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INTRODUCTION

Biogeochemical modelling is widely used to study
marine ecosystems and plankton dynamics. It is rec-
ognized as a powerful tool to study the behaviour of
complex systems arising from basic underlying pro-
cesses (Arhonditsis & Brett 2004). Most models math-
ematically represent biological processes as chemi-
cal reactions in which phytoplankton and other
organisms are described in terms of concentrations
rather than individuals. In this approach, hereafter

referred to as the Eulerian approach (also known as
‘lumped’ models or population-level models), popu-
lation dynamics are formulated using the so-called
reaction-advection-diffusion equations (Franks 2002)
in which dependent variables represent mean prop-
erties. Organisms are thus described as a continuum,
and variability among individuals is not accounted
for. However, a population of phytoplankton cells at a
given time and location in its natural environment is
composed of many individuals in different physiolog-
ical states (Ross et al. 2011).
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This intra-population variability generally results
from the different life histories of individuals. In a tur-
bulent environment, cells are randomly transported
in the water column by eddies of various sizes. They
thus experience different light and nutrient condi-
tions along their respective trajectories. Additionally,
they are able to adapt to the changing environment
by modifying their biological response on time scales
of less than one to several hours (Cullen & Lewis
1988). The reaction of a particular organism to its
environment is thus intrinsically related to its tra -
jectory in the water column, which determines its
exposure to light and nutrients, and differs among
individuals.

As our understanding of processes involved in
the physiological response of organisms to their
environment (e.g. photo-inhibition, photo-acclima-
tion, nutrient uptake, respiration) has advanced
significantly over the past decades, more adequate
mechanistic and fully non-linear formulations of
these processes have emerged in mathematical
models (Baklouti et al. 2006). For example, classical
Michaelis-Menten kinetics was gradually being
superceded by Droop kinetics (Droop 1974), in
which growth is decoupled from nutrient uptake,
meaning that growth depends on an internal nutri-
ent cell quota rather than on external nutrient con-
centrations. Nevertheless, ad ding these types of
equations in the classical Eulerian paradigm
remains fundamentally inaccurate (Woods & Onken
1982, Schuler 2005, Fredrick et al. 2013). As
Bolnick et al. (2011) illustrated, the reason behind
this inaccuracy is rooted in the so-called Jensen
inequality (Jensen 1906), which states that ‘avera-
ging non-linear functions before integrating them
is mathematically different than averaging the
results of a non-linear integration’. In general, this
implies that growth calculated by population-based
models using average values of physiological
parameters differs from the average growth calcu-
lated for each individual of the population. These
arguments have motivated the development of
alternative individual-based (or agent-based) mod-
els, here referred to as Lagrangian models, where
populations are composed of a number of individual
members whose locations are tracked and physio-
logical states are integrated. Within this formula-
tion, properties of a population are diagnosed and
emerge from the collective behaviour of individuals.
Over the past de cades, the great potential of this
approach has been recognized for phytoplankton
ecology (Cianelli et al. 2012). Lagrangian models
have been successfully applied to many issues such

as competition dynamics (Huisman et al. 2004, Ross
& Sharples 2007, Cianelli et al. 2009), photore-
sponses of cells to varying light (Kamykowski et al.
1994, Nagai et al. 2003, Esposito et al. 2009) or
swimming strategies (Ross & Sharples 2008), and
numerous standard protocols have been developed
for the design of Lagrangian models (Ross &
Sharples 2004, Grimm et al. 2006, Hellweger &
Bucci 2009).

Several studies have attempted a comparison be -
tween Eulerian and Lagrangian formulations (e.g.
Lande & Lewis 1989, Broekhuizen et al. 2003, Hell-
weger & Kianirad 2007). Hellweger & Kianirad
(2007) studied a 1-dimensional test case where a
continuous nutrient (phosphate) point source is
advected into a straight river channel. They showed
a difference of 30% in terms of total biomass
between the Eulerian and Lagrangian formulations.
However, they did not study the relation between
turbulent mixing and the establishment of intra-
population variability, which, in marine environ-
ments, is particularly important. To illustrate this, let
us consider the case in which there is no mixing: all
cells at a given location will be ex posed to the same
environment and will thus have the same life his-
tory. In this case, the intra-population variability is
minimized and dynamics can be accurately repre-
sented using the classical Eulerian formulation. In
contrast, in the case of strong vertical mixing in
shallow waters whereby the water column is rapidly
homogenized, gradients are minimized and all indi-
viduals have the same life history and could also be
adequately simulated using an Eulerian ap proach.
Between these extremes, there exists a wide range
of mixing conditions leading to different individual
dynamics. The question addressed here is then:
Under what mixing conditions is it important to take
into account individual life history? Also, what error
are we making when we use a population-based
Eulerian approach in such cases?

In this study, we examined the effect of turbulence
on phytoplankton growth, expanding the study of
Hellweger & Kianirad (2007) to marine systems by
performing a systematic comparison between equi -
valent Eulerian and Lagrangian models under dif -
ferent vertical mixing conditions, ranging from ideal-
ized cases to more realistic ones. Phytoplankton
growth is modelled following Droop internal nutrient
quota kinetics. Below, we present the mathematical
problem that we addressed, followed by a complete
description of the model and the 2 formulations as
well as the numerical experiments and model equiv-
alence. 
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DEFINITION OF THE PROBLEM

Let us consider a group of phytoplankton cells
moving in a turbulent environment. The population
is sampled at a given time and depth, where en -
vironmental variables are homogeneous, and some
physio logical parameter X is measured n times so
that we obtain a set of values x = x1,x2,...,xn of mean
𝔼[x]. Suppose that each phytoplankton cell has a
growth rate that is a non-linear function of a particu-
lar parameter ƒ(x). In the Eulerian approach, the
mean value 𝔼[x] is used to parametrize the growth
function, and the population’s average growth rate is
then computed as ƒ(𝔼[x]). However, Jensen’s in -
equality theorem states that for a non-linear function
ƒ(x), ƒ(𝔼[x]) ≠ 𝔼[ƒ(x)] (Jensen 1906).

An illustration of this inequality is provided by
Hellweger & Kianirad (2007) in which they consider 2
sub-populations A and B with N:C ratio (nitrate cell
quota) QA = Q0 (see Table 1 for parameter specifica-
tions) and QB = 3Q0, respectively. Let the growth rate
be calculated using a Droop-type equation (Droop
1974) of the form μ = μmax(1 − Q0/Q). In the Eulerian
approach, the mean population-averaged cell quota
is a state variable and would correspond to the aver-
age of the 2 sub-populations, which is Qave = 2Q0.
The corresponding growth rate is μ = 0.5 μmax. On the
other hand, in the Lagrangian approach, the growth
rate is first calculated for each sub-population μA = 0,
μB = 0.67 μmax and the population-averaged growth
rate is diagnosed, resulting in a lower value of μ =
0.33 μmax.

The heart of the problem is thus a mathematical
one which arises from dealing with a non-linear bio-
logical process and on the physiological variability
within a population: the larger the variability among
individuals (larger spread of biological parameter
values around the mean), and the stronger the non-
linearity, the larger the difference between the Euler-
ian and Lagrangian solutions may become. Assum-
ing that intra-population heterogeneity comes from
the turbulent motion of the water that randomizes
cells’ trajectories and imposes different life histories
to individual cells, we ask here in what way turbulent
mixing affects how Lagrangian and Eulerian results
differ. In other words, what kind of errors are we
making when we model homogeneous instead of
heterogeneous populations?

BIOLOGICAL MODEL DESCRIPTION

For the purpose of the study, the biological model is
reduced to its simplest form, growth being only formu-
lated as a function of light and nutrient uptake using a
Droop-type model (Droop 1974). Although this model
does not account for photo-acclimation and photo-inhi-
bition, e.g. as in Ross & Geider (2009), it contains the
proper amount of complexity needed to capture the un-
derlying mechanisms responsible for intra-population
variability with regards to nutrient uptake dynamics in
the presence of vertical nutrient gradients generated
by turbulence. This section presents the state equations
used in the Eulerian and Lagrangian simulations.
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Symbol            Description                                                                     Value                    Unit                                     Source

Vmax                 Maximum uptake rate                                                       1                        molN molC−1 d−1                     2
kn                     Half saturation constant                                                 0:214                     mmolN m−3                              1
ke                      Excretion rate                                                                   0.1                       d−1                                            –
δ                       Respiration rate                                                                0.1                       d−1                                            3
α*                     Photosynthetic growth rate constant                              2.0                       d−1                                            2
αmax                  Maximum photosynthetic growth rate                           1.6                       d−1                                            2
Qmin                  Subsistence cell quota                                                     0.05                      molN molC−1                           1
Qmax                 Maximum storage quota                                                 0.25                      molN molC−1                           1
Δz                     Resolution of the grid                                                       0.5                       m                                              –
Δt                      Time step                                                                           6.0                       s                                                –
ωP                     Phytoplankton settling velocity                                       0:2                       m d−1                                        –
H                      Depth of the water column                                              40                       m                                              –
Is                       Saturation onset constant                                                 50                       μE m−2 s−1                                4
kd                     Light attenuation constant                                               0.3                       m−1                                           –
N0                     Initial external nutrient concentration                            5:0                       mmolN m−3                              –
P0                      Initial particle biomass                                                 4 × 10–6                   molC                                        –
Q0                     Initial cell quota                                                               0.15                      molN molC−1                           –

Table 1. Model parameters. All parameters were chosen to be typical values and were not meant to represent a specific phyto-
plankton species. Conditions were set to represent a coastal area during summer. Sources: 1: Broekhuizen (1999), 2: Dortch & 

Maske (1982), 3: Sharples (1999), 4: Brand & Guillard (1981), –: this study
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Eulerian formulation

In the Eulerian model, P and N are the 2 population
state variables, respectively the phytoplankton con-
centration (molC m−3) and the intracellular nutrient
content (molC m−3), and Next is the environmental
nutrient concentration (molN m−3). Their evolution is
described by the following set of ordinary differential
equations:

(1)

(2)

(3)

In Eq. (1), μ is the specific growth rate (d−1) defined as
μ = α − δ, where δ is the constant respiration rate and
α is the specific photosynthetic growth rate formu-
lated as a Droop-type formulation based on a cell
quota Q = N/P (Droop 1974) with a single nutrient
limitation, which is given by:

(4)

where α* is a constant parameter (d−1) that controls
the maximum specific photosynthesis rate, which
depends on the subsistence cell quota Qmin and
the maximum storage quota Qmax. If internal
nutrients and light are not limiting (Q = Qmax and
F = 1), the growth rate reaches a maximum value

. This means that for Qmin = 0.05 and

Qmax = 0.25 molN molC−1, the maximum specific 
photo synthetic growth rate is αmax = 0.8α*. The light
limitation function F is a saturating response curve
given by:

(5)

with Is the saturation onset constant (μE m−2 s−1). Fol-
lowing Ross & Sharples (2007), the specific uptake
rate V of environmental nitrate by the cell is ex -
pressed using a saturating Monod function, mimick-
ing Michaelis-Menten kinetics, given by:

(6)

where Vmax is the maximum specific uptake rate
(molN molC−1 d−1) and kn is the nutrient half-satura-
tion constant (molN m−3). Finally, E = keQ is the ex -
cretion rate (molN molC−1 d−1), which is a function of
the intracellular nutrient content, with ke the excre-
tion constant (d−1). In the Eulerian model, the trans-

port is computed using the advection-diffusion equa-
tion:

(7)

where C is substituted by P, N and Next, K is the tur-
bulent diffusivity (m2 s−1), and w is the sinking veloc-
ity (m s−1). Note that w = 0 for Next and w = wp (see
Table 1 for parameter specifications) for P and N.

Lagrangian formulation

In the Lagrangian formulation, we solve for each
particle i with biomass Pi and internal nitrate content
Ni. The population state variables P̃ and Ñ as well as
the environmental nutrient concentration Ñext are
diagnosed through integration over all particles
within 1 grid cell of size Δz = 0.5 m. The evolution of
a particle biomass is given by:

(8)

where μi = αi − δ and αi is obtained from Eq. (1) using
the value of the individual quota Qi = Ni/Pi instead of
the population average quota Q = N/P. The index i is
used for particles within 1 grid cell where environ-
mental variables are homogeneous. Similarly, the evo -
lution of the individual nitrate content Ni is given by:

(9)

where Vi and Ei are obtained using Qi.
In the Lagrangian model, particles living in a tur-

bulent fluid are transported using a random walk
algorithm (Hunter et al. 1993, Visser 1997, Ross &
Sharples 2004) where the position of each particle
zn+1 is related to its previous position zn according to:

(10)

where zn+1 and zn denote the vertical position of a
particle respectively at time n + 1 and n, and K’(zn) =
∂K/∂z evaluated at the vertical position zn. Each par-
ticle moves randomly upward or downward at each
time step Δt depending on R, which is a random pro-
cess of 0 mean and variance r. The amplitude of the
displacement depends on the value of the diffusivity
K. Boundary conditions are set to satisfy:

(11)

where H is the water column depth. The environ-
mental nutrient concentration in the Lagrangian
model changes according to:
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(12)

and is transported using the Eulerian advection-dif-
fusion Eq. (7). In order to compare Lagrangian and
Eulerian results, the population state variables and
their corresponding evolution equations are calcula -
ted by summing over all particles. For phytoplankton
and internal nutrient cell quotas, the mass balance
equations are:

(13)

(14)

NUMERICAL EXPERIMENTS

The characterization of the error between Eulerian
and Lagrangian results follows a step-by-step ap -
proach where we define different mixing scenarios
with increasing levels of realism. The first set of
experiments uses uniform and homogeneous turbu-
lent diffusivity profiles over a 40 m deep water
 column. In a second set of experiments, we use the
K-profile parameterization turbulence model (Large
& McWilliams 1994) and the General Ocean Turbu-
lence Model (GOTM, Umlauf & Burchard 2005) to
compute time-dependent diffusivity profiles pro-

duced by (1) constant and (2) varying surface wind
stress, and (3) tidal mixing (Fig. 1). Details about the
experiments are given in Table 2. In all experiments,
we considered surface irradiance varying according
to a semi-sinusoidal signal reproducing a 16 h day
length, corresponding to the day length at mid-
 latitude during summer and peaking at noon at
1200 μE m−2 s−1. Irradiance then decreases exponen-
tially with depth according to the Beer-Lambert law:

(15)

where I0 is the surface irradiance and kd is the light
attenuation constant (m−1).
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Fig. 1. Time evolution of
the diffusivity profile used
in experiments (a) K5 (con-
stant wind), (b) K6 (vari-
able wind) and (c) K7

(barotropic M2 tide with a
mean current speed of
0.5 m s−1). Note the differ-
ent time scale in panel (c).
See Table 2 for descrip-
tions of the numerical ex-

periments

Experiment     Turbulent regime

K1                     Uniform K = 1 × 10−6 m2 s−1

K2                     Uniform K = 1 × 10−4 m2 s−1

K3                     Uniform K = 1 × 10−3 m2 s−1

K4                     Uniform K = 1 × 10−2 m2 s−1

K5                     Diffusivity profile produced by a constant
                        wind of 8 m s−1

K6                     Diffusivity profile produced by variable 
                        wind
K7                     Diffusivity profile produced by a baro-
                        tropic M2 tidal forcing mixing

Table 2. Description of numerical experiments
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Numerical aspects and stability

A major caveat of the Lagrangian formulation lies
in the fact that only a limited number of particles can
practically be tracked at a reasonable computing
cost. On the other hand, an insufficient number of
particles produces artificially noisy solutions, which
would affect the accuracy of the results. The value of
the time step Δt and the grid resolution Δz must also
be chosen so that solutions are numerically stable.
For Eulerian calculations, the first stability criterion is
given by the diffusive Courant-Friedrich-Levy condi-
tion given by:

(16)

In the Lagrangian formulation, solving for the ran-
dom walk requires that the diffusivity profile is both
continuous and differentiable, which leads to the fol-
lowing second criterion (Ross & Sharples 2004):

(17)

where K ’’ = ∂2K/∂z2. For all simulations a time step
Δt = 6 s and a resolution Δz = 0.5 m were sufficient to
meet the first criterion. In simulations with variable
mixing, diffusivity profiles have been computed with
a grid resolution of 1 m with GOTM and re-interpo-
lated on the model grid, assuring that diffu-
sivity profiles are sufficiently smooth to meet
the second criterion. We set the number of
particles to N = 20 000, which corresponds to
an average number of 250 particles per grid
cell. Since the standard deviation of the
numerical noise is proportional to N −1/2

(Hunter et al. 1993, Graham & Moyeed
2002), this number is sufficient to produce
accurate results.

Testing model equivalence

According to Hellweger & Kianirad (2007),
the main difference between Eulerian and
Lagrangian simulation results comes from
the non-linearity of the problem. Therefore,
if the particle growth is line arized, both mod-
els should produce the same results. Hell-
weger & Kianirad (2007) thus compared both
models using linearized Monod equations
and showed that in this case, Eulerian and
Lagrangian formulations provided the same
results. While that procedure was sufficient
to verify their model implementation and
avoid numerical bugs, it was not adequate to

truly illustrate the consequences of Jensen’s inequal-
ity. For example, Fig. 2a,b shows the results of Euler-
ian and Lagrangian models using the complete non-
linear Monod equation. It appears that the 2
formulations give identical results (in the limit of
large numbers of particles), showing that non-linear-
ity is not solely responsible for differences between
Eulerian and Lagrangian formulations. Non-linearity
must affect cells differently, which is not the case in
the Monod formulation where growth is a function of
external nutrient intake. Thus, all individuals of a
population at a given time and location have the
same physiological response. However, in the Droop
model, growth and nutrient uptake are decoupled
and depend on internal nutrient content. The physio-
logical state of an individual at a given time and
 location thus depends on its life history, i.e. its past
physio logical state (nutrient quota). Even though
Droop and Monod have the same amount of non-
linearity, their behaviours are fundamentally differ-
ent. If we then linearize Droop’s model such that:

(18)

we find that the 2 formulations also give the exact
same results (Fig. 2c,d). Apart from verifying the
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Fig. 2. (a) Total biomass and (b) average growth rate profile at t = 15 d
obtained with the linearized Monod equation with the Eulerian and
Lagrangian formulations. (c) Total biomass and (d) average growth
rate profile at t = 15 d obtained with the linearized Droop equation
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numerical implementation, this result highlights that
differences between Eulerian and Lagrangian for-
mulations essentially come from 2 fundamental nec-
essary conditions: (1) particle growth must depend
on life history (e.g. internal nutrient concentration)
and not only on local conditions (e.g. external nutri-
ent concentration); (2) particle growth must be a non-
linear function of its physiological state, which leads
to different behaviour at the population level due to
Jensen’s inequality.

RESULTS

Cell quota

Snapshots of mean cell quotas after 10 d are pre-
sented in Fig. 3 for scenarios K1−K4 (Table 2). Due to
the consumption of nutrients in the photic zone
through photosynthesis, a vertical gradient in the
average internal cell quota profile appears (Fig. 3).
Note that the Lagrangian profile is noisy as a result of
the stochasticity introduced by the random walk.
Phytoplankton cells near the surface first consume all
external nutrients and then use their internal content
until they reach the subsistence quota Qmin. At depth,
phytoplankton cells incorporate external nutrients
until they reach the maximum storage quota Qmax

without using it for photosynthesis because of the
absence of light. This represents a difference in
terms of physiological state among the cells in the
water column. Because cells at the surface have con-
sumed nutrients for growth (Fig. 4), particles in the
upper ocean layer contain a larger amount of cellular
carbon but a lower N:C ratio than particles at depth.
As turbulent diffusivity increases, this gradient tends

to disappear. As mixing increases, a larger fraction of
cells coming from the deeper part of the water col-
umn where the nutrients are in replete condition are
mixed up with those near the surface, contributing to
increase the mean cell quota in the upper part of the
water column. The same process takes place at depth
where cells coming from the upper part are mixed
with those from the bottom, leading to a decrease of
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Fig. 4. Evolution of external nutrient concentrations for
scenarios K1 to K4 (defined in Table 2)
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the mean cell quota in the lower part of the water col-
umn. The Eulerian simulations follow the same pro-
file as their Lagrangian counterparts, and no evident
difference is noted.

Growth rate

In weak mixing regimes (scenarios K1 and K2), a
nutrient-depleted condition appears rapidly in the
upper layer of the water column, contributing to limit
growth rates near the surface at the end of the 10 d
simulation (Fig. 5). In the lower part of the water
 column, light is limiting, preventing phytoplankton
growth. The resulting growth rate from nutrient lim-
itation near the surface and light limitation at depth
exhibits a maximum at the base of the nutricline. In
strong mixing conditions (scenarios K3 and K4), nutri-
ents are brought to the surface where light is optimal,
sustaining large growth rate values throughout the
simulation. The Eulerian formulation sometimes over-
estimates and sometimes under-estimates growth
rates compared to the Lagrangian, depending on the
curvature of the non-linear growth function, which
itself depends on light and internal cell quota pro-
files.

Fig. 6 shows the distribution of cell quotas and
growth rates of all cells at 5 m below the surface after
10 d. In weak mixing conditions (scenario K1), the
distribution is narrow and both formulations agree in
terms of mean values. The same applies to very
strong mixing conditions (scenario K4) where cells
are all rapidly moved across varying conditions so
that they all experience a similar mean value with lit-
tle variance. In intermediate mixing conditions, the
distributions of internal cell quotas are widespread

and non-normal, such that when a non-linear growth
function is applied, the result is also non-linear.

To better understand the relation between intra-
population variability and the difference between
the 2 simulations, snapshots of the distribution of cell
quotas and growth rate of all cells at 5 m for scenario
K3 are shown in Fig. 7 at different times of the simu-
lation. At the beginning of the simulation, i.e. before
the bloom, nutrients are in replete conditions and all
cells have cell quotas close to Qmax = 0.25 (molN
molC−1). The resulting average growth rate shows no
differences between Eulerian and Lagrangian simu-
lations. When external nutrients start to become lim-
iting, mean cell quotas decrease but strong mixing
increases the contribution of cells coming from depth
with high cell nutrient quotas. Cell quotas are thus
widely distributed. Because of the Jensen’s inequal-
ity, mean growth rates computed by the 2 formula-
tions differ. At the end of the simulation, the water
column tends to be homogenized and cell quotas are
close to Qmin.

Total biomass

The total biomass for scenarios K1 to K4 is shown in
Fig. 8. Strong mixing allows surface waters to be par-
tially replenished with nutrients, leading to an in -
crease in total biomass in both Eulerian and Lagran -
gian simulations. Maximum differences between
Eulerian and Lagrangian appear at intermediate tur-
bulence values. Although differences in internal cell
quotas or in growth rates are not that large, they can
contribute to produce large differences in total bio-
mass over the duration of a phytoplankton bloom
period or a coastal upwelling event, for example. In
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Fig. 6. Intra-population nutri-
ent cell quota (left column)
and growth rate (right col-
umn) distribution of the La-
grangian model (blue shaded
area) at t = 10 d and z = −5 m
for scenarios K1 to K4 (defined
in Table 2). Both Eulerian and
Lagrangian mean values are 

shown

Fig. 7. Intra-population
nutrient cell quota (left
column) and growth
rate (right column) dis-
tribution of the Lagran -
gian model (blue sha -
ded area) at t = 5, 8, 12,
30 and 40 d and z = −5 m
for experiment K3 (de-
fined in Table 2). Both
Eulerian and Lagran -
gian mean values are 

shown
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order to estimate the differences between the 2 for-
mulations in terms of total biomass, we calculated the
normalized root mean square error (nRMSE) be -
tween Eulerian and Lagrangian formulations for all
simulations as a function of time, as:

(19)

where B(t ) and B̃(t ) are the total biomass as a func-
tion of time in the Eulerian and Lagrangian simula-
tions, respectively. Results for all 7 experiments are
shown in Fig. 9. Under realistic mixing conditions
such as variable tidal mixing, differences between
Eulerian and Lagrangian formulations can reach as
much as 10% of the total biomass.

Model sensitivity

In this section, we extend the previ-
ous results by investigating the model
behaviour in its parameter space. We
proceed by analysing the temporal
evolution of the error (in terms of bio-
mass), defined here as the difference
between the Eulerian and the La -
grangian solutions, for various biolog-
ical and physical parameter values.
The values of phytoplankton growth
parameters (i.e. the maximum storage
quota Qmax, the maximum uptake rate
Vmax and the maximum photosynthe-
sis rate αmax) can vary significantly
among species and environmental
conditions (e.g. in polar versus tem-
perate environments). We thus inves-
tigate how different values of these

parameters affect the results shown in previous sec-
tions. For each parameter, we conducted a set of 20
simulations: 5 parameter values for each of the 4 con-
stant diffusivity scenarios K1 to K4, keeping other
parameter sets equal to their original values specified
in Table 1.

Model sensitivity results in terms of nRMSE (here-
after ‘error’) growth with time are presented in
Figs. 10 & 11. In all cases, the error grows from 0 at
the start of the simulation and increases either up to
a maximum before slightly decreasing, or up to a sat-
urating value. In some cases, the error grows and
returns to 0 before going up again. In all cases, the
maximum error is the largest for scenario K3 (inter-
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mediate-strong mixing, 10−20%), and the smallest
for scenario K1 (very weak mixing, <2%).

The error is highly dependent on Qmax in the sense
that for each mixing scenario and particularly for
intermediate diffusivity levels (Fig. 10b,c), the error
increases with Qmax. This result is consistent with the

fact that a higher Qmax allows for higher intra-popu-
lation variability — the higher the value of Qmax the
larger the range of internal nutrient content that a
single cell can carry — and thus increases the po -
tential for discrepancies caused by Jensen’s inequal-
ity. On the other hand, changing the maximum nutri-
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Fig. 10. Normalized root mean square error (nRMSE) of the total biomass as defined by Eq. (16) for scenarios K1 to K4 (defined
in Table 2) obtained with: (a−d) maximum storage quota values Qmax of 0.15, 0.2, 0.25, 0.3 and 0.5 molN molC−1; (e−h) maxi-
mum growth rate values μmax = 0.5, 1.0, 1.5, 2.0 and 2.5 d−1; (i−l) maximum nutrient uptake rate values Vmax = 0.1, 0.2, 0.4 and 

0.8 molN molC−1 d−1
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ent uptake rate Vmax has less impact on the error
(Fig. 10i−l).

In order to investigate the effect of the maximum
growth rate, we chose values ranging from 0.5 to
2.5 d−1 (Fig. 10e−h). This parameter is the most likely
to differ between species and environmental condi-
tions in nature. Its effect on the error is significant
both in terms of amplitude and the time evolution at
which the 2 formulations start to diverge. This be -
haviour highlights that the development of intra-
population variability depends on the relationship
between growth and mixing and time scales. To illus-
trate this, let τK = Δz2/K be the time taken by a cell to
travel through a distance Δz due to a diffusivity K and
let τg = 1/α be the time taken for cells to significantly
grow. In the limit where τK << τg, cells are randomly
transported across the water column more rapidly
that they can divide. All cells are thus exposed to

practically the same rapidly changing environmental
conditions, and thus grow at similar rates, and intra-
population variability is low and both formulations
provide similar results. In contrast, if τK >> τg, cells
 living at a particular depth in the water column are
exposed to very similar environmental conditions
and divide more rapidly than they are brought apart
by turbulent motion. Consequently, the intra-popula-
tion variability is also minimized and both formula-
tions provide similar results. When τK ~ τg, cells grow
over at the same rate as they are brought apart from
each other, thus experiencing different life histories.
In these conditions, the error is more likely to be
important (see for instance Fig. 10, for K2, K3 and K4).

Since the discrepancy between the 2 formulations
is directly constrained by the presence of environ-
mental gradients, we also investigated how the depth
of the water column and the initial nutrient concen-
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Fig. 11. Normalized root mean square error (nRMSE) of the total biomass as defined by Eq. (16) for scenarios K1 to K4 (defined
in Table 2) obtained with: (a−d) initial nutrient concentrations values N0 = 0.1, 0.5, 1.0, 5.0 and 10.0 mmolN m−3; (e−h) depth 

values H = 10, 20, 40, 100 and 200 m
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tration affect the results. For this analysis, we chose 5
depth values ranging from very shallow waters
(10 m) to deeper waters (200 m), representative of
coastal ecosystems. Results are presented in Fig. 11.
For 10 m deep water columns, the error between
Eulerian and Lagrangian simulations is very close to
0 for all turbulent regimes. In this case, the water col-
umn is shallower than the photic zone (ca. ~11 m),
leading to a similar consumption rate of nutrients
between the surface and the sea bed. For 20 m depth
and scenario K3 (Fig. 11g), the error increases during
the first few days of the simulations and decreases
rapidly after the water column has been completely
homogenized due to mixing. For deeper waters, the
error behaves in a similar fashion.

For assessing the error sensitivity to initial nutrient
concentrations N0, we chose 5 values ranging from
oligotrophic conditions (0.1 to 1.0 mmolN m−3) to
eutrophic conditions (5 and 10 mmolN m−3). The half-
saturation constant for nutrient uptake is kn = 0.214
mmolN m−3. As expected, varying the initial nutrient
concentration mainly affects the timing at which the
results from the 2 formulations start to diverge, which
corresponds to the time needed to produce vertical
gradients of nutrient uptake and cell growth. In oli-
gotrophic conditions, gradients appear rapidly and
lead to an early increase of the error. However, in
eutrophic conditions, the error starts to increase only
after 15 or 20 d (scenario K4).

DISCUSSION AND CONCLUSION

In this paper, we addressed the question of the role
of turbulent mixing in producing and altering intra-
population variability in terms of nutrient cell quota
and how it impacts the discrepancies between La -
grangian and Eulerian formulations in a 1-dimen-
sional water column model.

First, our experiments showed that the Eulerian
model systematically overestimated (if not equalled)
the phytoplankton biomass compared to the Lagran -
gian approach, which is a consequence of Jensen’s
inequality. This result is not new, and numerous
modelling studies applied to wastewater treatment
plants have reported it (e.g. Gujer 2002, Schuler
2005). For instance, Bucci et al. (2012) studied vari-
ability in terms of phosphate cell quota in enhanced
biological phosphorus removal and showed that the
Eulerian model can produce approximately the same
results as the Lagrangian version only if the value of
the growth rate is reduced by 55%. In a similar ex -
periment, Fredrick et al. (2013) showed that the

Eulerian formulation overestimates biomass by
>40%. It is noticeable that in these studies, differ-
ences among individuals emerged from phenotypical
variability introduced explicitly in the Lagrangian
model by randomizing cell parameters during cell
division.

Other studies have provided a comparison be -
tween Lagrangian and Eulerian approaches in natu-
ral environments, exploring the variability in terms of
nutrient cell quota induced by different life histories.
Broekhuizen et al. (2003) used a 3-dimensional La -
grangian model ensemble applied to a shelf sea area
in New Zealand. The model included multi-nutrient
consumption, photosynthesis with a Droop-type for-
mulation, many different phytoplankton species and
swimming strategies. They showed that variability in
terms of individual nitrate cell quota of diatoms was
particularly strong in areas with strong nitrate gradi-
ents and produced differences of up to 30% of the
biomass between the 2 formulations. While the mag-
nitude of the difference is similar to our results, they
showed that the Eulerian formulation does not sys-
tematically overestimate the biomass, but instead
often produced lower results. As they mentioned, this
result emerges from the sigmoid form they used for
the Droop-type equation of photosynthesis since for
small cell quotas, the function has a concave form.
According to Jensen’s inequality, the Eulerian formu-
lation will overestimate (underestimate) its Lagran -
gian counterpart if the non-linear function is convex
(concave).

Second, we showed that in marine environments,
the mixing regime strongly controls the variability
among individuals and therefore the discrepancy
between the results of the Lagrangian and the Euler-
ian approaches. The first set of idealized experiments
using uniform and constant diffusivity profiles rang-
ing from 10−6 to 10−2 m2 s−1 highlighted that the max-
imum variability among individuals corresponds to
cases when turbulent mixing is strong enough to
transport cells through the water column, but suffi-
ciently low to maintain a certain stratification in the
external nutrient content. It is important to note that,
in our experiments, nutrient stratification was only
caused by phytoplankton consumption in the surface
layer. However, nutricline layers are observed in
moderate to strong vertical mixing conditions, e.g. in
estuarine or frontal systems. In the context of phyto-
plankton growth, it is therefore important to make
the distinction between ‘mixing’ layer and ‘mixed’
layer (Taylor & Ferrari 2011), the first referring to a
layer where turbulent mixing is strong and the latter
referring to a layer that is homogenized but in which
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active mixing is not necessarily happening. In the
first case, intra-population variability can be large if
stratification persists as cells are transported rapidly
through different environments. In the latter, all cells
experience the same environmental conditions and
intra-population variability is minimized.

The sensitivity analysis revealed that the magni-
tude of the error is very sensitive to the maximum
nitrate storage quota Qmax, which plays a key role in
controlling the range of internal nitrate that an indi-
vidual cell can carry and therefore modulates the
variability between individuals. This result is consis-
tent with Fredrick et al. (2013), who explored the rel-
ative contribution of several biological parameters to
intra-population variability in terms of the internal
phosphorus content of the planktonic diatom Thalas-
siosira pseudonana. They found that the variability of
Qmax was the main factor influencing intra-popula-
tion heterogeneity, in agreement with our results.

The maximum growth rate value also influences
Eulerian versus Lagrangian discrepancies mostly
because of its relation with the mixing time scale.
The largest errors occur when the mixing rate and
the growth rate are of the same order of magnitude.
We have also shown that Eulerian and Lagrangian
formulations give significantly different results under
realistic conditions such as wind-induced and tidal
mixing. An interesting observable feature in wind-
induced mixing experiments is the non-monotonic
behaviour of the error: during strong wind events,
cells can be rapidly transported in the water column
on short time scales, enhancing intra-population het-
erogeneity. After these events, the error between
Lagrangian and Eulerian formulations is thus tempo-
rally higher, although it can decrease when stratifica-
tion is restored.

The only source of intra-population heterogeneity
we considered in our study is the internal nutrient
cell quota carried by each individual. However, in
real environments, numerous other complex physio-
logical mechanisms are responsible for introducing
variability between individuals, and each of these
processes and their impact on the population behav-
iour are not always the same.

One example is photo-acclimation. As cells are
transported through the water column, they experi-
ence many different light conditions and are able to
acclimate by adjusting their physiological response
to ambient light (i.e. changing their chlorophyll to
carbon ratio) (Falkowski & LaRoche 1991, Geider et
al. 1997, MacIntyre et al. 2002). If mixing is weak, the
time scale of vertical transport is less than the photo-
response time scale and cells can thus acclimate. As

a result, the population at a given depth is composed
of many individuals with different photosynthetic
capacities inherited from their life histories. How-
ever, if mixing is strong, phytoplankton cells do not
have enough time to adjust their response to a
changing environment, keeping intra-population
heterogeneity to a minimum. There is also, in this
case, a clear connection between mixing and hetero-
geneity. However, in contrast to our study, light is not
physically mixable as nutrients are; light only affects
growth time scales and this might affect the contrast
between Eulerian and Lagrangian simulations. For
instance, Lande & Lewis (1989) found no significant
differences in photosynthetic rates between the 2
approaches (<1%) for diffusivity of 0.01 m2 s−1.
McGillicuddy (1995) showed that the 2 formulations
produced more differences when the photo-acclima-
tion model of Wolf & Woods (1988) was applied for
the same mixing regimes. This discrepancy with the
findings of Lande & Lewis (1989) was attributed to
the different photoresponse time scales used in the 2
studies.

New generations of models take into account sev-
eral sources of heterogeneity and simulate Droop’s
kinetics, photo-acclimation (Ross & Geider 2009),
multi-nutrient limitations and several other factors.
Adding more processes has a potential to further in -
crease the error in Eulerian models and lead to mis-
interpretations of model results. It is thus fundamen-
tal for modellers to inquire about these questions,
i.e. the processes to be studied as well as the phy -
sical environment one wants to simulate, before
choosing a numerical formulation, Eulerian or
Lagrangian.
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