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INTRODUCTION

In ocean food webs, microorganisms mediate a
large fraction of the energy flow and dictate major
fluxes and cycling of biologically important elements,
such as C, N, and P (Pomeroy 1974). Microbial ecolo-
gists have gained a mechanistic understanding of
biogeochemical roles of microbial loop components
by focusing on interactions between marine aerobic
heterotrophic bacteria (hereafter, ‘bacteria’) and phyto -

plankton (Azam et al. 1983, Cole et al. 1988). Phyto-
plankton influence bacteria by providing organic
carbon sources (i.e. dissolved organic carbon, DOC)
for bacterial biomass synthesis, whereas bacteria
influence phytoplankton by remineralizing organic
material to essential inorganic nutrients for phyto-
plankton growth (i.e. regenerated production) and
by providing key compounds such as soluble B vita-
mins and trace metal ligands (Taylor & Sullivan 2008,
Sañudo-Wilhelmy et al. 2014). Theoretically, these
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interactions provide a mathematical basis for dy -
namic coupling between these 2 microbial groups.
The degree of bacterial−phytoplankton coupling and
interactions in microbial food web dynamics might
ultimately impact the efficiency of the biological
pump and carbon export and fluxes (Legendre &
Le Fèvre 1991, Siegel et al. 2016). Bacterial−phyto-
plankton coupling is particularly important in oligo-
trophic oceanic environments where microbial food
webs are dominant (Steinberg et al. 2001). However,
quantifying bacterial−phytoplankton coupling itself
may not be a simple task. Though numerous ecosys-
tem models provide underlying equations to dictate
bi-directional interactions between phytoplankton
and bacteria, parameterizing physiological processes
and evaluating coefficients of the intertwined pro-
cesses still remains  challenging due in large extent
to the lack of ob servations, especially for bacteria, in
the oceans (e.g. Fasham et al. 1990, Luo et al. 2010).

Bacteria−phytoplankton interactions exist in a
complex network of material exchanges. Different
phytoplankton groups release DOC of different bio-
chemical composition, molecular size, weight, and
structure that confer varying degrees of DOC lability
(Amon & Benner 1996, Hansell 2013). Non-motile
bacteria have a relatively lower probability of en -
counter with phytoplankton-derived DOC and thus
may not be immediately responsive to the gradient of
DOC, while motile bacteria respond to DOC gradi-
ents immediately (Stocker 2012), which may result in
more persistent coupling with phytoplankton. In
nutrient limiting conditions, bacteria compete with
phytoplankton for  dissolved N and P while simulta-
neously remineralizing organic matter to N and P for
phytoplankton (Wheeler & Kirchman 1986, Zweifel
et al. 1993). Both bacteria and phytoplankton are
under external physical forcing in the surrounding
environment (e.g. temperature and irradiance), which
may influence either or both of them. The principal
link between phytoplankton and bacteria is the flux
of DOC. For DOC, up to 5 different fractions are
defined based on lifetimes and reactivity: labile DOC
(LDOC), semi-labile DOC (SDOC), semi-refractory
DOC (SRDOC), refractory DOC (RDOC), and ultra-
refractory (URDOC) (Hansell 2013). More simply,
DOC pools are usually grouped into 3 different
 fractions: LDOC (nanomolar concentration, turnover
times of minutes to hours), SDOC (5−50 µM C, turn-
over times of days to months), and RDOC (30−40 µM
C, turnover times of millennia) (Kirchman 2010). In
the Sargasso Sea, and the open sea generally, nearly
all DOC is ultimately derived from phytoplankton
and its supply is further mediated by other food web

processes. Typically, we only have estimates of the
total bulk pool (~40−70 µM C at Bermuda), which
does not respond directly to bacterial activity. The
size of the semi-labile pool can be estimated by sub-
tracting the deep water background (refractory) con-
centration from the total, or bulk pool. Measurements
of the labile pool are not typically performed, but are
becoming more common as analytical capabilities
improve (Kujawinski 2011). The monthly sampling
interval would lend little insight into the dy namics of
the rapidly turning over labile pool. Here, we address
the role of the semi-labile pool as a mechanism of
coupling between phytoplankton and bacteria.

As a method for identifying causal associations in
complex ecosystems, Sugihara et al. (2012) intro-
duced convergent cross mapping (CCM) based on
nonlinear state space reconstruction. Interactions
among compartments within marine food webs are
often difficult to analyze using conventional statisti-
cal approaches, such as cross-correlation, due to the
ubiquity of weak and nonlinear coupling of such
interactions which lead to changing signs of the cor-
relations over different time periods tested (Casini et
al. 2009, Sugihara et al. 2012). More importantly,
 correlation neither implies causality nor reveals the
strength of a causal influence of one variable on
another. CCM is an empirical modeling approach
wherein a time series of interest can reveal its causal
coupling with another. In recent years, CCM has
been tested with a variety of time series, including
relatively short ecological time series (Clark et al.
2015, Ye et al. 2015). Applying CCM to oceanic eco-
logical time series provides a means to detect causal
couplings among different biological processes apart
from their covariability in the system.

In this study, we explored dynamic causal relation-
ships between phytoplankton (i.e. primary produc-
tion, PP) and heterotrophic bacteria (i.e. bacterial
production, BP) by applying CCM. We analyzed the
24 yr time series of year-round monthly PP and BP
observations from the Bermuda Atlantic Time-series
Study (BATS) site in the North Atlantic Subtropical
Gyre. We focused on this region because bacterial
influence on phytoplankton might be significant
compared to other regions especially during the sum-
mer stratification period when bacterial biomass can
exceed that of the phytoplankton (Fuhrman et al.
1989). Our study aimed to (1) identify the causal in -
fluence of phytoplankton on bacteria and vice versa,
(2) reveal the strength of causal influence in each
direction, and (3) explore if bacterial−phytoplankton
causal relationships depend on the physical regime.
Here, we examined seasonal mixing as an example.
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To our knowledge, this study is the first application of
CCM to  reveal the causality within microbial loop
variables.

MATERIALS AND METHODS

BATS data extraction

Hydrography and ecosystem variables tested for
CCM include mixed layer depth (MLD), PP via 14C
uptake, 3H-thymidine (3H-TdR) incorporation rates for
calculating BP, and bulk DOC concentration, all ob-
tained from the BATS database (http:// batsftp. bios.
edu/ BATS/ production/, http:// batsftp. bios. edu/ BATS/
bottle/). MLD was calculated from the con duc tivity−
temperature−depth (CTD) profiles using a finite
differ ence temperature criterion (ΔT = 0.2°C). Volu-
metric PP and 3H-TdR incorporation rates were depth-
integrated from the shallowest sample depth to the
MLD using a trapezoidal method to represent upper
mixed-layer inventories. For the purpose of CCM, we
used depth-integrated values of each variable.

Conversions of phytoplankton and bacterial variables

Given that nitrate (NO3
−) is a driver initiating sea-

sonal phytoplankton dynamics at the BATS site, car-
bon PP estimates (mgC m−2 d−1) were converted to
nitrogen units (mmol N m−2 d−1) using the canonical
Redfield molar ratio for C:N of 6.625 (e.g. Fasham et
al. 1990). We recognize that C:N ratio might change
seasonally and thus as a function of the time periods
we examined in this study, but it would not affect our
results given that we worked with standardized
monthly anomalies in the CCM (see below). Also for
this reason, when necessary, we used DOC to get a
more generalized picture of the processes linking
bacteria and phytoplankton, rather than dissolved
organic nitrogen or phosphorus. The MLD-inte-
grated BP was derived from volumetric 3H-TdR
incorporation rates (pmol l−1 h−1) using a formula by
Carlson et al. (1996) and empirical conversion factors
by Spitz et al. (2001) as follows:

BP = 3H-TdR × ICF × biovolume × CCF (1)

where ICF is an isotope conversion factor of 1.63 ×
1018 cells mol−1, biovolume is equivalent to 0.057 µm3

cell−1, and CCF is the carbon conversion factor of
120 fgC µm−3. BP in carbon units was further con-
verted to nitrogen units using bacterial C:N molar
ratio of 4 (Caron et al. 1995).

Scientific justification for using CCM

In a linear stochastic system, future temporal evo-
lution of the state is not determined from previous
states but rather in a random manner. This type of
system is governed by a high dimensional linear
mode as a result of the additive action of many vari-
ables together (Hsieh et al. 2008). In a nonlinear
dynamic system, future states follow from, or are un -
ambiguously determined by, previous states where
dynamics can be explained in a nonlinear mode by a
few variables interacting in complicated ways (Hsieh
et al. 2008). When a system is nonlinear, using linear
statistical approaches (e.g. correlation) can lead to
erroneous conclusions about 2 interacting variables
in the system. Correlation might occur between the 2
variables in the absence of causation and causation
might also occur in the absence of correlation. In
other words, 2 biological variables might appear to
causally impact each other, when they are not inter-
acting, because they share common abiotic environ-
ments. Here, CCM allows us to tease out potential
causal interaction between 2 biological variables
from the effect of their shared environmental driver.
CCM also enables us to examine directionality of
such causal interactions (i.e. unidirectional or bi -
directional causal influences). In our study, we tested
a causal linkage between phytoplankton and bacte-
ria, considering that their interactions might occur in
a nonlinear dynamic manner (see below). Using
CCM, a potential causal interaction between phyto-
plankton and bacteria can be revealed, as can the
directionality of the causal influence between the 2
variables.

In nature, trophic interactions often show nonlinear
and dynamic control or regime-dependent (i.e. top
down versus bottom up) behaviors by which interac-
tions between any 2 trophic levels are characterized
by the changing sign of their correlation depending
on a threshold value of another trophic level or an
environmental forcing variable. For example, in the
Baltic Sea ecosystem zooplankton population dy -
namics were dominantly driven more by either hydro -
climatic forcing (bottom up) or predation pressure
(top down) depending on the abundance threshold of
a zooplanktivore. This suggests that a certain thresh-
old of zooplanktivore abundance acts as a switch
on bottom-up or top-down control on zooplankton
dynamics (Casini et al. 2009). Here, we hypothesized
that, as shown in the Baltic Sea ecosystem, phyto-
plankton and bacteria might show nonlinear behav-
iors and therefore their interactions would be best
quantified if assumed in a nonlinear dynamic system,
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rather than in a linear stochastic system, given the
following reasoning. Ecologically, phytoplankton
and bacteria interact via the flow of dissolved organic
matter (DOM), where phytoplankton provide bacte-
ria with DOM and bacteria feed on DOM for bacterial
growth and biomass synthesis while remineralizing
organic to inorganic nutrients for phytoplankton
growth. Since bacterial activity is regulated by either
temperature or DOM (phytoplankton-derived) avail-
ability or both in the ocean, a plausible hypothesis
could be that a certain amount of biologically avail-
able DOM may switch on temperature control of bac-
teria, while DOM controls bacteria otherwise (i.e.
DOM limitation/control vs. temperature limitation/
control). Bearing in mind the possibility of nonlinear
interactions between phytoplankton and bacteria at
BATS, we tested if the BATS ecosystem is indeed a
nonlinear dynamic system using an S-map algorithm
(rEDM package; Chang et al. 2017). A nonlinear S-
map model (θ > 0) showed a better predictive skill
than the linear S-map model (θ = 0), confirming that
the BATS ecosystem is best described as a nonlinear
dynamic system (see Fig. S1 in the Supplement at
www.int-res. com/ articles/ suppl/ m600p041_ supp. pdf).
Therefore, CCM is a valid method to best reveal the
interactions between phytoplankton and bacteria at
BATS.

CCM algorithm

The CCM algorithm is based on state space recon-
struction with a lagged coordinate embedding of
time series data (Takens 1981). In a nonlinear deter-
ministic system, there is an underlying coherent tra-
jectory called a manifold governing the dynamics,
and it is said that 2 variables are causally linked if
they share a common attractor manifold M (Sugihara
et al. 2012). When causally coupled, each variable
can identify the state of the other. The basic principle
of CCM is that information about a causal variable is
recorded in the affected variable and that this link
can be confirmed by cross-prediction, i.e. when the
former can be estimated using the temporal se -
quence of the latter with the CCM algorithm (Sugi-
hara & May 1990, Sugihara et al. 2012). The causal
links between bacteria and phytoplankton can be
established by assuming the 2 variables are alterna-
tive observations of a common attractor manifold M.
To the extent this holds true, data on bacteria and
phytoplankton can approximate the state of each
other when provided with suitable time lags. For
example, the causal effect of bacteria on phytoplank-

ton is detected by measuring the extent to which the
past record of the phytoplankton provides a reliable
estimate of the states of the bacteria. The CCM algo-
rithm detects a signature of bacteria (X hereafter) in
phytoplankton (Y hereafter) based on a correspon-
dence between the 2 attractor manifolds, MX and MY,
which are E (size of embedding dimension) padded
temporal sequences of bacteria and phytoplankton,
respectively. For further details of CCM algorithms
and equations, see Supplementary Material page 4
in Sugihara et al. (2012).

In a brief description of the CCM algorithm, con-
sider a data library of 2 variables of length L, {X} =
{X(1), X(2), …, X(L)} and {Y } = {Y(1), Y(2), …,
Y(L)} and a shadow manifold MY which consists of
 lagged-coordinate vectors y(t) = <Y(t), Y(t–τ), …,
Y(t − (E − 1)τ)>, with τ time interval and MX of x(t).
Note that the contemporaneous y(t*) and x(t*) at time
of t* are excluded from the library to form an attrac-
tor manifold. By locating the contemporaneous y(t*)
on MY to find its E+1 nearest neighbors and identi -
fying the E+1 putative neighbors of x(t*) in {X }, the
contemporaneous X(t*) is estimated from a locally
weighted mean as follows:

(2)

where wi is a weighting based on the distance
between y_ (t) (i.e. the vector on MY corresponding to
the state of the system at time t) and its i th nearest
neighbor on MY, and X(ti) are the contemporaneous
values of X. The weights, wi, are calculated as
 follows:

(3)

where

(4)

and where d[y_ (s), y_ (t)] is the Euclidean distance be -
tween 2 vectors. If causality is detected, the correla-
tion (rho, ρ) between the actual data and the estima-
tion improves and converges as the size of the data
library increases.

For CCM, we used standardized monthly anom-
alies of each variable to reduce the confounding
effects of seasonal cycle (Fig. 1). Standardized monthly
anomalies were calculated by removing monthly cli-
matology (mean) from data values and then dividing
them by monthly standard deviation. The detection
of causality of X (or Y) on Y (or X) is based on 2 crite-
ria: (1) when the correlation (ρ) between the cross-
mapped estimate and actual value is greater with the
largest library than with the smallest library (i.e. L,
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the number of all data points entered in the CCM
models) and (2) when ρ > 0 at the longest L (Clark et
al. 2015). For example, Fig. S2 shows the correlation
between the reconstructed bacterial values and
actual bacterial values as a function of library size.
For our CCM models, we chose E = 3 as our embed-
ding dimension time lag given that (1) auto-correla-
tion of the underlying monthly time series variables
in our study decreases considerably after 1−2 mo and
(2) E = 3 produced the best predictive skill in the
CCM models among varying E tested (E = 2−7). To
ensure the robustness of our CCM results, we per-
formed leave-one-out cross validation where the
CCM model was repeatedly performed leaving out a
single year’s dataset (i.e. a verification year) and then
used to derive a prediction for the left-out observa-
tion (i.e. library years). In order to determine statisti-

cal significance of the detected causality, we first
generated the randomized time series from the origi-
nal time series. Next, we carried out randomization
on the standardized monthly anomalies of each
 variable by preserving the range of the distribution
to that of the original time series (i.e. multiplying
each randomized value by the maximum range, i.e.
maximum minus minimum, of the original time
series). CCM was then repeatedly performed to sim-
ulate a series of Monte Carlo experiments (m = 30)
with the randomized time series within the ranges of
the original time series. This way, ρ in the CCM re -
sults above the error shading from Monte Carlo sim-
ulations is considered statistically significant. In some
cases, ρ is above the range of Monte Carlo-generated
errors but shows lack of convergence, which we
interpreted as lack of causality, since in this case the
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Fig. 1. Time series of mixed layer depth (MLD), primary production (PP), and bacterial production (BP) used for convergent
cross mapping (CCM) in this study. (a,c,e) Monthly means and (b,d,f) standardized monthly anomalies of MLD, PP, and BP



Mar Ecol Prog Ser 600: 41–53, 2018

CCM model is not yet stabilized with the given
length of the time series (e.g. the [non]causality of
phytoplankton on bacteria during the stratification
period).

To ensure that our CCM algorithm works properly,
we first employed our CCM algorithm to synthetic
data generated from known equations which dictate
unidirectional causal forcing of X on Y, while the
dynamics of X are not influenced by those of Y but
rather predicted simply by its own previous time
step (Fig. S3). To test the performance of our CCM
with the time series of variables tested for the pres-
ent study, we also applied CCM to synthetic time
series output produced from the  Fasham-Ducklow-
McKelvie (FDM, Fasham et al. 1990) model (see be -
low) for which unidirectional coupling is anticipated
(e.g. causality between MLD and phytoplankton;
Fig. S4). We then applied our CCM algorithm to the
BATS observational data sets, again with MLD and
phytoplankton (Fig. S5). In addition to testing the
validity of grouping into different seasonal mixing
time frames (see below), this procedure enables us to
examine how the presumed patterns of causality
between the 2 field observational variables might be
affected by observational noise and sampling errors.
In all 3 cases, the directions of the causality between
the tested variables were correctly recovered, pro-
viding confidence and robustness in applying our
CCM algorithm to the variables explored in this
study.

FDM ecosystem model

The FDM model is a time-dependent box model
with 7 foodweb compartments in an upper-ocean
mixed layer dictated by coupled ordinary differen-
tial equations (Fasham et al. 1990). The model com-
partments include nitrate, phytoplankton, zooplank-
ton, bacteria, ammonium (NH4

+), dissolved organic
nitrogen, and detritus. The equations for model con-
stituents are described by Fasham et al. (1990).
Many ecologists have modified the FDM model
mostly by adding size-fractionated plankton as
additional compartments; however, we used the
original version of the FDM model since the vari-
ables of interest (PP and BP) for CCM in our study
are bulk variables which represent entire microbial
assemblages. Whereas previous studies used the
FDM model to explore steady-state solutions, we
used the FDM model to produce time-varying data
by applying 55 yr long historical records of monthly
mean MLD and cloud fraction from Ocean Re -

analysis System 4 (ORAS4) and ERA-20C data sets
(www.ecmwf.int/ en/ research/climate-reanalysis), re -
spectively.

Defining the mixing regimes

The dynamics of physical mixing in the Sargasso
Sea differ considerably between the winter−spring
mixing period (November to April; from the month
when the MLD first crosses the nitracline to the next
6 mo) and the summer−fall stratification period
(May to October) (Fig. 2). During the mixing period,
nitrate is entrained into the euphotic zone by wind-
driven mixing, whereas during the stratification
period, nitrate supply is mostly limited to diffusional
inputs unless episodic summertime storms induce
mixing events (Moore et al. 2008). The 2 different
seasonal mixing regimes are also characterized by
distinct microorganisms dominating the phytoplank-
ton. During the winter mixing period, picoeukary-
otes and Synechococcus, resistant to mixing-induced
photoinactivation (Mella-Flores et al. 2012), often
dominate in winter−spring phytoplankton blooms
(DuRand et al. 2001, Moore et al. 2008). During the
summer stratification period, Prochlorococcus domi-
nates in the phytoplankton due to its ability to use
regenerated NH4

+ from Trichodesmium and other
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Fig. 2. Climatology (1989−2012) of mixed layer depth (MLD)
overlaid on nitrate (NO3

−) concentration (µmol kg−1) in the
water column. Error bars indicate standard deviation. The
black shaded area indicates the winter−spring mixing pe-
riod and the grey shaded area represents the summer−fall 

stratification period
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species (DuRand et al. 2001, Hood et al. 2001,
Boushaba & Pascual 2005, Moore et al. 2008, Malm-
strom et al. 2010, Casey et al. 2013, Wallhead et
al. 2014).

Based on the distinct seasonal microbial dynamics
dictated by different seasonal mixing regimes, we
hypothesized that causal relationships between
phytoplankton and bacteria differ seasonally. First, in
the beginning of the winter−spring mixing period, a
deepening of the MLD and resultant entrainment of
nitrate into the euphotic zone drive phytoplankton
growth, which may induce the causality of phyto-
plankton on bacteria via bacterial growth from an
increase in the phytoplankton-derived SDOC pool
(Carlson et al. 1994, 1996, Michaels et
al. 1994, Michaels & Knap 1996, Stein-
berg et al. 2001). In the summer−fall
stratification period, phytoplankton
growth is highly limited due to minimal
diffusive nitrate input in the upper
mixed layer, and phytoplankton rely
mostly on regenerated nitrogen. We
hypothesized that this would show the
causality of bacteria on phytoplankton
during the stratification period. Thus,
we grouped the time periods for testing
CCM into the mixing period (No -
vember−April) and the stratification
period (May− October) which represent
2 season ally driven, distinct physical
mixing regimes.

As addressed in the Introduction, we
note that variations in the total bulk
DOC pool are not sensitive to the short-
term BP rates, and vice versa. Thus,
phytoplankton causality on bacteria
may be obscured by this limitation. The
majority of the bulk DOC is refractory,
with constant concentration over time.
Thus, temporal fluctuation of the bulk
DOC is driven by the semi-labile pool.
Hereafter, we only consider SDOC in
the analysis by subtracting the back-
ground concentration for RDOC (42 µM
C at BATS) from bulk DOC concentra-
tions. Technically, these data include
the labile pool but its dynamics are not
resolved by our measurements. We
also recognize that the semi-labile and
total bulk pools are mathematically
equivalent. For this reason, we use
SDOC instead of DOC throughout this
manuscript.

RESULTS

Phytoplankton−bacterial causality during the
mixing period

During the mixing period, we did not detect a
causal impact of phytoplankton on bacteria, nor of
bacteria on phytoplankton. The results from both
cases did not meet the criteria of causality (see
‘Materials and methods: CCM algorithm’) showing
that ρ was consistently <0 when library size in -
creased (Fig. 3a,b). Cross-correlation between
phyto plankton and bacterial anomalies during
the mixing period also revealed no coupling (r =
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Fig. 3. Detecting causality between phytoplankton (primary production, PP)
and bacteria (bacterial production, BP) during the 2 different physical mixing
regimes using convergent cross mapping (CCM). PP and BP rates are inte-
grated from surface to mixed layer depth (MLD). For CCM, standardized
monthly anomalies of PP and BP (Fig. 1) were used. The arrow above each plot
indicates the direction of a causal influence of one variable on another vari-
able, where PP ⇒ BP indicates the causality of PP on BP (i.e. PP̂ | MBP). The
shaded area represents error spread or confidence intervals (5%−95%) gener-
ated from Monte Carlo simulations (n = 30). The detection of causality for the
given directional flow was established based on the signature of convergence
from library size (L) versus Pearson correlation coefficient (ρ) where (1) ρ
 converges to a value of significantly >0 as L increases and (2) ρ is greater at
the longest L. According to these criteria, there was (a) no phytoplankton
causality on bacteria during the mixing period, (b) no bacterial causality on
phytoplankton during the mixing period, (c) no phytoplankton causality on
bacteria during the stratification period, and (d) moderate bacterial causality 

on phytoplankton during the stratification period
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0.14, p = 0.15), so absence of causal association
was  correctly inferred from cross-correlation dur-
ing this time period. To gain insight into why
causality was absent between phytoplankton and
bacteria, we examined depth-integrated compos-
ites of nitrate, particulate organic carbon (POC),
SDOC, and BP within the MLD (Fig. 4). In
response to deeper mixing (i.e. positive MLD
anomalies), NO3

− (Fig. 4a), POC (Fig. 4b), and
SDOC (Fig. 4c) all significantly increased. Despite
increased availability of phytoplankton-derived
organic carbon pools, BP (Fig. 4d) did not increase
as a result of deeper mixing. To understand a
complete picture of the phytoplankton−bacterial
causal dynamics, which should ultimately include
SDOC as a mediator variable, we additionally
examined the causality of PP on SDOC, as well as
the causality of SDOC on BP. However, no signals
of the causality were detected in either case (Fig.
S6a,b).

Phytoplankton−bacterial causality during the
stratification period

In contrast to the mixing period, the stratification
period was characterized by a unidirectional causal
relationship of bacteria on phytoplankton, while
the causality of phytoplankton on bacteria seemed
yet unclear (Fig. 3c,d). Cross-correlation between
PP and BP during the stratification period also
showed a significant and moderate coupling be -
tween them (r = 0.44, p < 0.001). However, im -
portantly, our CCM suggests that the observed
coupling was actually driven by bacterial causality
on phytoplankton, not vice versa, which would
not be revealed by cross-correlation alone. As
done for the mixing period, we tested the causality
of phytoplankton on SDOC and the causality of
SDOC on bacteria during the stratification period
as well. There was no signal of the causal in -
fluence of phytoplankton on SDOC (Fig. S6c). How -

ever, strong causality was detected
in the flow from SDOC to bacteria
(Fig. S6d).

DISCUSSION

Phytoplankton−bacterial causality
during the mixing period

The lack of bi-directional causality
between phytoplankton and bacteria
(Fig. 5a) contradicts our initial expec-
tation of a causal impact of phyto-
plankton on bacteria during the mix-
ing period, which was based upon
observations that an increase in
phytoplankton productivity from mix-
ing and nitrate entrainment supplies
bacteria with organic carbon sources
(Carlson et al. 1994, 1996, Michaels et
al. 1994, Michaels & Knap 1996, Stein-
berg et al. 2001). The lack of bacterial
causality on phytoplankton during the
mixing period is easier to understand
because phytoplankton growth dur-
ing this period is mostly supported by
newly introduced nitrate from winter
mixing rather than by recycled nutri-
ents from bacterial remineralization
(Fasham et al. 1990, Siegel et al. 1999,
Lipschultz 2001). Considering that most
of phytoplankton-derived carbon is

48

Fig. 4. Ecosystem (nitrate, particulate organic carbon [POC], semi-labile dis-
solved organic carbon [SDOC], and bacterial production [BP]) composites dur-
ing positive mixed layer depth (MLD; i.e. deeper mixing) and negative MLD
(i.e. shallower mixing) anomaly months during 2 different seasonal mixing
regimes. Here, SDOC is the sum of the semi-labile and labile DOC pools (i.e.
bulk DOC minus refractory background concentration of 39 µM C at the
Bermuda Atlantic Time-series Study [BATS] site). +MLD (−MLD) indicates
positive (negative) MLD anomalies. Significance of difference between posi-
tive and negative MLD anomaly months was determined by Student’s t-test at 

p < 0.05. Error bars indicate standard errors
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routed through SDOC in the Sargasso Sea (Carlson
et al. 1998), we tested the causality of phytoplankton
on SDOC as well as the causality of SDOC on bacte-
ria to gain mechanistic insight into the lack of phyto-
plankton causality on bacteria. However, there was
no evidence of the causality in either case during the
mixing period.

During the mixing period at BATS, deep mixing of
the water column acts as a direct removal process
(sink) for SDOC because SDOC accumulated since
previous seasons is exported to the sub-euphotic
zone as a result of winter mixing (Hansell & Carlson
2001). Similarly, bacterial utilization, if integrated
over days to months as in our study, could also
 function as a sink for SDOC (bearing in mind that
actual BP measurements made over hours largely
reflect the uptake of LDOC but strictly speaking, the
amount of SDOC uptake remains unknown). By con-
trast, winter mixing leads to entrainment of nitrate
into the upper euphotic zone and subsequently to
larger phytoplankton productivity, accumulation, and

SDOC stock in the upper mixed layer (Carlson et al.
1994, 1998, Hansell & Carlson 1998), which was also
evidenced by our results (Fig. 4a−c). In this aspect,
mixing acts as an indirect source of SDOC via
increased production. Our observation of the lack of
phytoplankton causality on SDOC suggests that dur-
ing the mixing period, there were balanced source
(via phytoplankton production) and sink (via export
and bacterial utilization) terms for SDOC (Fig. 5a).
However, it should be noted that in contrast to
deeper mixing-induced increases in POC and SDOC
stocks (Fig. 4a), BP did not show a corresponding
enhancement in more deeply mixed water columns
(Fig. 4d). For this, our recent findings at BATS
demonstrated that BP was inhibited significantly in
more deeply mixed water columns due to deep mix-
ing-induced entrainment of cold water into the upper
mixed layer; during the winter mixing period, BP
was strongly controlled by temperature and was not
limited by SDOC availability (Fig. S7). This observa-
tion rules out increased bacterial SDOC utilization as
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Fig. 5. Summary of mixing regime-dependent causality between phytoplankton and bacteria via semi-labile dissolved organic
carbon (SDOC) as a mediator. ‘O’ indicates a causal influence of one variable on another and ‘X’ indicates the lack of a causal
influence of one variable on another in the given direction of the flow based on the results of convergent cross mapping (CCM) 

in Fig. 3. PHYTO: phytoplankton
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the reason for larger SDOC removal during deeper
mixing; rather, it more likely stems from increased
SDOC export out of the upper euphotic zone by
deeper mixing. This observation also provides a
mechanistic basis for the lack of SDOC causality on
bacteria as well as for the lack of phytoplankton
causality on bacteria during the mixing period
(Fig. 5a). Based on these findings, we propose cold
water entrainment and the resulting inhibition of BP
as a potential underlying mechanism of the lack
of phytoplankton causality on bacteria during the
 mixing period.

Another possible explanation for the lack of phyto-
plankton causality on SDOC would be that SDOC
variability is also caused by other intermediate food
web processes (e.g. zooplankton sloppy feeding and
viral lysis) for which quantification is beyond the
scope of our study. Even if this is the case, it reformu-
lates the potential underlying mechanisms neither
for the lack of SDOC causality on bacteria nor for the
lack of phytoplankton causality on bacteria.

Phytoplankton−bacterial causality during the
stratification period

The result of the moderate degree of unidirectional
bacterial causality on phytoplankton (Fig. 5b) is con-
sistent with our hypothesis that bacterial variability
might significantly cause phytoplankton variability,
hypothetically because bacteria directly provide
regenerated nutrients such as NH4

+ during the sum-
mer−fall stratification period. Relatively speaking,
explaining the lack of causality of phytoplankton on
bacteria is more complicated. At first glance, the
strong SDOC causality on bacteria may seem puz-
zling as there is no causal influence of phytoplankton
on SDOC during the stratification period.

During the stratification period at BATS, not much
organic carbon comes from phytoplankton-derived
fresh and labile carbon due to very limited phyto-
plankton activity as a result of reduced mixing of the
water column (Lipschultz 2001). The carbon accumu-
lated in surface waters during this period is semi-
labile and shows very little temporal fluctuation dur-
ing the stratification period (Carlson et al. 2002,
2004). Our observation of the lack of phytoplankton
causality on SDOC implies that SDOC is in a rough
steady state with balanced production (via phyto-
plankton) and removal (via export and bacterial uti-
lization). Given that SDOC removal by mixing-
induced export is low during the stratification period,
bacterial utilization should account for most of the

SDOC removal. Thus, the lack of phytoplankton
causality on SDOC indicates that SDOC produced by
phytoplankton is balanced by SDOC utilization by
bacteria (Fig. 5b). In other words, it might be the case
that bacteria utilize SDOC in surface waters during
the stratification period. The lack of phytoplankton
causality on bacteria but with the presence of SDOC
causality on bacteria implies that other foodweb pro-
cesses may also contribute to SDOC variability dur-
ing the stratification period (Fig. 5b). Given that cold
temperature no longer played a role in inhibiting
bacterial activity during warm stratification periods,
bacterial activity might be significantly limited by
SDOC availability (i.e. more SDOC leads to higher
BP). Based on these findings, our CCM results chal-
lenge previous observations at BATS that did not
show surface bacterial SDOC utilization with a reso-
lution of the measurement (Carlson et al. 2002, 2004).
However, there is evidence that bacteria in the sur-
face layer could encounter conditions allowing
SDOC to be used. Though limited, episodic mixing
events could bring subsurface bacteria capable of
using SDOC into the surface layer (Carlson et al.
2004). Bacterial utilization of SDOC might be aided
by photo-decomposition of SDOC to more labile
forms (Kieber et al. 1989, McCallister et al. 2005,
Collins 2017). Carlson et al. (2009) showed that SAR11
ecotypes II and Ib, which are suggested to be capable
of remineralizing euphotic zone-produced SDOC,
were found in surface waters at BATS during the
stratification period.

Other ecological considerations

While our findings are novel as the first attempt to
reveal the bidirectional causal associations between
the 2 major components in the microbial loop, there
are important analytical and data-related uncertain-
ties. Similar to the complementary tests on SDOC we
performed, it is critical to test causal relationships
with NH4

+, given that ammonium is the principal
inorganic nutrient regenerated by bacteria and sup-
porting phytoplankton activity, especially during the
stratification period. However, ammonium data are
not available from the BATS site. The FDM model
has an ammonium compartment, but without actual
field observations at BATS, it is impossible to con-
strain the model to simulate realistic ammonium
dynamics. Besides, the recently modified FDM model
showed that an almost equivalent amount of ammo-
nium comes from zooplankton as compared to het-
erotrophic bacteria (Spitz et al. 2001), which might
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obscure the causality of bacteria on NH4
+. There

might be biological process-oriented sources of
uncertainties in our CCM results. Microbially, the
BATS region is a seasonally dynamic ecosystem
showing evidence of significant nitrogen fixation by
photoautotrophic nitrogen-fixing bacteria, which do
not contribute to (heterotrophic) BP rates tested for
CCM in our study (i.e. they do not use exogenously
supplied thymidine). Diazotroph species like Tricho -
desmium contribute to new production by nitrogen
fixation during the stratification period, triggering
occasional outbursts of diatoms without mixing-
induced entrainment of new nitrogen as a prerequi-
site (Orcutt et al. 2001, Lipschultz et al. 2002). With
regard to CCM, nitrogen fixation during the stratifi-
cation period has the potential to weaken the causal-
ity of bacteria on phytoplankton. Nonetheless, our
results demonstrate the moderate strength of bacter-
ial causality on phytoplankton during the stratifica-
tion period, implying a mathematically minor effect
of this nitrogen cycling bacterial group at BATS.
Hansell & Carlson (2001) suggested that nitrogen fix-
ation is minimal during the summer stratification
period at BATS as inferred from no substantial
increase in total organic nitrogen (TON), unlike large
increases in TON pools in the presence of nitrogen
fixers Trichodesmium at Station ALOHA in the North
Pacific (Karl et al. 1992). Lastly, it should be noted
that our analysis only considered bacterial values
within the MLD, but bacterial maxima are typically
formed at depths (i.e. 50−60 m) deeper than the
mixed layer in the stratification period (Steinberg et
al. 2001). It is yet unclear how taking these BP maxi-
mum layers into account would change the observed
causal relationships among the microbial loop vari-
ables examined in our study.

CONCLUSIONS

The findings of our study highlight physical mixing
regime-dependent causal relationships between
phytoplankton and bacteria (Fig. 5). The causal asso-
ciations between phytoplankton and bacteria were
absent in both directions during the mixing period
(Fig. 5a). During the winter−spring mixing period,
the lack of the causality of phytoplankton on bacteria
might be explained by bacterial inhibition from mix-
ing-induced cold water entrainment into the upper
euphotic zone despite plenty of SDOC availability
(Fig. S7). The lack of causality of bacteria on phyto-
plankton might be due to predominant phytoplank-
ton utilization of newly introduced nitrate from mix-

ing, rather than on regenerated nutrients via bacteria
(Siegel et al. 1999, Lipschultz 2001). In contrast, the
stratification period was characterized by a moderate
degree of bacterial causality on phytoplankton
(Fig. 5b) that is presumably due to phytoplankton uti-
lization of regenerated ammonium via bacterial
remineralization (Lipschultz 2001). The causal influ-
ence of phytoplankton on bacteria was absent during
the stratification period, possibly as a result of bacte-
rial utilization of SDOC. Significant bacterial utiliza-
tion of SDOC might also be inferred from the strong
SDOC causality on bacteria. These findings suggest
bacterial utilization of SDOC during the stratification
period.

Modeling ecosystem dynamics is a challenging
task due to our incomplete understanding of underly-
ing processes, the regime-dependent behavior of
microorganisms, and the shortage of real field meas-
urements of essential parameters and coefficients in
the specific physiological processes required to tune
model fits to observations. Using this empirical
approach for revealing causality, our study success-
fully addresses that causal associations among micro-
bially important processes can be revealed in a data-
driven manner, thereby promoting our understand-
ing of further impacts on carbon fluxes, cycling, and
sequestration in the oceans via the microbial loop.
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