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INTRODUCTION

The effects of human actions on the oceans are in -
creasing alarmingly (Frölicher & Joos 2010, Chown et
al. 2015, Halpern et al. 2015), and there is particular
concern about how ocean biodiversity will respond to
climate change (Burrows et al. 2011, Constable et al.
2014). Several studies on the redistribution of biodi-
versity in response to anthropogenic climate change
have shown that organisms which are unable to meet
the preferred conditions of their environmental niche
are forced to shift their distribution (Ackerly et al.
2010, Doney et al. 2012, García Molinos et al. 2016)
or face extinction (Thomas et al. 2004, Cheung et al.
2009, Stuart-Smith et al. 2015). Climate is the main

trigger of both terrestrial and marine animal migra-
tion (Newton 2008). When environment and climate
conditions at the wintering grounds change or deteri-
orate, migration may have adverse consequences for
a population (Votier et al. 2005, Jenouvrier et al.
2009, Robinson et al. 2009, Fort et al. 2013, Middleton
et al. 2013).

Individual animals can be highly consistent in their
migratory schedule and wintering areas, as shown
for fishes (Brodersen et al. 2012, Thorsteinsson et al.
2012), sea turtles (Schofield et al. 2010) and seabirds
(Dias et al. 2011, Satterthwaite et al. 2012, Yamamoto
et al. 2014, Ramírez et al. 2016, Vardanis et al. 2016),
or they may be flexible and adjust their wintering
areas according to environmental conditions (Quill -
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feldt et al. 2010, Dias et al. 2011, McFarlane Tran-
quilla et al. 2014). For instance, in some seabird spe-
cies, like Cory’s shearwater Calonectris borealis or
Barau’s petrel Pterodroma baraui, a large percentage
of the population uses the same wintering grounds in
several successive years (Pinet et al. 2011, Raine et
al. 2013, Ramírez et al. 2016). Thus, the consequen -
ces of subtle shifts in the climate conditions within
those wintering areas may have a profound effect on
populations of spatially and/or temporally consistent
species.

Empirical and theoretical studies on seabird spe-
cies’ responses to climate change suggest that they
will move poleward as sea surface temperatures rise,
and either gain or lose range (Péron et al. 2010,
Hazen et al. 2013, Russell et al. 2015) depending on
the species’ ability to deal with increased wind
speeds (Weimerskirch et al. 2012, Krüger et al. 2018)
or reduced productivity (Grémillet & Boulinier 2009).
However, most studies aiming at predicting the
effect of climate change on seabird spatial distribu-
tions have been restricted to the breeding season and
conducted in temperate or polar ecosystems (i.e.
Péron et al. 2012, Hazen et al. 2013, Russell et al.
2015). To date, studies projecting distribution shifts
induced by climate change are largely lacking for
tropical and/or trans-equatorial seabird species, es -
pecially during the non-breeding season (but see
Legrand et al. 2016 and Ramos et al. 2017).

In this study, we assessed the potential wintering
distribution of an endemic and Vulnerable gadfly
petrel, the Desertas petrel Pterodorma deserta,
according to future climate scenarios of the Intergov-
ernmental Panel on Climate Change (IPCC). The
Desertas petrel is a relatively recently split species
(Jesus et al. 2009) and is considered one of the rarest
procellariiform species in the world, with a popula-
tion estimated between 160 and 180 breeding pairs
(Ramírez et al. 2013). It is a medium-sized pelagic
seabird endemic to a single island, breeding only on
a single plateau on Bugio Island (Madeira archipel-
ago, Portugal). Its distribution range covers both sub-
tropical and tropical temperatures with intermediate
wind speeds and oligotrophic waters and includes
wintering areas identified in the southwest, central
tropical and northwest Atlantic Ocean (Ramírez et al.
2013, 2016). This species shows high individual win-
tering site fidelity (Ramírez et al. 2016). 

We compared changes in the species’ distribution
data considering either full dispersal or limited dis-
persal scenarios (where dispersal refers to the ability
of the species to change its distribution in projected
future climate scenarios). The limited dispersal mo -

del considers that the species can only occupy the
range identified in the projected distribution, there-
fore complying with the idea of wintering site fidelity,
in contrast to the full dispersal model, in which the
species is able to disperse throughout the entire
range. As one can presume, there may be no capacity
for a spatially consistent species to abruptly change
its wintering grounds in just a few generations’ time.
Given the known ecological niche of the Desertas
petrel and its wintering site fidelity, we hypothesized
that under future climate change scenarios, suitable
wintering grounds for this species would reduce
greatly. To our knowledge, no study to date has pro-
jected the wintering distribution of a trans-equatorial
migrant procellariiform under future climate change
scenarios, and this is the first study of this type for the
Desertas petrel.

MATERIALS AND METHODS

Tracking and geographical data

Fieldwork took place at Bugio Island (35° 25’ N,
16° 29’ W) located in the Desertas Islands (Madeira
Archipelago, Portugal). Twenty-six Desertas petrels
were tagged over 8 yr (2007−2014) with global loca-
tion sensing (GLS) tracking devices (Mk14; British
Antarctic Survey, BAS) providing data on 62 annual
trips (see Ramírez et al. 2013, 2016 for more details
on tagging and geolocation data processing). GLS
de vices weighed 1.5 g and were attached to the
bird’s tarsus using a single cable-tie and a thin bed of
silicone sealant to a metal ring (Ramírez et al. 2013).
The logger plus attachment represented 2−2.6% of
the adult mass (below the threshold proposed by
Phillips et al. 2003). Previous studies showed no ef -
fect of tagging on body condition or breeding success
(Ramírez et al. 2013, 2016).

Geographical positions from November to May of
each year (corresponding to the non-breeding pe -
riod, Ramírez et al. 2013, 2016) were used to generate
kernel utilization distributions (KUDs). Individual
home ranges (95% KUD) and core foraging areas
(50% KUD) were calculated from the geolocation
data using the R package adehabitatHR (Tancell et
al. 2013, Calenge 2015, Paiva et al. 2015). The
smoothing parameter (h) was set to 1°, due to the
average error of geolocation data being as large as
180 km (Wilson et al. 1992, Phillips et al. 2004,
Nielsen & Sibert 2007). Individual KUDs were aver-
aged to provide an unbiased KUD estimate at the
population level (Fig. 1).
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Oceanographic predictors and data processing

We used 4 oceanographic variables (Fig. 1) to char-
acterize the oceanic conditions and to model the dis-
tribution of non-breeding Desertas petrels. Dynamic
variables were extracted as monthly (November to
May) composites of: chlorophyll a (chl a) concentra-
tion (AquaMODIS product, 0.04° spatial resolution,
mg m–3), sea surface temperature (SST, Aqua MODIS,
0.04° spatial resolution, °C) and ocean surface wind
speed (WS, QuickSCAT, 0.25° spatial resolution, m
s−1). Chl a and SST satellite images were downloaded
from Oceancolor Browser (https:// ocean color. gsfc.
nasa. gov/) and WS from the SeaWinds database
(winds.jpl.nasa. gov). In addition, static bathymetric
data (sea bed depth [SBD], blended ETOPO1 product,
0.01° spatial resolution, m) were downloaded from
www.ngdc. noaa. gov/mgg/global/. These variables
are im portant proxies for seabird foraging activity
(Pinaud & Weimerskirch 2007, Wakefield et al. 2009,
Pinet et al. 2011) and have been used in other model-
ling studies with gadfly petrels (Krüger et al. 2016,
Le grand et al. 2016).

Median values were taken from all monthly com-
posites in order to produce a single raster of each
environmental feature to enter as an independent
variable into the model calibration process. All envi-
ronmental predictors were resampled to a 1° cell size
using a nearest-neighbour interpolation procedure
(Childs 2004).

Ensemble species distribution models

We applied ensemble species distribution models
(ESDMs) over the oceanographic variables using the
R package BIOMOD2 (Thuiller 2003, Thuiller et al.
2009, 2014) implemented in software R 3.4 (R Core
Team 2016) to model the current distribution and
project the potential distribution onto future scena-
rios of climate change. In this study, the ‘current dis-
tribution’ refers to the occurrence probability estima-
ted by the models given the observed environmental
variables, while the ‘potential distribution’ refers to
the models applied over the hypothetical future sce-
narios of climate change and dispersal. The results of
ESDMs are measured as an estimated probability of
occurrence, which can also be interpreted as a mea-
sure of habitat suitability (Ottaviani et al. 2004,
Guisan & Thuiller 2005).

ESDMs are considered a better approach than a
single algorithm when modelling distribution (Araújo
& New 2007, Marmion et al. 2009, Thuiller et al.

2009). The ESDMs are a forecast ensemble of the
best predictive features of each modelling technique
(Araújo & New 2007). ESDMs contribute to improve
the robustness of the forecast models by maximizing
the accuracy of species distributions (Araújo & New
2007, Marmion et al. 2009, Thuiller et al. 2009).
Despite criticisms about the use of SDMs as being
simply statistical and ignoring the processes behind
the species distribution, ESDMs are useful in order
to predict species responses towards environmental
conditions when more complex process-based mod-
els are not available (Morin & Thuiller 2009, Lozier
et al. 2009, Dormann et al. 2012). In our study, to ex -
plain why and how an individual bird chooses and
repeatedly uses a wintering area would require
 several years of tracking immature individuals until
they reach maturity. At present, such data are non-
existent for this species; therefore, the SDMs can be
a useful and informative tool. We used 10 modelling
techniques. Of these, 5 techniques have a machine-
learning process to select the better fit between
environmental variables and species occurrence:
random forest (RF), generalized boosted model
(GBM), artificial neural network (ANN), maximum
entropy (MaxEnt) and classification tree analysis
(CTA); 4 are straightforward correlative-based meth-
ods: generalized linear model (GLM), generalized
additive model (GAM), multiple adaptive regression
splines (MARS) and flexible discriminant analysis
(FDA); and the last technique, species range enve-
lope (SRE), uses the median and quartiles of vari-
ables in geographical points to estimate the proba-
bility of occurrence (Elith et al. 2006, Rougier et al.
2015).

We used the geolocation points that fell within the
core areas (50% KUD) as ‘presences’ in our model-
ling procedure following Legrand et al. (2016). SDMs
 require the generation of pseudo-absences (PAs) in
order to calculate probabilities of occurrence. It is
 recommended that the number of PAs matches or ap -
proximates the number of presences (n = 8793);
therefore, we generated 10 000 random PAs on 20
repetitions (VanDerWal et al. 2009, Barbet-Massin et
al. 2012) across the whole Atlantic Ocean between
50° N and 50° S. Each model was set with 10-fold
cross- validation, with data split at 80% for model
calibration (training) and 20% for testing. We used
the ‘ggpairs’ function of the ‘GGally’ R package
(Schloerke et al. 2017) to test the correlation between
explanatory variables of the training dataset for both
the presences and randomly generated PAs. The le -
vel of correlation was not enough to hinder the analy-
sis (Fig. 2).
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Fig. 1. Wintering core areas (50% kernel utilization distribution) of Desertas petrel Pterodroma deserta calculated from the
tracking data overlaid onto the environmental variables used for modelling: (a) sea surface temperature, (b) surface wind
speed, (c) sea bed depth and (d) chlorophyll a concentration. Numbers refer to the wintering area designations: (1) US east
coast, (2) Cape Verde Islands, (3) northern Brazil and (4) southern Brazil. The white cross marks the position of the breeding 

colony at Desertas Islands (Madeira archipelago)
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The accuracy of the models was assessed using the
area under the curve (AUC) of the receiver operating
characteristics (ROC) and true skill statistics (TSS)
(Pearson et al. 2006, Allouche et al. 2006). These ac -
curacy measures are considered suitable for assess-
ing the performance of the models, as they assess the
models’ ability to predict presences and absences
(Lobo et al. 2008). We used repetitions with AUC and
TSS ≥0.8, as this value is generally accepted as an
indicator of very good discriminatory ability of the
model (Engler et al. 2004). BIOMOD2 then joins all
models by an accuracy-weighted averaging ap -
proach, whereby more accurate models have a
greater influence on the final distribution (Thuiller et
al. 2009). Variable importance was calculated as the
proportion of change in AUC by excluding 1 variable
in turn and retaining the others.

IPCC future scenario projections

We used the 4 scenarios of climate change of the
IPCC that assume different concentration pathways
of greenhouse gases and their radiative forcing,
termed the representative concentration pathways
(RCPs; IPCC 2014). These scenarios assume the fol-
lowing: (1) low emissions reverting to pre-industrial
conditions (RCP 2.6); (2) the emissions remain con-
stant in relation to the current levels of emissions
(RCP 4.5); (3) emission levels slowly increase in re -
lation to current levels (RCP 6.0); and (4) emission
levels quickly increase in relation to current levels
(RCP 8.5). We used the climate projections of the
Coupled Climate-Carbon Earth System Models
(ESM2M) (Dunne et al. 2012, 2013) from the NOAA
CMIP5 data portal (http://nomads.gfdl.noaa.gov) for
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Fig. 2. Histogram and correlation (R) scatterplots for the distribution of the environmental variables used in the training steps
of Desertas petrel Pterodroma deserta modelling values for both presences (red triangles, red solid shapes) and pseudo- absences
(blue circles and blue dashed shapes): sea bed depth (SBD), chlorophyll a concentration (CHL), sea surface temperature (SST) 

and surface wind speed (WS)
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SST, chl a and WS. Bathymetry was treated as a fixed
variable in future projections. All variables in the
future projections were resampled to a 1° cell size
using a nearest-neighbour interpolation procedure
(Childs 2004).

The ESDMs used to predict species distributions
were then extrapolated to future conditions of SST,
chl a and WS using projections for 2050 and 2100
under RCP scenarios 4.5, 6.0 and 8.5. The same
temporal resolution from the oceanographic vari-
ables was used to resample the variables in future
scenarios (median from Desertas petrel wintering
months). BIOMOD2 calculates the threshold of
probability of occurrence that maximizes sensitivity
and specificity, meaning that it calculates the best
value to correctly classify the continuous probability
in binary (1 and 0). Hence, we created polygons
from the mean distribution of the ensemble projec-
tions, using the models’ mean threshold probability
of 64.76% (Jiménez-Valverde & Lobo 2007, Barbet-
Massin et al. 2012).

Distribution change

Distribution change was calculated using the spe-
cies range change (SRC) tool in the BIOMOD2 pack-
age (Thuiller 2003, Thuiller et al. 2009). SRC is meas-
ured as the percentage of suitable habitat change for
each scenario compared to the current distribution.
BIOMOD2 allows us to calculate SRC considering
full dispersal (whereby the species is able to reach all
of the new suitable habitat predicted by the model)

or limited dispersal (the species is limited by its cur-
rent distribution, therefore complying with the idea
of wintering site fidelity; Ramírez et al. 2016).

Taking into account the limited dispersal scenario,
we calculated the change in suitability within each
estimated wintering ground by subtracting the
potential probability of occurrence by the current
predic tion. We classified negative values as ‘De -
crease’=1 in suitability in the potential distribution,
and positive values as ‘Increase’=0 in suitability in
the potential distribution. We then applied a binomial
generalized linear mixed model with the R package
lmerTest to test differences in suitability change
among wintering areas. Grid cells were repeated
through years and different scenarios; therefore,
positions of the grid cells were used as random terms
[glmer (Suitability Decrease Probability ~ Current
Suitability × Wintering Area+ (1|Grid ID), family=
‘binomial’].

RESULTS

Current wintering areas and distribution

The current wintering areas (50% KUDs) used by
the Desertas petrel were located over the US east
coast, Cape Verde Islands, and northern and south-
ern Brazil (Fig. 1). All SDMs were accurate, but 5 out
of 10 models performed better: CTA, GAM, GBM,
MAXENT and RF (Table 1). SST ranked as the most
important variable in all models, followed by WS in 7
out of the 10 models (Table 1).
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Model AUC TSS Sea Chlorophyll a Sea surface Sea surface 
bed depth concentration temperature wind speed

ANN 0.935 ± 0.028 0.800 ± 0.069 24.5 ± 8.2 12.0 ± 5.9 64.1 ± 15.8** 36.6 ± 10.6*
CTA 0.989 ± 0.003 0.963 ± 0.006 17.5 ± 1.6 3.9 ± 3.4 73.5 ± 2.8** 21.7 ± 2.2*
FDA 0.964 ± 0.004 0.813 ± 0.012 7.6 ± 0.3 4.7 ± 0.4 90.3 ± 0.2** 11.3 ± 0.5*
GAM 0.976 ± 0.003 0.891 ± 0.009 13.3 ± 0.3 10.0 ± 0.6 58.9 ± 0.7** 25.7 ± 0.2*
GBM 0.991 ± 0.002 0.937 ± 0.007 10.0 ± 0.3 11.7 ± 0.7* 77.6 ± 1.1** 9.8 ± 0.3
GLM 0.936 ± 0.004 0.789 ± 0.010 15.1 ± 0.3 13.5 ± 0.4 50.4 ± 0.4** 31.3 ± 0.2*
MARS 0.967 ± 0.004 0.836 ± 0.013 8.7 ± 0.5 4.5 ± 0.3 74.3 ± 2.2** 22.0 ± 0.6*
MAX 0.970 ± 0.005 0.859 ± 0.012 13.6 ± 1.1 19.8 ± 2.2* 48.7 ± 1.8** 17.4 ± 1.7
RF 0.999 ± 0.001 0.995 ± 0.002 17.8 ± 0.3 37.4 ± 0.7* 62.9 ± 0.5** 21.9 ± 0.4
SRE 0.857 ± 0.007 0.713 ± 0.014 20.3 ± 0.5 23.1 ± 0.2 46.1 ± 0.1** 28.9 ± 0.2*

Table 1. Mean ± SD model accuracy measured as the area under the receiver operating characteristics curve (AUC) and true
skill statistic (TSS) and environmental variable importance calculated as the percentage of change in AUC by excluding
1 variable in turn and retaining the others. ANN: artificial neural network, CTA: classification tree analysis, FDA: flexible
 discriminant analysis, GAM: generalized additive model, GBM: generalized boosting model, GLM: generalized linear model,
MARS: multiple adaptive regression splines, MAX: maximum entropy model, RF: Breiman and Cutlers random forest for
 classification and regression, SRE: surface range envelopes. **Highest percentage value in each model, *second highest 

percentage value
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Models produced similar outputs and very consis-
tent environmental response curves for fitted pre-
dicted occurrence in relation to SST, WS, SBD and
chl a (Fig. 3). They indicated that the main suitable
habitats were those with the following characteris-
tics: 20−30°C SST and 5−8 m s−1 WS from shallow to
deep and oligotrophic waters (Fig. 3). Such habitats
were reflected in the areas of higher predicted prob-
ability of occurrence and matched the 50% KUD ex -
cept in 2 cases: (1) 2 pelagic areas in the central area
of both the North and South Atlantic Ocean, and (2) 1
area in the extreme north of South America that
extends towards Central America. These 2 predicted
areas showed apparently suitable areas not currently
used by the sampled birds (Fig. 4).

Potential distribution under different climate
change scenarios

The full dispersal potential distribution compared
to the actual distribution indicated that the amount of
suitable area for this species increased in all scen -

arios (Table 2, and see Fig. S1 in the Supplement at
www. int-res. com/ articles/ suppl/ m599 p253 _ supp. pdf).
The limited dispersal approach indicated that 47.9−
58.8% of suitable area remains for all scenarios
(Table 2). SST (Fig. S2) and WS (Fig. S3) seemed to
be the key factors limiting suitable habitats when
plotting the potential distribution against the climate
variables in 2050 and 2100. SST marked the northern
and southern limits of the species’ distribution, which
expanded polewards in future projections; this meant
that the core winter distribution is defined by areas of
intermediate WS and low to intermediate produc -
tivity (Fig. 5).

Change in suitable habitat within current 
wintering grounds

The mean suitability change was negative for all
wintering grounds (Cape Verde Islands: −57.1 ± (SD)
1.9%; northern Brazil: −19.7 ± 1.7%; southern Brazil:
−11.1 ± 1.21%, US east coast: −33.0 ± 3.12%). This
means that under a limited dispersal approach, the
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Fig. 3. Probability of occurrence of Desertas petrel Pterodroma deserta in response to environmental variables fitted by the 2
most accurate machine-learning models (RF: random forest, GBM: generalized boosted model) and the most accurate correla-
tive model (GAM: generalized additive model): (a) sea surface temperature, (b) surface wind speed, (c) sea bed depth and (d) 

chlorophyll a concentration. Binomial trend line ± SD (grey area)

http://www.int-res.com/articles/suppl/m599p253_supp.pdf
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predicted wintering areas would be smaller than
those observed at present. Areas of currently higher
suitability (high probability of occurrence) within
wintering grounds had a lower suitability in the
future, which was true for all wintering grounds sep-
arately (Table 3, Fig. 6). The Cape Verde Islands had
the lowest probability of suitability increase, and the
reverse trend was observed for the US east coast
 wintering grounds (Fig. 6). Trends were consistent
among scenarios and years (Fig. 6).

DISCUSSION

We found that the Desertas petrels were associated
with subtropical to tropical temperatures in oceanic
shallow to deep oligotrophic waters with intermedi-
ate WS. Our models indicate that the area character-

ized by these variables will increase in future pro -
jections. On one hand, increased temperatures will
facilitate the expansion of northern and southern lim-
its of the species’ potential distribution, and the in -
crease in WS contributes to a reduction in chl a con-
centrations, allowing for a longitudinal expansion of
the Desertas petrel wintering grounds. On the other
hand, our models indicated that the suitable habitat
observed within the current wintering grounds
would deteriorate, leading to a loss of approximately
50% of the current suitable wintering habitat of this
species.

The poleward shift in the range of this species
caused by an increase in SST has previously been
verified in modelling studies (Péron et al. 2012, Rus-
sell et al. 2015, Krüger et al. 2018), and suggests that
several species could change their distribution ac -
cording to this expectation (Péron et al. 2010, Wei -
merskirch et al. 2012, Poloczanska et al. 2016). The
same logic is expected in our study, with the Desertas
petrel’s range increasing polewards due to climate
change. On the other hand, the increased WS at
higher latitudes may become a barrier for latitudinal
dispersal in the future (Weimerskirch et al. 2012,
Cornioley et al. 2016, Tarroux et al. 2016, Krüger et
al. 2018). Increased wind speeds at intermediate lati-
tudes and the expansion of less-productive areas
would allow the Desertas petrel to expand its longi-
tudinal distribution in future scenarios, but may also
deteriorate the habitats within its current wintering
grounds (this study). These current wintering areas
are used by several seabird species throughout the
year (Grecian et al. 2016, Ramos et al. 2017) as both
breeding and non-breeding areas, including gadfly
petrels (Krüger et al. 2016, Ramos et al. 2017) and
shearwaters (González-Solís et al. 2009, Dias et al.
2011, Hedd et al. 2012, Freeman et al. 2013, Missagia

260

Fig. 4. Ensemble modelled probability of occurrence (actual
distribution) of wintering areas of Desertas petrel Ptero-
droma  deserta indicating the 4 main wintering areas, and
showing the winter core areas from 50% kernel utilization
distributions (black lines): (1) US east coast, (2) Cape Verde
Islands, (3) northern Brazil, (4) southern Brazil. The white
cross marks the position of the breeding colony at Desertas 

Islands (Madeira archipelago)

RCP Year Future range size (% of current range)
Limited dispersal Full dispersal

4.5 2050 47.9 386.8
2100 52.4 382.1

6.0 2050 47.9 381.8
2100 53.5 490.9

8.5 2050 56.2 431.2
2100 58.8 510.6

Table 2. Species range change measured as the percentage of
the future range in relation to the current range of Desertas
petrel Pterodroma deserta, considering limited and full dis-
persal over different representative concentration pathway
(RCP) future climate change scenarios for 2050 and 2100. De-

tails of RCPs are given in the ‘Materials and methods’
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et al. 2015). Typically, the wintering grounds are
close to year-round upwellings (Gregg et al. 2005,
Behrenfeld et al. 2006), ocean gyres (McClain et al.
2004, Gregg et al. 2005) and/or seamounts (Kitching-
man et al. 2008, Wessel et al. 2010), making them

spatially and temporally predictable. The productiv-
ity in these areas is highly dependent upon wind cur-
rents and local circulation trends (Young et al. 2011,
Lluch-Cota et al. 2013, Sydeman et al. 2014).
Changes in WS may have large impacts on local and
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Fig. 5. Current wintering areas of Desertas petrel Pterodroma deserta (black lines) plotted with the current (a) sea surface tem-
perature (SST), (b) surface wind speed (WS) and (c) chlorophyll a concentration (CHL), and potential wintering areas of Deser-
tas petrel (black lines) shown with the projected (d) SST, (e) WS and (f) CHL in future scenarios of climate change. Potential
wintering areas (full dispersal scenario) and projected environmental variables are presented as medians from the 3 represen-
tative concentration pathways (RCPs 4.5, 6.0 and 8.5) for 2050 and 2100. The white cross is the position of the breeding colony 

at Desertas Islands (Madeira archipelago)

Explanatory variable F7,1978 Reference area Compared to Estimate SE z p(>|z |)

Prediction 24.783 8.05 1.77 4.56 <0.0001

Wintering area 5.497 South Brazil Cape Verde Islands 4.19 4.62 0.91 0.3647
US east coast −35.94 8.48 −4.24 <0.0001
North Brazil 5.74 2.90 1.98 0.0479

Prediction × Wintering 8.014 South Brazil Cape Verde Islands 0.46 5.53 0.08 0.9331
US east coast 45.37 10.69 4.24 <0.0001
Northern Brazil −7.69 3.43 −2.24 0.0250

Table 3. Binomial generalized linear mixed model results testing the probability of decreased suitability conditions in winter-
ing areas of the Desertas petrel Pterodroma deserta based on the current predicted suitability from the ensemble species 

distribution modelling output
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global marine productivity (Young et al. 2011, Lluch-
Cota et al. 2013, Sydeman et al. 2014), with varying
consequences for top predators. The increasing evi-
dence that wind trends have been shifting in the last
decades (Young et al. 2011, England et al. 2014,
Sydeman et al. 2014), added to the increase of low
productivity zones in the open ocean (Gregg et al.
2005, Behrenfeld et al. 2006, Polovina et al. 2008),
raises concerns about how the habitats within those
areas may shift and what the consequences for mar-
ine biodiversity will be (Grémillet & Boulinier 2009,
Raymond et al. 2010).

The potential wintering distribution of Desertas
petrel will drastically change according to the future
IPCC scenarios under both the limited and full dis-
persal scenarios. Under the limited dispersal hypoth-
esis, which is a reasonable hypothesis considering
the high wintering site fidelity of gadfly petrels (Pinet
et al. 2011, Ramírez et al. 2016), Desertas petrels may
suffer considerable losses of their wintering habitat
availability within an individual’s lifetime. However,
no long-term data are available to quantify what it
takes for a site-faithful seabird to move. Previous
studies suggest that some seabirds may insist on a
chosen area even under unfavourable conditions (i.e.
Danchin et al. 1998, Bried & Jouventin 2002, Hamer
et al. 2002, Naves et al. 2006), while other species
may be more flexible (Dias et al. 2011), and therefore

more adaptable, i.e. more likely to change their win-
tering areas after several ‘bad years’ (i.e. Clausen et
al. 2018). Based on existing scientific data, site con-
sistency could represent a maladaptive behaviour
under climate change scenarios, as the areas selected
by the birds could act as an ecological trap reducing
the species’ productivity (Fletcher et al. 2012, Sih
2013, Hale et al. 2016). Different levels of wintering
consistency may be found for different trans-equato-
rial migrating seabird species (Dias et al. 2011, Raine
et al. 2013, Müller et al. 2014, Ramírez et al. 2016),
and one can advocate that the amount of risk im -
posed by changing climate conditions may vary as a
function of an individual’s ability to shift its wintering
area, and the ability of new generations to select new
wintering areas. The process by which immature
sea birds select their wintering areas remains un -
known. Understanding how birds choose their win-
tering grounds would inevitably require tracking of
juveniles for several years, plus several years of
tracking the same individuals to check their proba-
bility of changing wintering grounds and testing the
influence of climate. Nonetheless, social information
theory predicts that less experienced animals may
follow more experienced ones in order to try to find
suitable conditions (Péron & Grémillet 2013). In this
case, the ability of a species to cope with deteriorated
climate conditions may depend on the ability/flexi-
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Fig. 6. Probability of habitat suitability decrease over future climate conditions within the current wintering grounds (current
suitability above 0.647) of the Desertas petrel Pterodroma deserta. RCP: representative concentration pathway (see ‘Materials 

and methods’ for details of the scenarios) 
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bility of the next generation(s) to explore and find
new wintering grounds independently of the social
information made available by experienced individu-
als. In the case of seabirds who can live longer than
40 yr, such as petrels, such changes will be felt within
a few generations. This means there may not be
enough time for a species with such a reduced popu-
lation size to realize evolutionary solutions to deal
with changing conditions in their wintering habitat.

It is crucial for birds to be able to cope with unsuit-
able conditions, as the wintering season has negative
effects on adult survival and recruitment of new
breeders (i.e. Sandvik et al. 2007, Sandvik & Erikstad
2008, Barbraud et al. 2012). Under a full dispersal
scenario, climate change may substantially increase
the suitable habitat available for Desertas petrels,
but if the species shows long-term fidelity to sites,
and if the influence of adults on immature birds in
terms of their choice of wintering areas is strong,
then the species may experience losses of suitable
wintering habitat at alarming rates. This perspective
is disturbing considering the vulnerability of this spe-
cies to stochasticity due to its small population size.
We suggest continued monitoring of the population
via tracking of adults and immatures, as well as
recording demographic data, since this will enable us
to ascertain whether our projections are correct. Fur-
thermore, and as stated before, the wintering areas
used by the Desertas petrel are also used by several
other seabird species. Deteriorating conditions in
these particular areas may represent a potential
threat for most of the other co-occurring species. We
envisage similar studies should be applied to those
species as well.
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