conven-
tional notation as parts per thousand (‰). The equa-
tion used to determine isotopic ratios is:

δX = [(Rsample/Rstandard) − 1] × 1000 (1)

where X is 15N or 13C, and R is the ratio 15N:14N or
13C:12C. Standards for 15N and 13C were atmospheric
nitrogen and Vienna Pee Dee Belemnite, respec-
tively. Working standards (NIST 1577B bovine liver
for animal tissues and NIST 1579a spinach leaves for
plant material) were inserted into the analytical pro-
cess roughly every 6 samples. Analytical precision,
expressed in standard deviation, was obtained from
replicate measurements of the working standards.
Animal tissue precision (n = 19) was ±0.17‰ and
±0.14‰ for δ15N and δ13C, respectively. Plant mate-
rial precision (n = 25) was ±0.21‰ and ±0.07‰
for 15N and 13C, respectively.

Statistical analysis

The δ13C and δ15N values of marine turtle epi -
dermis were compared between sampling locations
with a Welch’s t-test, due to unequal sample sizes
between sites. Additionally, a nested ANOVA with a
Satterthwaite approximation was used to determine
whether there was a significant difference in forage
item values between Bonefish Hole and South
Bimini. The relationship and correlation between tur-
tle CCL, δ13C, and δ15N was determined using Pear-
son’s correlation test. Additionally, the relationship of
FP tumor counts to δ15N values was also analyzed
using Pearson’s correlation test. To further identify
potential differences at each location, MixSIAR, a
Bayesian mixing model package for R (Stock & Sem-
mens 2016), was used to model the diet composition
of marine turtles at each foraging site. Before the
MixSIAR analysis was conducted, forage items were
grouped by similar life history traits. All 3 species of
seagrasses (Thalassia testudinum, Halodule wrightii,
Syrin go dium filiforme) were grouped together, as
were all species of red algae (Laurencia intricata,
Hyp nea sp., and Amphiroa sp.) and green algae (Bato -
phora oerstedii, Halimeda lacrimosa, H. incrassata, H.
tuna, H. monile, Rhipo cephalus phoenix, Peni cillus
capitatus, P. dumetosus, Caulerpa prolifera, C. cu -
pres so ides, Udotea flabellum, U. cyathiformis, Udotea
sp., Acetabularia crenulata, Anadyo mene sp., Chae -
to morpha linum, Avrain villea longi caulis, and coral -
line green algae). Non-plant species were grouped
into sessile filter feeders (Demospongiae sp. and
tunicates). Once analyzed with MixSIAR, forage item
contribution distributions, via posterior density plots,
were determined for Bone fish Hole and South Bimini
individually. Because of differing isotope incorpora-
tion rates by tissues, trophic enrichment factors pre-
viously established for green turtle epidermis (+0.17
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for δ13C, +2.80 for δ15N; Seminoff et al. 2006) were
used to account for discrimination during digestion of
forage items by turtles in this study. Isotopic niche
width, at each site, was then determined by calculat-
ing the convex hull total area (TA) and standard
ellipse area (SEA) of epidermis isotope values using
the Stable Isotope Bayesian Ellipses in R (SIBER;
Jackson et al. 2011). TA and SEA were selected as
valid measures of isotopic niche width, as they pro-
vide areal measures of the isospace occupied by con-
sumers (Layman et al. 2007, Jackson et al. 2011).

Diet selection

Dietary contribution at an individual level was
determined with the MixSIAR package, as previ-
ously described. The relationship between use and
availability of food items for Bonefish Hole and South
Bimini was quantified using Johnson’s (1980) selec-
tion index in the Prefer package (Pankratz 1995),
ranking preferential selection of each group from
most to least. This allowed for the exploration of
whether specific forage groups were selected for (as
per MixSIAR outputs) in proportion to the group’s
availability. Average difference in use and availabil-
ity for individuals (Tbar) was calculated for each food
group. Tbar values <0 indicate a forage item that was
selected for, Tbar values between 0 and 1 mean for-
age items were selected equally to their availability,
and values ≥1 are assigned to items that were not
selected for. Statistical significance was established
with the provided F statistic (testing of H0: all items
were equally selected) and a critical value (W) for a
Waller-Duncan multiple comparison procedure with
K = 100, which has been determined to be closely
comparable to a significance level of p = 0.05 (Waller
& Duncan 1969, Johnson 1980).

RESULTS

Turtle captures

Fifty-eight juvenile green turtles were captured (14
at Bonefish Hole and 44 at South Bimini) during 2
trips in 2016. Turtle sizes ranged from 28.6 to 63.9 cm
SCL (Bonefish Hole: mean ± SD = 42.1 ± 6.3 cm;
South Bimini: 46.0 ± 9.3 cm) and from 30.5 to 69.9 cm
CCL (Bonefish Hole: 45.6 ± 6.5 cm; South Bimini:
49.7 ± 10.1 cm; Fig. 2). Mean SCL of Bimini turtles
was compared to the mean SCL of known mature
green turtle individuals within the Northwestern

Atlantic population (96.7 ± 5.1 cm; Goshe et al. 2010),
which indicated that all turtles captured during this
study were juveniles. Weights ranged from 2.9 to
35.1 kg (Bonefish Hole: 10.3 ± 5.3 kg; South Bimini:
13.0 ± 7.6 kg). BCI ranged from 0.82 to 1.7 (Bonefish
Hole: 1.25 ± 0.21; South Bimini: 1.28 ± 0.153). There
was no significant difference between SCL and CCL,
weight, and BCI between the 2 study sites (SCL: df =
32.74, t = −1.8204, p = 0.0779; CCL: df = 34.506, t =
−1.7478, p = 0.08939; weight: df = 32.22, t = −1.4257,
p = 0.1636; BCI: df = 18.089, t = −0.5876, p = 0.5641).
The Mann-Whitney U-test showed no significant dif-
ference in CCL size class distribution between Bone-
fish Hole and South Bimini (W = 247, p = 0.2716). Ten
out of 14 turtles at Bonefish Hole were recorded with
FP tumors (mean ± SD tumor count = 21.6 ± 19.8),
whereas only 4 out of 44 in South Bimini exhibited FP
(4.4 ± 5.0).

Habitat characterization

The habitat at Bonefish Hole (Table A1 in the
Appendix) was dominated by seagrass, particularly
Thalassia testudinum (mean ± SD = 35.0 ± 23.5%)
and Halodule wrightii (2.3 ± 5.7%). Red algae com-
prised the next highest occurring taxonomic group in
Bonefish Hole, with Laurencia intricata being the
most dominant species (14.5 ± 22.7%). Green algae
had the third highest percent coverage in Bonefish
Hole, where the predominant green algae species
were Batophora oerstedii (6.0 ± 6.8%), Penicillus sp.
(1.8 ± 1.9%), and coralline green algae (1.0 ± 2.1%).
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Sessile filter feeders had the smallest percent cover-
age (0.3 ± 1.1%). In South Bimini, the most dominant
group was seagrass, with T. testudinum being most
prevalent (33.4 ± 29.2%) followed by H. wrightii
(1.1 ± 2.1%). The second most prevalent group was
green algae, which consisted of Halimeda sp. (4.6 ±
2.1%), B. oerstedii (3.8 ± 2.2%), Penicillus sp. (3.2 ±
2.3%), and Udotea sp. (1.5 ± 1.9%). Red algae, con-
sisting predominantly of L. intricata (1.7 ± 4.2%), and
sessile filter feeders (1.7 ± 3.0%) were the third most
dominant groups in South Bimini (Table A1).

Stable isotopes

Overall turtle epidermis values ranged from −16.3
to −4.7 (mean ± SD = −8.1 ± 2.9‰) for δ13C and
from 0.28 to 6.7 (2.6 ± 1.5‰) for δ15N. Bonefish Hole
(Table 1, Fig. 3a) epidermis values were more
depleted in 13C (δ13C = −11.7 ± 3.2‰) and more
enriched in 15N (δ15N = 4.1 ± 1.4‰) when compared
to South Bimini (δ13C = −6.8 ± 1.5‰; δ15N = 2.1 ±
1.2‰; Table 1, Fig. 3b). Welch’s t-test run for δ13C
and δ15N revealed a significant difference between
South Bimini and Bonefish Hole epidermis values in
carbon and nitrogen isotopes (δ13C: t = −5.5854, df =
14.903, p = 0.00005; δ15N: t = 5.0442, df = 19.642, p =
0.00006). Pearson’s correlation revealed a significant
correlation between green turtle CCL with δ13C (r =
0.3697 and p = 0.0043, Fig. 4a) and δ15N (r = −0.3582
and p = 0.0058, Fig. 4b) values. Further, a significant
correlation (r = 0.4219 and p = 0.0009) between δ15N
values and FP tumor score was determined using
Pearson’s correlation.

Stable carbon and nitrogen analysis of forage items
determined the range across Bonefish Hole and South
Bimini to be −32.09 to −1.9 ( mean ± SD = −9.7 ± 5.8‰)
for δ13C and −6.8 to 5.0 (0.5 ± 2.5‰) for δ15N, respec-
tively. Bonefish Hole (Table 2, Fig. 3a) was deter-
mined to be more depleted in δ13C (−12.3 ± 7.1‰)

compared to South Bimini (−8.4 ± 4.5‰; Table 2,
Fig. 3b). However, there was a relatively small differ-
ence in δ15N between Bonefish Hole and South Bimini
(0.4 ± 2.1‰ and 0.5 ± 2.7‰, respectively). Red algae
were determined to be the most 13C-depleted forage
item at both sites (Bonefish Hole: −21.1 ± 11.2‰ and
South Bimini: −11.1 ± 5.9‰). Further, sessile filter
feeders were the most 15N-enriched forage item
group at Bonefish Hole (1.2 ± 1.2 ‰) and South
Bimini (3.4 ± 2.3‰). A significant difference in δ13C
of forage items between Bonefish Hole and South
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Site Country n CCL range Year(s) TA SEA Mean ± SD (min, max)
(cm) sampled δ13C (‰) δ15N (‰)

Inagua Bahamas 62 38.9−65.5 2008, 2009 18.5 4.0 −6.4 ± 0.1 (−8.0, −4.5)  1.7 ± 0.4 (−1.9, 5.2)
Long Island Bahamas 9 30.8−44.8 2010 7.5 6.1 −9.4 ± 0.7 (−12.2, −6.4) 5.2 ± 0.4 (3.5, 7.1)
Bonefish Hole, Bimini Bahamas 14 33.6−54.1 2016 22.1 10.3 −11.7 ± 3.2 (−16.3, −5.9)  4.1 ± 1.4 (1.4, 6.7)
South Bimini, Bimini Bahamas 44 30.5−69.9 2016 15.8 3.5 −6.8 ± 1.5 (−13.2, −4.7) 2.1 ± 1.2 (0.3, 4.5)
St. Joe Bay, Florida USA 20 31.7−60.5 2010 13.7 5.3 −12.3 ± 0.5 (−15.7, −9.0)  8.1 ± 0.4 (4.9, 11.1)

Table 1. Niche width metrics and epidermis stable isotope values for juvenile green turtles at foraging grounds in the north-
western Atlantic. Turtles captured in Bimini in this study are highlighted in bold, and the remaining values were obtained
from Vander Zanden et al. (2013). n: number of individuals, CCL: curved carapace length, TA: convex hull total area, SEA: 

Bayesian standard ellipse area

Fig. 3. Isospace plots indicating green turtle epidermis
 isotope values, adjusted for diet−epidermis discrimination
values (grey circles), and the mean and standard deviation
(as indicated by whiskers) of δ13C and δ15N for groups in (a) 

Bonefish Hole and (b) South Bimini 
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Bimini was observed (nested ANOVA, with the Sat-
terthwaite approximation, F1,47.97 = 6.78, p = 0.012).
However, no significant difference was observed in
δ15N for forage items between each site (F1,47.61 =
0.0022, p = 0.963).

Green turtle diet

In Bonefish Hole, sessile filter feeders (mean ± SD =
29.9 ± 20.7%, 95% credible interval [CI] = 1.4−
77.3%) contributed the largest proportion to the diet
of turtles, followed closely by green algae (24.9 ±
19.1%, CI = 0.8−69.5%), red algae (24.3 ± 19.0%,
CI = 0.7−68.9%), and seagrass (21.0 ± 17.6%, CI =
0.7− 64.2%; Fig. 5a). Conversely, in South Bimini,
seagrass contributed the most to the diet of turtles
(54.4 ± 12.8%, CI = 25.2−77.2%). Red algae (20.5 ±
9.7%, CI = 3.0−40.4%), green algae (14.9 ± 9.7%,
CI = 1.3−37.8%), and sessile filter feeders (10.1 ± 9.2%,
CI = 0.5−35.2%) contributed noticeably less to the
diet composition of turtles in South Bimini (Fig. 5b).
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Fig. 4. Epidermis isotope values for (a) δ13C and (b) δ15N as
a function of carapace length for green turtles in Bimini,
 Bahamas, suggesting recent recruitment to the neritic sea-
grass beds for smaller individuals. Regression lines reflect 

the relationship for all turtles sampled in this study
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Isotopic niche width

Both TA and Bayesian SEA were larger in Bonefish
Hole than in South Bimini (TA: Bonefish Hole = 22.13
and South Bimini = 15.8; SEA: Bonefish Hole = 10.3
and South Bimini = 3.5). Ellipse overlap analysis indi-
cated that there was 22% overlap between Bonefish
Hole and South Bimini (Fig. A1 in the Appendix).

Diet selection

The Johnson selection index showed that green
turtles in Bonefish Hole consumed sessile filter feed-
ers and green algae in larger proportions relative to
their availability, while red algae were consumed in
proportion to their availability and seagrasses were
avoided (Table 3). Conversely, green turtles in South
Bimini preferentially consumed red algae. Lastly,
consumption of seagrasses, green algae, and sessile
filter feeders matched their availability in South
Bimini (Bonefish Hole: F3,11 = 38.62, W = 2.01 [alpha
approximating 0.05]; South Bimini: F3,41 = 455.48,
W = 1.79 [alpha approximating 0.05]; Table 3). All
forage groups were considered significantly different
from each other in their selection.

DISCUSSION

Stable isotope analysis and the Johnson selection
index provided insights into the foraging ecology of
juvenile green turtles at Bimini, an understudied
site on the Great Bahama Bank of the Northwestern
Atlantic. δ13C ranges for turtles at Bonefish Hole
and South Bimini overlapped with the global ranges
reported for juvenile green turtles that have re -
cruited to neritic foraging areas (Burkholder et al.
2011, Howell et al. 2016, Sampson et al. 2017). Con-
versely, δ15N values were considerably depleted,
reflecting a regional neritic signature (Reich et al.
2007) attributed to N2 fixation within oligotrophic
areas, such as the Bahamas (France et al. 1998,
Montoya et al. 2002). Bjorndal & Bolten (2010) re -
ported a mean (±SD) epidermis δ15N = 1.7 ± 1.2‰
for green turtles captured in Great Inagua, Baha -
mas, between 2002 and 2003. Additionally, for
green turtles captured in 2008 and 2009, Vander
Zanden et al. (2013) reported a similar epidermis
value, with δ15N = 1.7 ± 0.4‰ for Great Inagua. The
results presented in this study provide the first
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Forage item Bonefish Hole South Bimini
group Tbar Tbar

Seagrass 2.214 Not selected 0.204 Consumed in proportion to availability
Red algae 0.571 Consumed in proportion to availability −1.625 Selected
Green algae −0.714 Selected 0.943 Consumed in proportion to availability
Sessile filter feeders −2.071 Selected 0.477 Consumed in proportion to availability

Table 3. Selection ranking of forage item groups for green turtles in Bonefish Hole and South Bimini. Average difference in
use and availability for individuals (Tbar) was calculated for each forage item group. Tbar values <0 (values ≥1) indicate for-
age items that were (were not) selected for, Tbar values between 0 and 1 mean that forage items were consumed equally to 

their availability

Fig. 5. MixSIAR density distribution, revealing the percent
contribution of forage item groups to the diets of green turtles 

captured in (a) Bonefish Hole and (b) South Bimini 
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insights into the isotopic values for juvenile green
turtles in Bimini, Bahamas.

Our analyses indicated a dichotomy in foraging
ecology, diet selection, and isotopic niche in the
region. The green turtle population within Bonefish
Hole exhibited a more generalist omnivorous diet,
with similar diet composition from each forage group
and selected for sessile filter feeders and green
algae, despite seagrass being the most abundant
group at this site. Conversely, the South Bimini pop-
ulation exhibited a more specialist herbivorous diet,
with high consumption of seagrass, and the preferen-
tial selection for red algae when available. The selec-
tion of green algae in Bonefish Hole and the red
algae in South Bimini may be due to richer nutrients
(Sampson et al. 2017) and energetic advantages
(Bjorndal 1985). Though not considered to be a staple
in the diet of green turtles, spongivory has been pre-
viously observed in Bahamian (Bjorndal 1980, 1990)
and Nicaraguan Caribbean green turtles (Mortimer
1981). Further, an overlap was observed in stable
 isotope ranges reported here (δ13C: −16.3 to −5.9;
δ15N: 1.4 to 6.7) with those of Bahamian hawksbill
turtles Eretmochelys imbricata (δ13C: −11.5 to −8.8;
δ15N: 3.7 to 7.4), a known spongivorous species, sug-
gesting that green turtles in Bonefish Hole also con-
sume sponges (Bjorndal & Bolten 2010).

The disparity in foraging ecology and diet selection
among the 2 sites in Bimini is further demonstrated
by the isotopic niche width at each site (Newsome et
al. 2007, Jackson et al. 2011). The large SEA and
omnivorous diet observed for green turtles in Bone-
fish Hole indicate that the local population has a
broader trophic niche and selects for a more general-
ist diet, with individuals specializing on certain for-
age items (e.g. Demospongiae, Penicillus sp., Hali -
meda sp.). Conversely, the reduced SEA at South
Bimini, with a stable diet of seagrass, may be sugges-
tive of a population specializing on herbivory (Bol-
nick et al. 2007, Vander Zanden et al. 2010, Di -
Beneditto et al. 2017). Further, the 22% overlap in
ellipse area found between the 2 study sites in Bimini
suggests that some individuals in Bonefish Hole,
where the population diet is more variable, may still
select for a more herbivorous diet. Broad isotopic
niche width, as evidenced in Bonefish Hole, may
result from a generalist population with specialized
individuals to ease competition with conspecifics
(Bolnick et al. 2003, 2007, Vander Zanden et al.
2010). However, with no quantifiable knowledge of
carrying capacity in Bimini, the degree of competi-
tion that may drive the observed foraging dichotomy
in the region cannot be determined.

Differences in foraging strategies between sites
may also be driven by variability in habitat complex-
ity between sites. The close proximity of mangrove
roots to the foraging area at Bonefish Hole provides
structure for sessile filter feeders and algae. Thus,
future studies should expand the habitat characteri-
zation employed here to measure those prey items.
Additionally, the size classes of each turtle at each
site may potentially drive this foraging dichotomy.
Although no significant difference in size class distri-
butions was found between the 2 sites, a higher pro-
portion of small turtles (<35 and 35.1−40 cm size
classes) was observed at Bonefish Hole and a greater
proportion of larger turtles (55.1−60 and >60 cm)
in South Bimini. Additionally, δ13C and δ15N were
more depleted and enriched, respectively, in smaller
 individuals, suggesting that these turtles may have
recently recruited to the neritic environments of
Bimini (Reich et al. 2007, Howell et al. 2016). Further,
if individuals recruited to Bimini, particularly Bone-
fish Hole, then the previously mentioned variability
in available prey items may delay their ontogenetic
shift to a herbivorous diet (Cardona et al. 2009),
reflecting a more pelagic omnivorous diet and a
broader isotopic niche at Bonefish Hole. The pres-
ence of sharks and predation on other marine mega -
fauna species has been observed in Bimini (Jennings
et al. 2012, Melillo-Sweeting et al. 2014), thus
reduced predation risk may drive the recruitment of
smaller individuals to Bonefish Hole. However, anec-
dotal evidence suggests that predation on marine
turtles in Bimini is infrequent and may not notably
affect juvenile turtle distribution in the region. The
lack of significant differences in sizes between each
site and the potential reflection of a pelagic diet may
be an artifact of the small and unequal sample sizes
of turtles captured at each site as well as limitations
of the capture method used. Limited maneuverability
in the narrow mangrove channels in Bonefish Hole
reduced our ability to capture smaller, faster turtles.
Conversely, the use of deeper areas by large size
classes (>60 cm) in South Bimini limited our ability to
follow and capture larger turtles in this region. Thus,
increasing the overall sample size at Bonefish Hole
and a greater effort in sampling the most abundant
and the underrepresented size classes at each site
would allow for further investigation into the poten-
tial effects of individual size on foraging strategies.

FP may potentially drive the inferred foraging
strategies, as FP has been reported to impede inges-
tion and limit the range of motion of marine turtles
(Herbst 1994, Aguirre & Lutz 2004, Jones et al. 2016).
FP was recorded at both sites; however, a higher
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prevalence (71% of turtles captured in Bonefish Hole,
averaging 21 tumors turtle−1) was observed at Bone-
fish Hole, compared to 14% of South Bimini turtles,
averaging 4 tumors ind.−1. Although FP has been re-
ported to inhibit certain fundamental physical abili-
ties, it was reported to have no effect on foraging dive
time and somatic growth rates in Hawaiian green tur-
tles (Brill et al. 1995, Chaloupka & Balazs 2005). How-
ever, deficiencies in vital macronutrients (i.e. proteins,
carbohydrates, lipids) associated with FP (Aguirre &
Balazs 2000) may drive green turtles to consume and
select items, such as sponges, that are richer in these
macronutrients (Bjorndal 1990, Chanas & Pawlik
1995), to maximize nutrient intake and assimilation
(Simpson et al. 2004, Kohl et al. 2015, Remonti et al.
2016). Thus, nutrient deficiencies may drive turtles in
Bonefish Hole to select a broader range of nutrient-
rich forage items that were more enriched in 15N, as
observed in the algae and sessile filter feeder forage
groups in Bimini. However, there is a need to compare
turtle blood para meters with macronutrient content of
prey items between marine turtles with and without
FP to elucidate potential supplementation of nutrients
through the consumption of varying forage items.

While our results are extremely interesting and pro-
vide further insight into the diet plasticity exhibited
by some foraging populations, we suggest caution
while interpreting these results. Given the large amount
of variability (e.g. red algae) and isotopic overlap be-
tween foraging groups, we recognize that this may
have directly influenced the results of MixSIAR analy-
sis. Additionally, the broad isotopic niche may be an
artifact of this same variability leading to a wide
spread of individual values in Bonefish Hole. Further
suggested improvements to our study include: (1) im-
proved habitat sampling, (2) adjustment of the spatial
scale of resources assumed to be available to turtles at
each site, and (3) increased sampling of prey items for
stable isotope analysis. The use of quadrats inherently
ex cludes mangrove roots and the forage items that
anchor there (i.e. green algae, sessile filter feeders),
potentially leading to an underestimation of anchored
forage items and an overestimation in selection of
these forage groups. Additionally, sampling of prey
items was conducted solely on neritic, benthic prey
items and excluded pelagic prey items. Future studies
should include pelagic prey items to reveal the poten-
tial for recent recruitment to the neritic environment
by ju venile turtles. Further, we assumed that turtles
used the entire foraging site and therefore that food
availability was consistent throughout the entire site;
however, green turtles often have concentrated home
ranges (Seminoff et al. 2002, Makowski et al. 2006),

and likely use only a subset of the foods and habitat
types available to them. Thus, future studies exploring
diet selection should consider turtle home ranges and
calculate food availability within these areas. Lastly,
we found wide isotopic variability with the prey
groups and considerable isotopic overlap among prey
groups (especially at Bonefish Hole), which was likely
a re sult of the small sample size of prey items collected.
The observed high variability in red algae may serve as
the underlying cause for the wide isotopic niche and
variation among individuals in Bonefish Hole. Future
studies should increase the sample size of prey items
at each habitat site.

Diet selection studies can increase our knowledge
of the influences that prey items and their availability
in a given habitat have on species development, for-
aging, and the ecological niches that species inhabit
(Bjorndal 1997, Fuentes et al. 2006, López-Mendila-
harsu et al. 2008). Further, determining intra-species
diet plasticity expands our understanding of varia-
tions in fine-scale habitat use exhibited between
and within foraging habitats. Within the Bahamas,
amendments made to the Fisheries Resource Act of
2010 fully protect marine turtles across all life stages
(Bjorndal & Bolten 2009); however, coastal develop-
ment still poses a threat to adjacent habitat and spe-
cies (Jennings et al. 2008, Crain et al. 2009, Stump
2013). Our results, coupled with spatially explicit
data on habitat available, can inform management
and conservation measures, expanding beyond the
traditional species-specific population-oriented tar-
gets to one inclusive of critical habitats for threatened
and endangered species.
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Fig. A1. Green turtle epidermis isotopic values (open circles) with the Bayesian ellipses depicting potential isotopic niche at 
Bonefish Hole (black; isotopic niche width = 10.3) and South Bimini (red; isotopic niche width = 3.5)

APPENDIX

Table A1. Habitat characterization, expressed in mean ± SD percent coverage for forage item groups and individual species 
found in Bonefish Hole and South Bimini, Bahamas

Forage item group      Bonefish              South                      Forage species                                Bonefish                 South 
                                   Hole (%)              Bimini (%)                                                                       Hole (%)                 Bimini (%)

Seagrass                       37.3 ± 23.8           34.8 ± 32.4              Syringodium filiforme                    0.0                           0.2 ± 1.1
                                                                                                  Halodule wrightii                           2.3 ± 5.7                  1.1 ± 2.1
                                                                                                  Thalassia testudinum                     35.0 ± 23.5              33.4 ± 29.2
Red algae                     14.5 ± 22.6           1.7 ± 4.2                  Hypnea sp.                                      0.0                           0.0
                                                                                                  Amphiroa sp.                                  0.0                           0.0
                                                                                                  Laurencia intricata                         14.5 ± 22.7              1.7 ± 4.2
Green algae                 9.0 ± 7.0               16.0 ± 14.7              Rhipocephalus phoenix                 0.0                           0.5 ± 0.6
                                                                                                  Caulerpa spp.                                 0.0                           0.3 ± 0.8
                                                                                                  Udotea spp.                                     0.0                           1.5 ± 1.9
                                                                                                  Filamentous green algae               0.0                           0.2 ± 0.5
                                                                                                  Acetabularia crenulata                  0.0                           1.0 ± 1.1
                                                                                                  Chaetomorpha linum                     0.0                           0.3 ± 1.1
                                                                                                  Dictyosphaeria cavernosa             0.0                           0.2 ± 0.8
                                                                                                  Acanthophora spicifera                  0.0                           0.2 ± 0.8
                                                                                                  Halimeda spp.                                0.3 ± 0.6                  4.6 ± 2.1
                                                                                                  Coraline green algae                     1.0 ± 2.1                  0.0
                                                                                                  Penicillus spp.                                 1.8 ± 1.9                  3.2 ± 2.3
                                                                                                  Batophora oerstedii                        6.0 ± 6.8                  3.8 ± 2.2
Sessile filter                0.3 ± 1.1               1.7 ± 3.0                  Demospongiae spp.                        0.3 ± 1.1                  1.7 ± 3.0
feeders                                                                                    Tunicata spp.                                  0.0                           0.0
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