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Fig. 10. Normalized root mean square error (nRMSE) of the total biomass as defined by Eq. (16) for scenarios K to K, (defined

in Table 2) obtained with: (a—d) maximum storage quota values Q. of 0.15, 0.2, 0.25, 0.3 and 0.5 molN molC~}; (e~h) maxi-

mum growth rate values . = 0.5, 1.0, 1.5, 2.0 and 2.5 d™'; (i-1) maximum nutrient uptake rate values V., = 0.1, 0.2, 0.4 and
0.8 moIN molC~"d~!

mediate-strong mixing, 10-20%), and the smallest fact that a higher Q,,.x allows for higher intra-popu-
for scenario K (very weak mixing, <2 %). lation variability —the higher the value of Q. the

The error is highly dependent on Q. in the sense larger the range of internal nutrient content that a
that for each mixing scenario and particularly for single cell can carry—and thus increases the po-
intermediate diffusivity levels (Fig. 10b,c), the error tential for discrepancies caused by Jensen's inequal-

increases with Q.. This result is consistent with the ity. On the other hand, changing the maximum nutri-
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Fig. 11. Normalized root mean square error (nRMSE) of the total biomass as defined by Eq. (16) for scenarios K to K, (defined
in Table 2) obtained with: (a—d) initial nutrient concentrations values N, = 0.1, 0.5, 1.0, 5.0 and 10.0 mmoIN m™3; (e-h) depth
values H =10, 20, 40, 100 and 200 m

ent uptake rate V., has less impact on the error
(Fig. 10i-1).

In order to investigate the effect of the maximum
growth rate, we chose values ranging from 0.5 to
2.5 d7! (Fig. 10e-h). This parameter is the most likely
to differ between species and environmental condi-
tions in nature. Its effect on the error is significant
both in terms of amplitude and the time evolution at
which the 2 formulations start to diverge. This be-
haviour highlights that the development of intra-
population variability depends on the relationship
between growth and mixing and time scales. To illus-
trate this, let 1, = Az% K be the time taken by a cell to
travel through a distance Az due to a diffusivity K and
let 1, = 1/ be the time taken for cells to significantly
grow. In the limit where ¢ << 14, cells are randomly
transported across the water column more rapidly
that they can divide. All cells are thus exposed to

practically the same rapidly changing environmental
conditions, and thus grow at similar rates, and intra-
population variability is low and both formulations
provide similar results. In contrast, if tx > 14, cells
living at a particular depth in the water column are
exposed to very similar environmental conditions
and divide more rapidly than they are brought apart
by turbulent motion. Consequently, the intra-popula-
tion variability is also minimized and both formula-
tions provide similar results. When tx ~ 14, cells grow
over at the same rate as they are brought apart from
each other, thus experiencing different life histories.
In these conditions, the error is more likely to be
important (see for instance Fig. 10, for K;, K3 and Kj).

Since the discrepancy between the 2 formulations
is directly constrained by the presence of environ-
mental gradients, we also investigated how the depth
of the water column and the initial nutrient concen-
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tration affect the results. For this analysis, we chose 5
depth values ranging from very shallow waters
(10 m) to deeper waters (200 m), representative of
coastal ecosystems. Results are presented in Fig. 11.
For 10 m deep water columns, the error between
Eulerian and Lagrangian simulations is very close to
0 for all turbulent regimes. In this case, the water col-
umn is shallower than the photic zone (ca. ~11 m),
leading to a similar consumption rate of nutrients
between the surface and the sea bed. For 20 m depth
and scenario Kj (Fig. 11g), the error increases during
the first few days of the simulations and decreases
rapidly after the water column has been completely
homogenized due to mixing. For deeper waters, the
error behaves in a similar fashion.

For assessing the error sensitivity to initial nutrient
concentrations N, we chose 5 values ranging from
oligotrophic conditions (0.1 to 1.0 mmolN m™) to
eutrophic conditions (5 and 10 mmolN m™). The half-
saturation constant for nutrient uptake is k, = 0.214
mmolN m3, As expected, varying the initial nutrient
concentration mainly affects the timing at which the
results from the 2 formulations start to diverge, which
corresponds to the time needed to produce vertical
gradients of nutrient uptake and cell growth. In oli-
gotrophic conditions, gradients appear rapidly and
lead to an early increase of the error. However, in
eutrophic conditions, the error starts to increase only
after 15 or 20 d (scenario Kj).

DISCUSSION AND CONCLUSION

In this paper, we addressed the question of the role
of turbulent mixing in producing and altering intra-
population variability in terms of nutrient cell quota
and how it impacts the discrepancies between La-
grangian and Eulerian formulations in a 1-dimen-
sional water column model.

First, our experiments showed that the Eulerian
model systematically overestimated (if not equalled)
the phytoplankton biomass compared to the Lagran-
gian approach, which is a consequence of Jensen's
inequality. This result is not new, and numerous
modelling studies applied to wastewater treatment
plants have reported it (e.g. Gujer 2002, Schuler
2005). For instance, Bucci et al. (2012) studied vari-
ability in terms of phosphate cell quota in enhanced
biological phosphorus removal and showed that the
Eulerian model can produce approximately the same
results as the Lagrangian version only if the value of
the growth rate is reduced by 55%. In a similar ex-
periment, Fredrick et al. (2013) showed that the

Eulerian formulation overestimates biomass by
>40%. It is noticeable that in these studies, differ-
ences among individuals emerged from phenotypical
variability introduced explicitly in the Lagrangian
model by randomizing cell parameters during cell
division.

Other studies have provided a comparison be-
tween Lagrangian and Eulerian approaches in natu-
ral environments, exploring the variability in terms of
nutrient cell quota induced by different life histories.
Broekhuizen et al. (2003) used a 3-dimensional La-
grangian model ensemble applied to a shelf sea area
in New Zealand. The model included multi-nutrient
consumption, photosynthesis with a Droop-type for-
mulation, many different phytoplankton species and
swimming strategies. They showed that variability in
terms of individual nitrate cell quota of diatoms was
particularly strong in areas with strong nitrate gradi-
ents and produced differences of up to 30% of the
biomass between the 2 formulations. While the mag-
nitude of the difference is similar to our results, they
showed that the Eulerian formulation does not sys-
tematically overestimate the biomass, but instead
often produced lower results. As they mentioned, this
result emerges from the sigmoid form they used for
the Droop-type equation of photosynthesis since for
small cell quotas, the function has a concave form.
According to Jensen's inequality, the Eulerian formu-
lation will overestimate (underestimate) its Lagran-
gian counterpart if the non-linear function is convex
(concave).

Second, we showed that in marine environments,
the mixing regime strongly controls the variability
among individuals and therefore the discrepancy
between the results of the Lagrangian and the Euler-
ian approaches. The first set of idealized experiments
using uniform and constant diffusivity profiles rang-
ing from 107 to 1072 m? s~ highlighted that the max-
imum variability among individuals corresponds to
cases when turbulent mixing is strong enough to
transport cells through the water column, but suffi-
ciently low to maintain a certain stratification in the
external nutrient content. It is important to note that,
in our experiments, nutrient stratification was only
caused by phytoplankton consumption in the surface
layer. However, nutricline layers are observed in
moderate to strong vertical mixing conditions, e.g. in
estuarine or frontal systems. In the context of phyto-
plankton growth, it is therefore important to make
the distinction between 'mixing’ layer and 'mixed’
layer (Taylor & Ferrari 2011), the first referring to a
layer where turbulent mixing is strong and the latter
referring to a layer that is homogenized but in which
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active mixing is not necessarily happening. In the
first case, intra-population variability can be large if
stratification persists as cells are transported rapidly
through different environments. In the latter, all cells
experience the same environmental conditions and
intra-population variability is minimized.

The sensitivity analysis revealed that the magni-
tude of the error is very sensitive to the maximum
nitrate storage quota Q.x, Wwhich plays a key role in
controlling the range of internal nitrate that an indi-
vidual cell can carry and therefore modulates the
variability between individuals. This result is consis-
tent with Fredrick et al. (2013), who explored the rel-
ative contribution of several biological parameters to
intra-population variability in terms of the internal
phosphorus content of the planktonic diatom Thalas-
siosira pseudonana. They found that the variability of
Qunax Was the main factor influencing intra-popula-
tion heterogeneity, in agreement with our results.

The maximum growth rate value also influences
Eulerian versus Lagrangian discrepancies mostly
because of its relation with the mixing time scale.
The largest errors occur when the mixing rate and
the growth rate are of the same order of magnitude.
We have also shown that Eulerian and Lagrangian
formulations give significantly different results under
realistic conditions such as wind-induced and tidal
mixing. An interesting observable feature in wind-
induced mixing experiments is the non-monotonic
behaviour of the error: during strong wind events,
cells can be rapidly transported in the water column
on short time scales, enhancing intra-population het-
erogeneity. After these events, the error between
Lagrangian and Eulerian formulations is thus tempo-
rally higher, although it can decrease when stratifica-
tion is restored.

The only source of intra-population heterogeneity
we considered in our study is the internal nutrient
cell quota carried by each individual. However, in
real environments, numerous other complex physio-
logical mechanisms are responsible for introducing
variability between individuals, and each of these
processes and their impact on the population behav-
iour are not always the same.

One example is photo-acclimation. As cells are
transported through the water column, they experi-
ence many different light conditions and are able to
acclimate by adjusting their physiological response
to ambient light (i.e. changing their chlorophyll to
carbon ratio) (Falkowski & LaRoche 1991, Geider et
al. 1997, Maclntyre et al. 2002). If mixing is weak, the
time scale of vertical transport is less than the photo-
response time scale and cells can thus acclimate. As

a result, the population at a given depth is composed
of many individuals with different photosynthetic
capacities inherited from their life histories. How-
ever, if mixing is strong, phytoplankton cells do not
have enough time to adjust their response to a
changing environment, keeping intra-population
heterogeneity to a minimum. There is also, in this
case, a clear connection between mixing and hetero-
geneity. However, in contrast to our study, light is not
physically mixable as nutrients are; light only affects
growth time scales and this might affect the contrast
between Eulerian and Lagrangian simulations. For
instance, Lande & Lewis (1989) found no significant
differences in photosynthetic rates between the 2
approaches (<1%) for diffusivity of 0.01 m? s71
McGillicuddy (1995) showed that the 2 formulations
produced more differences when the photo-acclima-
tion model of Wolf & Woods (1988) was applied for
the same mixing regimes. This discrepancy with the
findings of Lande & Lewis (1989) was attributed to
the different photoresponse time scales used in the 2
studies.

New generations of models take into account sev-
eral sources of heterogeneity and simulate Droop's
kinetics, photo-acclimation (Ross & Geider 2009),
multi-nutrient limitations and several other factors.
Adding more processes has a potential to further in-
crease the error in Eulerian models and lead to mis-
interpretations of model results. It is thus fundamen-
tal for modellers to inquire about these questions,
i.e. the processes to be studied as well as the phy-
sical environment one wants to simulate, before
choosing a numerical formulation, Eulerian or
Lagrangian.
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