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INTRODUCTION

Studies on sea turtle biology have typically focused
on the reproduction and post-nesting movements of
females, as they are logistically more accessible. Only
more recently have multidisciplinary approaches
tackled the lives of cryptic life stages, such as males
and immatures, and their use of neritic foraging habi-
tats (Rees et al. 2016). Population assessments at the
foraging grounds provide local size-class distributions

and may contribute information essential for estab-
lishing population abundance trends (Seminoff et al.
2003, Bjorndal et al. 2005, 2010). Furthermore, knowl-
edge of resource use can help determine the impor-
tance of different marine habitats for the different tur-
tle life stages and improve our understanding of
migratory connectivity among breeding, foraging and
developmental habitats (e.g. Bradshaw et al. 2017).

The analysis of stable isotopes of both sea turtles
and their diets has been increasingly combined with
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in-water population assessments to study foraging
behavior and resource use due to their high versatil-
ity. Stable isotope ratios in the tissues of consumers
reflect those of their diet in a predictable manner
(Hobson 1999, 2007, Post 2002). The ratio of nitrogen
isotopes (δ15N) increases along each trophic transfer
and can be used to estimate the trophic position of
organisms (Minagawa & Wada 1984, Peterson & Fry
1987, Post 2002b), while the ratio of carbon isotopes
(δ13C) varies substantially among primary producers
with different photosynthetic pathways, and thus can
be used to determine the sources of dietary carbon
(DeNiro & Epstein 1978). In addition, as both carbon
and nitrogen stable isotope ratios at the base of food
webs vary spatially, this is reflected in the spatial
variability of isotopic composition among food webs
(Jennings et al. 1997, Finlay 2001, Bearhop et al.
2004, Graham et al. 2010). The quantification of sta-
ble isotopes is thus particularly useful for studying
ontogenic shifts in sea turtle foraging strategies
(Arthur et al. 2008, Shimada et al. 2014, Ramirez et
al. 2015, Vélez-Rubio et al. 2016, Toma szewicz et al.
2017), identifying the geographic location of foraging
habitats (Dodge et al. 2011, López-Castro et al. 2013,
2014, Ceriani et al. 2014), as well as clarifying sea
turtle trophic position and resource use (Lemons et
al. 2011, Goodman Hall et al. 2015, Pajuelo et al.
2016, Sampson et al. 2017).

In West Central Africa, 2 green turtle regional man-
agement units overlap (South Central and Eastern
Atlantic, Wallace et al. 2010) where turtles are ex-
posed to multiple threats, both on nesting and forag-
ing grounds (Formia et al. 2003, Carranza et al. 2006,
Fitzgerald et al. 2011, Riskas & Tiwari 2013). Foraging
grounds, mostly used by immature green sea turtles,
have been identified in the continental countries in
West Africa, specifically in Cameroon, Republic of
Congo and Gabon (Formia 2002, Formia et al. 2003,
2006, Hyacinthe et al. 2012, A. Girard pers. comm.),
but not on the islands of the Gulf of Guinea. These is-
lands, including Bioko and Annobon (Equatorial
Guinea) and São Tomé and Príncipe, are of volcanic
origin, dating from 15.7 million years ago (Deruelle et
al. 1991), and have high relief, resulting in very nar-
row littoral fringes (Juste & Fa 1994). We conducted
this study aiming to provide the first accounts of the
spatial and temporal aspects of local aggregations of
immature green sea turtles foraging on the Gulf of
Guinea islands using in-water surveys, and to assess
possible patterns of resource use using stable isotope
analysis. We sampled individuals at 2 distinct habitats
(seagrass vs. macroalgae) on São Tomé Is land and in-
vestigated how the use of these habitats by different

size classes could be reflected in their isotopic niches.
We sought validation of our results by (1) comparing
the isotopic signatures of the immature, presumably
local, individuals with those of breeding females, as
female signatures should represent distant foraging
grounds visited in the months preceding their migra-
tion (Stearns 1992), and (2) sampling a selection of
putative diet items to obtain clues about preferred di-
ets and resource use by potentially resident imma-
tures. This dataset offers an insight into green turtle
recruitment and settlement dynamics in the Gulf of
Guinea islands and will be the first dataset available
for comparison with demographic data from other lo-
cations in West Africa, where current knowledge on
green turtle foraging behavior is limited or non-
 existent.

MATERIALS AND METHODS

Study sites

São Tomé Island is one of the 2 islands comprising
the small, insular country of São Tomé and Príncipe
that is located in the Gulf of Guinea, West Africa,
approximately 250 km off the continental mainland.
The littoral fringe surrounding the island covers
approximately 450 km2 above the 200 m isobar
(Afonso et al. 1999).

Informal interviews were conducted with spear
fishermen, turtle hunters and fish sellers in the main
coastal communities of the island throughout 2014
and 2015, with the aim of identifying sea turtle
aggregation areas or historical hunting grounds, as
well as potential diet items that may be primarily
consumed by the turtles using those areas. An island-
wide survey of sites presumed to offer either suitable
foraging habitat (including the existence of exten-
sive, shallow macroalgae or seagrass banks) or avail-
ability of shelter and/or resting areas and with evi-
dence of the all-year-round presence of sea turtles
was conducted by boat over 2 d in September 2015.
The survey covered the entire coastline and was car-
ried out with the participation of local spear fisher-
men and turtle hunters. All sites that were visited and
visually inspected by snorkeling are depicted in
Fig. 1; we considered sites where we could not con-
firm the presence of turtles as ‘potential foraging or
aggregation sites’. Two areas where sea turtles were
observed feeding or resting were selected for this
study: Ilhéu das Cabras site (northern foraging
ground, FGN, 0° 21.802’ N, 6° 45.402’ E); and Porto
Alegre (southern foraging ground, FGS), with 2 sub-
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sites, Praia Cabana (FGSCAB, 0° 1.310’ N, 6° 31.407’ E)
and Ponta Santo António (FGSPSA, 0° 0.408’ N, 6° 31.
622’ E) (Fig. 1).

For each site, the predominant habitat type and
associated algae or seagrass species was assessed
visually. Average depth was calculated by taking
several readings using a depth gauge and approxi-
mate area was estimated using QGis. A short de -
scription of the sites is provided in Table 1.

In-water visual surveys

Efforts to document sea turtle presence were car-
ried out between November and February 2016 and

2017, and included (1) in-water visual daytime sur-
veys either by snorkeling (underwater) or at the sur-
face (from a boat) and (2) hand capture of live turtles
during daytime (opportunistic) and night (targeted)
surveys. The survey methods were adapted to the
characteristics of each site, such as habitat type,
depth, area and water visibility (e.g. Roos et al. 2005,
Mancini et al. 2015).

The southern foraging or aggregation areas
(FGSCAB and FGSPSA) were associated with rocky
areas of spurs and groves at 8−12 m depth that
offered resting and hiding areas for turtles, and
dense macroalgae mats. Here, we conducted under-
water visual surveys (10 and 5 transects performed at
FGSCAB and FGSPSA, respectively), consisting of belt
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Fig. 1. Location of the 2 foraging grounds (FG) and the nesting beach (Jalé) sampled during this study, as well as potential forag-
ing grounds (sites identified by local fishermen for which no data are available) during 2 large-scale surveys conducted in 2015.
Area and location of the northern foraging ground (FGN) obtained from Alexandre et al. (2017). Sub-sites: CAB (Praia Cabana); 

PSA (Ponto Santo António)

Site Sub-site Location Habitat Distance to shore/ Range of               Dominant plant or
type area surveyed depths (m)                  algal species

FGN Ilhéu das 0° 21.802’ N, Seagrass patches 2000 m 4−7           Seagrass Halodule wrightii
Cabras 6° 45.402’ E 1500 haa                Macroalgae Dyctiota spp.

                    and Caulerpa spp.

FGS Praia Cabana 0° 1.310’ N, Rocky reef 200 m 6−10            Macroalgae Dyctiota spp.
(FGSCAB) 6° 31.407’ E 55 ha

Ponta Santo 0° 0.408’ N, Rocky platform 500 m 8−15        Macroalgae Polysiphonia spp.
António (FGSPSA) 6° 31.622’ E 40 ha                      and Dyctiota spp.

aAlexandre et al. (2017)

Table 1. Location and habitat characterization of the study sites. FGN: northern foraging ground; FGS: southern foraging 
ground
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transects following Roos et al. (2005). On these tran-
sects, 2 surface swimmers moved parallel to each
other at the same speed, along one contiguous strip
approximately 30 m wide (determined by the under-
water visibility) and approximately 500 m long, par-
allel to the shore, resulting in approximately 3 ha
covered in each survey. Each transect was usually
covered within 30 min, depending on surface cur-
rents. In the shallow seagrass-dominated site at FGN
(<7 m depth), where turtles can be easily seen from
the boat, 2 surveys were conducted from the boat
only under conditions of excellent water visibility,
following an expanding square search pattern to
maximize the area covered (e.g. Bell 1990, Christman
et al. 2013, Acebes et al. 2016), covering an area of
approximately 200 ha during each survey, and last-
ing approximately 60 min each.

At all sites, every time a turtle was sighted, the tur-
tle’s behavior (swimming, resting or feeding) and
approximate size class was observed and noted, and
the location was recorded using a hand-held GPS.
When possible, males were identified by their exter-
nal sexual characteristics (Wyneken & Witherington
2001). Sighting data were used to calculate capture
per unit effort (CPUE) and to assess habitat use; size
classes present at each site were only evaluated after
hand capture of individual turtles (see ‘Sea turtle
capture and handling’).

Sea turtle capture and handling

Immature and adult female turtles were sampled
for this study at 2 foraging sites and 1 nesting beach,
respectively. Each turtle sampled had the minimum
curved carapace length (CCLmin; notch to notch,
±0.1 cm) measured using a flexible measuring tape,
and was double tagged with Inconel tags (Style 681;
National Band and Tag Company) — one tag in the
second large proximal scale of each front flipper. Tis-
sue samples were collected from the trailing edge of
the rear flipper of each turtle using a sterile razor
scalpel and stored in 96% ethanol until processing in
the lab. All seized turtles were released on-site
within 30 min of capture. Turtle sampling methods
are as follows.

Immatures

All immatures were hand captured. Due to the dis-
tinct characteristics of each site, we employed differ-
ent approaches to capture turtles. At FGN, we used

the rodeo technique (Ehrhart & Ogren 1999), in
which one person jumped into the water and
attempted to capture the turtles as they were sighted
at or near the surface or resting at the bottom of the
sea. At FGS, we selected Cabana (FGSCAB) for tar-
geted hand captures by free-diving after dusk, as tur-
tles were easily found resting under rocky ledges, or
well camouflaged among the macroalgae beds at this
time of the day (J. M. Hancock pers. obs.). Hand cap-
tures at both sites were always performed by holding
the anterior and posterior medial section of the tur-
tle’s carapace, pulling it out of the water by a slow,
vertical ascension, lifting its head to keep the front
flippers out of the water until it could be safely
hoisted onto the boat, a method that has been shown
to be safe for juvenile turtles in several previous stud-
ies (e.g. van Dam & Diez 1998, Ehrhart & Ogren
1999).

Adult females

Adult female turtles were sampled at Jalé Beach
(0° 2.496’ N, 6° 30.734’ E), the main nesting site for
this species on São Tomé Island, during night patrols
conducted by the technical staff of the project Pro-
grama Tatô of São Tomé during the same period.

Sampling of putative diet items

To obtain the reference isotope ratios for different
trophic levels of the foraging ground communities
and investigate the variation of isotopic ratios at a
local scale, we collected samples of the main algae
and plant species that were referred by turtle fisher-
men as being either commonly consumed by green
sea turtles or that were most abundant in each sam-
pling location (see Table 1). Because incorporating
too many sources would reduce the resolution of mix-
ing models, and we were interested in assessing the
differential contribution of plant or algal and animal
diets for different sea turtle size groups, we selected
the most common plants or algae at each site, as well
as the most common primary consumer or omnivore
invertebrate. These included 4 species of macroalgae
of different groups (Caulerpa sp. among Chloro-
phyta, Dictyota sp. and Sargassum sp. among Phaeo-
phyceae, and Polysiphonia sp. among Rhodophyta), 1
species of seagrass (Halodule wrightii) and the com-
mon intertidal crab Grapsus adscensionis (Osbeck
1765). The macroalgae Dictyota sp. and the crab
were the only putative diet items common at both for-
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aging grounds, and so were collected near FGSCAB

(Inhame Beach, 0° 1.464’ N, 6° 31.147’ E) and FGN
(Gamboa Beach, 0° 22.789’ N, 6° 43.173’ E) to identify
a possible north−south isotopic distinctiveness in
δ13C values. Crab samples were stored in 96%
ethanol until processing. Macroalgae and seagrass
samples were stored in a hypersaline solution (2:1
saltwater/salt, as suggested by Tsuda & Abbott 1985)
instead of ethanol since algal material will lose pig-
ments and become very brittle quickly if stored in
ethanol; no other fixative was available, and freezing
was not possible. Preserved algae samples were kept
in the dark and refrigerated (±4°C) until processing.

Stable isotope analysis

From each sea turtle sample, 0.10−0.25 g of the epi-
dermis (i.e. stratum corneum) was carefully sepa-
rated from any connective tissue, rinsed with deion-
ized water, finely diced with a scalpel blade,
weighed and oven dried for at least 12 h at 60°C.
Samples of putative diet items were carefully rinsed
with deionized water until all salt was removed,
scraped gently to remove any debris or epiphytes,
finely shredded with a scalpel blade and oven dried
as described above. The isotopic signature of the
putative diet items was determined using 3−5 repli-
cate samples from each item. Lipid extraction was
performed on all samples, using a solvent mixture of
chloroform/methanol (2:1) to a final volume 3−5
times the volume of the tissue sample (approximately
1 g of tissue in 5 ml of solvent mixture). Samples were
first centrifuged in an Eppendorf centrifuge (model
5403) for 1 min at 9000 × g and left to rest for 30 min.
After a second centrifugation for 10 min at 4°C and
at the same speed, the supernatant was entirely re -
moved. The previous step was repeated at least 3
times until the supernatant was clear, then the
remaining sample was oven dried for at least 12 h
at 60°C to remove any residual solvent. Subsamples
of prepared tissue (0.75−1.0 mg of animal material,
4−5 mg of plant material) were weighed with a
microbalance and packed in tin capsules for mass
spectrometric analysis.

The 13C/12C and 15N/14N ratios (δ13C and δ15N, re -
spectively) in the samples were determined by con-
tinuous flow isotope mass spectrometry (Preston &
Owens 1983) on a Sercon Hydra 20-22 (Sercon) sta-
ble isotope ratio mass spectrometer, coupled to a
EuroEA (EuroVector) elemental analyzer for online
sample preparation by Dumas combustion. The stan-
dards used were Protein Standard OAS, Sorghum

Flour Standard OAS (Elemental Microanalysis) and
IAEA-N1 (IAEA) for δ13C and δ15N; δ15N results were
relative to air and δ13C results to PeeDee Belemnite
(PDB). The precision of the isotope ratio analysis, cal-
culated using values from 6 to 9 replicates of stan-
dard laboratory material interspersed among sam-
ples in every batch analysis, was ≤0.2‰.

Analytical methodology

We calculated CPUE at both sites as the sum of the
number of resting or feeding turtles observed per
hour of underwater survey time. For data analysis
purposes, we used the estimated size at which green
turtles undergo ontogenic dietary changes in the
southwestern Atlantic (45 cm CCL; Vélez-Rubio et al.
2016) to separate immature turtles into 2 distinct size
classes: (1) ‘small immatures’ (CCL < 45 cm) and (2)
‘large immatures’ (CCL ≥ 45 cm). The minimum sizes
for mature turtles were defined as CCL > 80 cm for
females (minimum size observed for nesting females
at São Tomé Island; S. Vieira pers. comm.) and CCL >
90 cm for males. The cut-off size for males coincides
with the minimum reproductive size estimated in the
Atlantic (Goshe et al. 2010); furthermore, males cap-
tured in this study with a CCL < 90 cm did not show
signs of reproductive activity, such as plastron soft-
ness or mating wounds (Wibbels et al. 1991, Blanvil-
lain et al. 2008).

Isotopic niche parameters were computed using
SIBER package V.2.0 (Stable Isotope Bayesian
Ellipses in R; Jackson et al. 2011) in R V.3.2.2 (R Core
Team, 2013). This program fits bivariate ellipses of
isotopic space using Bayesian inference to describe
and compare the isotopic niche of different life stages
and or/sites. Standard ellipse areas (SEA) were cor-
rected (SEAc) for low sample size using SEAc  =  SEA
(n − 1)(n − 2)−1. Niche overlap was measured using
the overlapping areas of the corrected standard
ellipses of each life-stage group instead of the convex
hulls, due to the small sample size (Jackson et al.
2011, Syväranta et al. 2013).

We used SIAR V4.2 (Stable Isotope Analysis in R;
Parnell & Jackson 2013), a Bayesian-mixing model
that accounts for variation in isotopic discrimination
and source values (Moore & Semmens 2008), to ex-
plore the potential contributions of the most abundant
groups of primary producers versus that of consumers
(occupying a different trophic level) to the diets of
green turtles captured at each foraging ground. Be-
cause trophic discrimination factors are not known for
neritic green turtles, we used 3 different estimates of
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discrimination factors that together should provide
robust insights into trophic interactions of turtles
(Burkholder et al. 2011), estimated for (1) juvenile
green turtles fed on a carnivorous diet (Seminoff et al.
2006; skin tissue: δ15N = 2.80 ± 0.11‰, δ13C = 0.17 ±
0.03‰), (2) herbivorous Florida manatees Trichechus
manatus latirostris (Alves-Stanley & Worthy 2009;
skin tissue: δ15N [estimated] = 5.0 ± 0.00‰, δ13C =
2.80 ± 0.09‰), and (3) average δ13C and δ15N discrim-
ination factors based on meta-analysis of isotopic
studies by Caut et al. (2009) (δ15N = 2.75 ± 0.1‰, δ13C
= 0.75 ± 0.11‰). We ran the analysis per size class
(small vs. large immatures) as well as per location.
Adults were not considered in this analysis as they
are assumed to have foraged elsewhere.

RESULTS

In-water surveys

We recorded 95 observations of Chelonia mydas, in
a total of 17 h of combined survey time at all loca-
tions. Despite the higher number of turtles observed
at the FGS sites (58 and 31 turtles observed at the
Cabana and Ponta Santo António sites, respectively,
6 at the FGN site [Ilhéu das Cabras]), CPUE was sim-
ilar at all sites (range 5−7 individuals per hour of sur-
vey time). Rough estimates of densities (as surveys
were not intensive) ranged from 0.03 ind. ha−1 at
FGN to 40−55 ind. ha−1 at FGSCAB and FGSPSA, re -
spectively. Due to the proximity of both FGS sub-
sites, we consider the estimated density values repre-
sentative of the FGS site as a whole. Targeted efforts
resulted in the hand capture of 34 individuals,
including 3 males. None showed signs of being

actively reproducing, and all were observed feeding
before capture. One adult female captured at the
FGN site was observed feeding on seagrass and did
not show fresh mating wounds or scars, and was
therefore considered as a non-breeding individual.
Details and biometric parameters of turtles sampled
are summarized in Table 2.

Stable isotopes

The wide range of the values of δ13C (−28.3 to
−10.2 ‰) and δ15N (5.8 to 13.2 ‰) observed in the
 animals sampled is a result of the large heterogeneity
of signatures observed at the different locations,
although the range of δ15N values are better ex -
plained by the differences observed among different
size-class groups (Table 2).

The isotopic signatures of all putative diet items
are presented in Fig. 2 and in Table A1 in the Appen-
dix. Macroalgae and crab items sampled at more
than one location did not vary significantly in their
isotopic signatures (t-test, p > 0.05, n = 5 in both
cases; Table A2 in the Appendix); therefore, the sam-
ples were pooled. As expected, all plants or algae
had a very low (and similar) δ15N, but their δ13C var-
ied widely, mainly because of the very low values of
Rhodophytes (Fig. 2), which were very abundant
only at the FGS sites.

The SIBER results indicated distinctive isotopic
niches for each immature size class, as well as for
immatures living at each foraging ground, as the
overlap among all pairs of ellipses was null (Fig. 2).
Small immatures occupied an entirely different niche
to the larger immatures, with their ellipse overlap-
ping by 33% with that of the adult females sampled
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Site Size class N CCLmin δ15N δ13C
(cm) (min−max) (‰) (min−max) (‰) (min−max)

FGN Large immatures 5 73.8 ± 7.1 6.9 ± 1.3 −11.9 ± 2.3
(64.0−83.0) (5.8−8.9) (−15.7 –−10.2)

Adult (non-breeding) 1 109.0 6.7 −10.0

FGS Small immatures 10 38.0 ± 3.7 10.8 ± 1.8 −17.9 ± 1.2
(34.0−45.0) (8.6−14.0) (−19.1−−15.4)

Large immatures 8 73.0 ± 14.1 9.0 ± 1.7 –24.0 ± 3.1
(53.0−87.0) (7.5−12.9) (−28.3−−19.3)

Jalé Beach Adult females 12 96.5 ± 5.3 12.9 ± 1.6 −18.2 ± 1.3
(88.0−105.0) (10.6−15.8) (−20.3−−16.2)

Table 2. Summary of data obtained during in-water surveys at the 2 main foraging sites in São Tomé. Values are means ± SD
and range. N: number of individuals sampled; CCLmin: minimum curved carapace length; FGN: northern foraging ground; 

FGS: southern foraging ground
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at the nesting beach, who are not expected to forage
off São Tomé Island. The distinctiveness of the larger
immature’s isotopic niches and the size of their
ellipses was clearly related to the 2 different foraging
sites (Fig. 2). For this group, a smaller isotopic niche
was calculated for those feeding at the FGN site than
for those at the FGS site (Table 3). This distinction
appears to be related to the relatively high contribu-
tion of Rhodophytes (Polysiphonia sp.) to the diet of
specimens sampled in the FGS sites (Fig. 3B), while
none of the algae or plants at the FGN site have a
particular relevance to the turtle’s diet (Fig. 3A). The
SIAR results also suggest that animal diets may be
important for immatures, especially for the small size
class (Fig. 3C, but see ‘Discussion’).

DISCUSSION

Foraging habitat use

Sea turtle fishermen indicated several foraging or
aggregation sites (Fig. 1); however, we could not con-
firm this information at several sites, as no turtles
were sighted during the snapshot surveys. Further-
more, the number of locations provided is likely to be
limited to the fishermen’s experience and sites com-
monly used for fishing practices, and thus biased.

Nevertheless, the CPUEs and estimated densities re -
corded at the 2 selected study sites suggest that the
macroalgae and seagrass patches around São Tomé
Island, despite their small area, may maintain a few
dozen sea turtles, at least during the months when
the study was conducted (November−February).
Considering that only 2 out of the several potential
sites were surveyed more thoroughly and that the
density of turtles in these sites was high, it is possible
that future investigations will reveal more foraging
grounds off the São Tomé coast.

Our results show that São Tomé hosts 2 discreet
immature groups of foraging turtles: very small
immatures, likely to have recruited recently to the
neritic zone from their oceanic, omnivorous life
stage, and larger immatures that explore the local
resources for more extended periods, eventually as
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Life-stage group SEA SEAc

Adults 6.52 7.03
Small immatures FGS 6.90 7.66
Large immatures FGS 5.93 7.12
Large immatures FGN 2.97 3.71

Table 3. Standard ellipse area (SEA) metrics for different
life-stage groups sampled at São Tomé Island. SEAc: SEA 

corrected

Fig. 2. Standard ellipse area corrected (SEAc) produced by SIBER indicating the trophic niches occupied by the distinct size
classes. Open circles represent individual isotopic signatures. Shape symbols indicate mean isotopic signature of potential diet 

items and standard error values (bars)
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residents. The smallest turtle captured in this study
was 34 cm CCL, within the expected size at recruit-
ment range for post-pelagic turtles of this species
(Musick & Limpus 1997), and with a slightly smaller
size than at other locations in the Atlantic (Reisser et
al. 2013) or Pacific (Arthur et al. 2008). Small imma-
tures were only found at the FGS sites; it is possible
that the rocky substrate of the south of São Tomé is

well suited for omnivores, being rich in macroalgae
and benthic invertebrates, while providing more
resting or hiding sites for the smallest individuals
than the exposed seagrass beds. It can also be used
as a stopover area which green turtles recruit to after
the pelagic phase and store resources before travel-
ing to other developmental habitats (Bolten 2003,
Reich et al. 2007). Nevertheless, it is possible that this
size class was not observed at the FGN site due to the
survey method used (e.g. lower detection of small
individuals from the surface).

With the exception of 1 non-breeding adult female
(109 cm CCL) captured at the FGN site, no adults
were observed foraging at any of the sites during the
breeding season, clearly indicating that São Tomé is
an important recruitment and development habitat
for juvenile green turtles in the region, and that after
reaching maturity adults move to other foraging sites.

Recruitment and settlement

After recruiting to neritic habitats from pelagic
waters, immatures of Chelonia mydas occupy devel-
opmental habitats, which are geographically sepa-
rate from both the lost-year habitat and the adult res-
ident habitat (Carr et al. 1978, Meylan et al. 2011). In
the developmental habitats, they are expected to
undergo an ontogenetic shift in foraging habits, from
omnivory to feeding primarily on macroalgae or sea-
grass (or both) (Bjorndal 1997, Reich et al. 2007,
Arthur et al. 2008) and occupy limited home ranges
associated with specific grazing areas, while feeding
and growing to maturity (Makowski et al. 2006, Shi-
mada et al. 2016). As turtles settle in a foraging area,
it is expected that their isotopic signatures begin to
reflect those of the available diet items only after
some time, since the median residence time of car-
bon and nitrogen stable isotopes in the epidermis of
immature green turtles ranges from 27 to 35 d and
from 11 to 31 d, respectively (Reich et al. 2008). There
are no estimates for isotope turnover rates of large
immatures, but alligator turnover rates have been
shown to be up to 2 yr (Rosenblatt & Heithaus 2012).
As the slower-growing tissues of larger immatures
have longer turnover times (Martínez del Rio et al.
2009), the clear separation of the isotopic niches of
turtles living at each foraging ground and the low
variation in stable isotope values within each group
is a strong indication of local settlement over time
frames of at least many months (as in Bolnick et al.
2003, Bearhop et al. 2004, Cardona et al. 2009,
Martínez del Rio et al. 2009). Residence periods of
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immature green turtles at several foraging sites have
been estimated to be as low as 744 d in Japan (Shi-
mada et al. 2014), 11.2 yr (with a median of 2.4 yr) in
Brazil (Colman et al. 2015) (interquartile range
1.2−4.2 yr), and up to 32 yr in Bermuda (Meylan et al.
2011). Moreover, as slow-maturing animals that may
take from 14 to 44 yr to mature (Bjorndal et al. 2000,
Bell et al. 2005, Goshe et al. 2010, Patrício et al. 2014),
it is possible that these immatures remain in São
Tomé waters for extended periods. Exclusive settle-
ment to either site must, however, be interpreted
with caution, as the small sample size at the FGN site
may lead to an underestimation of the niche width
(Syväranta et al. 2013).

Trophic status and diet preferences

Ontogenic diet shifts in green turtles from omni -
vory to herbivory has been thought to be abrupt and
irreversible, despite growing evidence that high lev-
els of omnivory remain among different life stages
(e.g. Cardona et al. 2009, Burkholder et al. 2011,
Lemons et al. 2011, González Carman et al. 2012,
Burgett et al. 2018). Should immature green turtles
be primarily herbivorous, their isotopic signature
should be 1 trophic level above the primary produc-
ers, and reflected by tissue δ15N enrichment of ~2.8‰
(Seminoff et al. 2006). The high nitrogen stable iso-
topic values of all the small immatures sampled sug-
gest high levels of omnivory prior and/or soon after
recruitment to neritic habitat in São Tomé, as ob -
served elsewhere (e.g. Cardona et al. 2009, Burk-
holder et al. 2011, Lemons et al. 2011, González Car-
man et al. 2012). Even for larger immatures, the
observed δ15N values at both foraging grounds are
higher than the expected values for strict herbivores,
considering the signatures of the most common algae
(Fig. 2). These animals may be supplementing their
diet with animal protein (Fig. 3C), or may still be far
from the isotopic equilibrium with their diets. Further
evidence is obtained by the inclusion of a primary
consumer in the isotope mixing models. Although it
is not possible to ascertain direct consumption of
these specific crustaceans or any animal matter due
to the limitations of our sampling approach and of the
mixing models, our results suggest that the contribu-
tion of animals to the diets of immature green turtles
is not negligible. Despite the omnivory suggested for
all immature stages in São Tomé waters, a clear diet
ontogenic shift is suggested by the contrasting signa-
tures of small and large immatures, reflecting adjust-
ments to a new diet.

The differences in isotopic signatures between the 2
groups of large immatures are mainly explained by
the contrasting distributions of the red algae Polysi-
phonia sp., which is the dominant species at the FGS
sites, and of the seagrass Halodule sp. and the green
algae Caulerpa sp., found mainly at the FGN site. Red
algae such as Polysiphonia have more negative δ13C
values than other algae, which is attributed to their
photosynthetic pathways (Raven et al. 2002). The im-
portance of the red algae mats for our results is further
reinforced by the lack of spatial variation found in the
carbon signature of the brown algae Dictyota sampled
at both sites. This observation is in line with other
studies that show that at foraging grounds where
green turtles are algal feeders, algae within the divi-
sion Rhodophyta are most commonly found in the diet
(e.g. Mortimer 1981, Brand-Gardner et al. 1999,
López-Mendilaharsu et al. 2008). Previous studies
have shown that this class of algae has a higher nutri-
ent content (Montgomery & Gerking 1980, Brand-
Gardner et al. 1999), higher protein (Fleurence 1999,
McDermid & Stuercke 2003) and higher digestibility
(Wong & Cheung 2001), which may be a strong factor
affecting the foraging preferences of green turtles. In
the north, the foraging ground is mostly limited to the
existing seagrass mats, which offers a variety of prey
items, yet represents a much smaller area (estimated
area of 1500 ha; Alexandre et al. 2017), when com-
pared with the southern feeding ground, and turtles
appear to be less selective in their diet.

CONCLUDING REMARKS

Taking into consideration that only 2 of the avail-
able foraging areas were surveyed, and that the
number of turtles at those 2 sites was high, São Tomé,
as well as the similar islands in the Gulf of Guinea,
may provide an important array of suitable foraging
habitats for immatures of Chelonia mydas in the
region. There is clear evidence of settlement and
local exploitation of available resources, as well as of
variation in foraging behavior between various size
classes and life stages. These results suggest that
conservation efforts should account for the possibility
that subsets of the larger regional population may
play different ecological roles and may be differen-
tially vulnerable to anthropogenic impacts. Our study
reveals the need for further research in neighboring
islands in the Gulf of Guinea to assess the importance
of these aggregations of immature turtles to each of
the regional management units identified for this
population in the Atlantic.
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Diet item Mean δ13C SD δ13C Mean δ15N SD δ15N

Chlorophyta −12.74 0.62 4.52 0.62
Phaeophyceae −17.41 0.70 3.01 2.16
Rhodophyta −30.10 0.84 3.16 4.76
Cymodoceaceae −9.84 0.21 2.68 0.21
Crustacea −17.88 2.60 10.51 3.18

Table A1. Stable isotope values for the putative diet items sampled

Species             Isotope       Site        N     Mean          SD        t-value     p-value

Grapsus sp.      δ15N            FGS       5      11.0           4.15      0.534        0.622
                                            FGN      5      10.02         2.22
                         δ13C            FGN      5      −17.42         3.63      0.553        0.609
                                            FGS       5      −18.34         1.18

Dictyota sp.      δ15N            FGS       5      3.22         0.43      1.231        0.286
                                            FGN      5      2.96         0.23
                         δ13C            FGN      5      −16.62         0.48      0.775        0.481
                                            FGS       5      −16.76         0.58

Table A2. Results of statistical significance tests (t-test) for different isotopic sig-
natures observed for 2 diet items (crustacean Grapsus sp. and brown algae Dicty-
ota sp.) collected at distinct sites on São Tomé Island. FGN: northern foraging 

ground; FGS: southern foraging ground
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