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INTRODUCTION

Bearded seals Erignathus barbatus are important
Arctic and sub-Arctic benthic-foraging marine pred-
ators (Stirling & Archibald 1977, Burns 1981, Came -
ron et al. 2010). They are of major cultural signifi-
cance and an important natural resource to many
Arctic indigenous peoples who have relied on this
species for construction materials, clothing, and food
for millennia (Kishigami 2000, Cameron et al. 2010).
Despite their importance to Arctic ecosystems and

peoples, details of bearded seal life history, ecology,
and behavior are relatively poorly documented. Indi -
genous hunters living in communities along the coast
of the Bering, Chukchi, and Beaufort Seas have accu-
mulated a significant body of traditional knowledge
on bearded seal ecology and distribution (Whiting et
al. 2011). Although this knowledge is quite de tailed
around traditional hunting periods and places, it does
not extend beyond that scope and remains an incom-
plete picture. Scientifically observed natural his tory
data have supplemented this traditional knowledge
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(Burns 1981, Fedoseev 1984, Kingsley et al. 1985),
but inference from these studies is constrained by
logistical difficulty and limited spatial scope.

Understanding behavior of juvenile bearded seals
may be particularly important. In long-lived mam-
mals, the first year of life is typically the most critical
to long-term survival (McMahon et al. 2000, Breed et
al. 2013, Bowen et al. 2015). Juvenile mortality is usu-
ally higher than all other age classes, and this is cer-
tainly true in bearded seals: about 60% of bearded
seal pups die before age 1, and an additional 12% die
before age 3 (Frost et al. 1983). In most long-lived
mammals, however, individuals that survive the
juvenile period usually experience years of low mor-
tality through their prime reproductive years and
thus juvenile survival is a key demographic parame-
ter (Gaillard et al. 2000).

Juvenile survival is low for a number of reasons.
Juveniles are immature, physically less capable for-
agers, poor competitors against adult conspecifics,
more vulnerable to predators, and more likely to
engage in risky behavior (Sullivan 1989, Gaillard et
al. 2000, Shier & Owings 2007). Juveniles are also
novice foragers, less adept at prey capture and less
able to locate resource patches (Weathers & Sullivan
1989). In social species with long dependent stages,
resource patches and least-cost travel paths are often
transmitted culturally from older conspecifics or par-
ents (Clark & Mangel 1986, Valone 1989). By con-
trast, most pinnipeds, including all Arctic phocids,
are solitary with short dependent stages; the 3 wk
lactation period of bearded seals offers limited oppor-
tunity for vertical (parent to offspring) information
transmission. Movement and habitat associations
would develop through learning and could conse-
quently differ considerably from adults.

Bearded seals inhabit shallow, seasonally ice-
covered circumpolar Arctic and sub-Arctic waters.
They typically avoid shore-fast and heavy multi-year
ice, preferring pack ice with natural openings and
 areas of open water (leads, fractures, and polynyas),
through which they breathe, haul out, and forage
(Burns 1981, Kingsley et al. 1985). The Bering and
Chukchi Seas are covered by sea ice in late winter
and spring, but mostly — and more recently — are en-
tirely ice free in late summer and fall. These seasonal
ice dynamics are believed to be the major driver of
seasonal movement patterns of adult bearded seals
(Burns 1981, Cameron et al. 2010, 2018).

Bearded seals are primarily benthic foragers, often
preferring areas shallow enough that light can reach
the sea floor (Burns 1981). Bearded seal diet is
diverse, consisting mostly of epifaunal invertebrates

such as crabs, shrimps, and snails; infaunal bivalves;
and demersal fishes (Lowry et al. 1980, Hjelset et al.
1999, Dehn et al. 2007). As such, their effective range
is thought to be restricted to areas where seasonal sea
ice occurs over relatively shallow waters (Burns 1981,
Fedoseev 1984). The Bering and Chukchi Seas over -
lay large areas of continental shelf, providing exten-
sive areas of potential habitat. This shallow interconti-
nental shelf is approximately 1.5 million square
kilometers in area, encompassing about half of the
Bering Sea and nearly all of the Chukchi (Burns 1981).

Previous treatments of bearded seal movement
were descriptive and mostly based on sightings near
shore, from cruises near the spring ice front, and a
few aerial surveys of limited temporal and spatial
scope (Burns 1981, Kelly 1988, Cameron et al. 2010,
Conn et al. 2014, Ver Hoef et al. 2014, Melnikov
2017). Few analyses of bearded seal tracking data
have been published. In the Bering−Chukchi, some
important data have been published (Cameron et al.
2010, 2018), and a few small bearded seal tracking
datasets have also been used as demonstration data
for movement model development (McClintock et al.
2017). Bearded seal tracking data from the North
Atlantic are also extremely limited (Gjertz et al. 2000,
Watanabe et al. 2009).

All previous work has indicated that sea ice is a key
habitat resource for bearded seals throughout the
year. Aside from pupping, ice serves as a platform for
resting and perhaps thermoregulation (Lydersen &
Kovacs 1999). In late winter and early spring, the
Bering−  Chukchi population of bearded seals is
widely but not uniformly distributed in the broken,
drifting pack ice ranging from the Chukchi and Beau-
fort Seas south to the ice front in the Bering Sea. As
the ice retreats in the spring, most adults in the
Bering Sea are thought to move north through the
Bering Strait. There they spend the summer and early
fall at the southern edge of the Chukchi and Beaufort
Sea pack ice at the wide, fragmented margin of multi-
year ice (Burns 1981, Cameron et al. 2010). A smaller
number of bearded seals, mostly juveniles, remain
near the coasts in bays and brackish estuaries of the
Bering and Chukchi Seas during summer and early
fall instead of moving with the ice edge (Burns 1981).
As sea ice forms in the fall and winter, both juveniles
and adults are believed to move south with the ad-
vancing ice edge through the Bering Strait and into
the Bering Sea where they winter.

Here, using a biologging approach, we investi-
gated these seasonal movements and habitat use in
juvenile (young of year and 1 and 2 yr olds) bearded
seals that remain near coasts in the summer. We took
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this approach to corroborate earlier observations and
observations from aerial surveys, more precisely esti-
mate and analyze habitat preference and sea ice use,
and understand how sea ice affects the movement
and behavior of juveniles so that we might better
predict how sea ice degradation will impact this
important species in the coming years.

MATERIALS AND METHODS

Tag deployment

Juvenile bearded seals (ranging from 0−2 yr) were
caught in Kotzebue Sound during September−
October of 2004−2006 and 2009. Seals were caught at
the end of the open-water season using specially
 de signed large-mesh nets measuring 3.7 m deep ×
15− 30 m long.

Nets were constructed of 30.5 cm stretched nylon
mesh netting with foam-core float line and 5 kg/100 m
lead line. They were dyed in various shades of blue
and green with blotches of black made to appear as
holes in the net. Nets were set and anchored in shal-
low water (2−3 m) near shore. Anchors were attached
to the float line instead of the lead line to ensure that
seals entangled near the ends of nets could reach the
surface to breathe.

Once caught, seals were disentangled from the net,
taken ashore, and placed on stretchers where they
were measured and sex was determined. Satellite-
linked dive recorders (SLDRs; SPLASH tags manu-
factured by Wildlife Computers) were glued to the
hair on the upper back using quick-setting marine
epoxy. Each tag measured 10.7 × 3.8 × 3.5 cm and
weighed 145 g in air. SLDRs communicated to the
Argos satellite network which collected between 6
and 15 locations d−1 of various quality for each seal.
Tags were not duty cycled and locations were col-
lected through the day; on average, locations were
collected 114 min apart (SD 32−376 min). About
0.6% of relocations were collected with a temporal
delay from the previous relocation of greater than
1 d, and about 9% were collected with temporal
delays greater than 4 h. Temporal delays between
the re maining 91% of relocations were less than 4 h.
Where gaps longer than 2 d occurred, tracks were
broken into segments and these periods of missing
data were excluded from analysis; longer temporal
gaps tended to occur toward the end of tracks as tag
battery voltage dropped. In total, 29 seals were cap-
tured and tagged in approximately equal sex ratio
(13 males, 16 females), with deployments concen-

trated mostly in 2005 (14) and 2009 (9) and an addi-
tional 2 deployments in 2004 and 4 in 2006.

State-space model fitting

Argos tracking data were fit with a 2-state switch-
ing state-space model (sSSM) to better estimate loca-
tions from noisy Argos data and infer behavioral state
from movement patterns (Breed et al. 2009, Jonsen et
al. 2013). Models were fit hierarchically using a 4 h
time step following the methods described by Breed
et al. (2009); the selected time step generally fit the
recommendations of Breed et al. (2011) given the
quality of the data. The model inferred 2 behavioral
states based on fitted movement parameters (correla-
tion: γ, and turning angle: θ). ‘Resident’ behavior
(alternatively referred to as ‘foraging’ or ‘encamped’
states in other publications) produces correlated ran-
dom walk (CRW) parameters with θ near 180° and γ
near 0, while ‘transit’ behavior produces movement
with θ near 0° and γ near 1 between consecutive dis-
placements. See Breed et al. (2009) for more details.

Effect of covariates on behavior and habitat use

After sSSM fitting, we used the sSSM location esti-
mates to fit a series of mixed-effects models using the
statistical computing software R (R Core Team 2016)
in a second layer of analysis to understand the effects
of season, sex, and habitat covariates on seal move-
ment behavior and habitat use. Habitat covariates in -
cluded sea-ice concentration, water depth, distance
to nearest shoreline, and distance to ice edge (consid-
ered the nearest area of 15% sea-ice concentration).
Time of year was split into 3 categories   (September−
November; December−January;  February−  April) and
we included sex as an explanatory covariate. Year
and individual were included as random effects (see
Table 1). Bathymetry data (ETOPO2) were taken
from the National Geophysical Data Center (2006) at
2 km resolution. Sea ice data of 12.5 km resolution are
publicly available, and described by Cavalieri et al.
(2014). Sea ice density, which ranged from 0 to 100%,
was logit transformed after rescaling to (0.025, 0.975),
while water depth, distance to shore, and distance to
ice edge were log transformed before model fitting.
To accommodate the probability that intermediate
sea ice densities might be preferred and thus prefer-
ence is non-linear, we included the square of the sea-
ice concentration as well. Finally, in order to create
more interpretable interactions with sea ice, we made
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a 2-category sea ice variable, isice (see Table 1), which
was 0 where sea ice concentration was <15% and 1
where it was >15% — the concentration we defined
to be the sea ice edge. Including interactions between
isice and other factors allowed us to effectively esti-
mate how other environmental conditions affected
behavior or probability of use in front of (<15%) or
behind (>15%) the ice edge.

Factors affecting habitat use

To understand how various environmental and
demographic covariates affected the probability that
a bearded seal used a particular habitat, we imple-
mented a modified resource selection function (RSF)
analysis. In a typical RSF that uses logistic regression
(which we describe in more detail later), the set of
real cases (i.e. the relocation data from the tracked or
otherwise relocated animals) is matched and com-
pared to control locations that are randomly selected
from an individual animal’s or a group’s potentially
useable habitat (Manly et al. 2007). In this analysis,
there was no clear way to delineate the potential
habitat region from which control locations might
reasonably be selected.

To resolve this, we generated control locations by
simulating the movement patterns of each bearded
seal from CRW parameters estimated from the track-
ing data (see below and Supplement 1 at www. int-
res. com/ articles/ suppl/  m600p223_ supp. pdf, and see
Came ron et al. 2018 for full methodological de tails).
We used this approach because both the real and
control locations are autocorrleated and will bias the
estimated parameter variances of the logistic re -
gression downward such that they are unrealistically
small (Fieberg et al. 2010). The actual parameter esti-
mates themselves, however, should be unbiased
(Schaben berger & Gotway 2005). Thus, we simulated
20 CRW trackways for each real track, which were
then used as the control cases for 20 separately fit
logistic regressions (described in more detail below).
We discarded the estimated variances from each of
20 logistic regression model fits, but retained the
parameter estimates. Variances were instead calcu-
lated from the population of parameter estimates of
20 separate model fits, which should then yield a rea-
sonably unbiased estimate of parameter uncertainty
from which 95% confidence intervals could be calcu-
lated. This assumes the parameter estimates are nor-
mally distributed, which appeared to be the case
upon inspection of the estimates, and that each of the
20 Monte Carlo simulated trackways were independ-

ent of each other. From this point we proceeded with
normal parametric inference. For each parameter, we
tested the null hypothesis that regression coefficients
equaled 0; standard errors and p-values were ob -
tained by assuming that mean regression coefficients
were distributed normally with standard deviation as
obtained from the 20 Monte Carlo fits of the logistic
regression. This allowed us to assess the probability
that the uncertainty region around each parameter
estimate contained 0 (i.e. the p-value).

The models themselves were generalized linear
mixed models fit using the glmer function from the R
package lme4 (Bates et al. 2016), using the binomial
family with logit link (a logistic regression, as per a
typical RSF). The response variable was ‘use,’ which
indicated whether the location was associated with
the control track (0) or the real track (1). These were
related to the series of environmental covariates (x)
via estimated parameters (β). The basic structure of
the model is:

logit(ηi,j) = β0 + β1x1,i,j + β2x2,i,j … βpxp,i,j + νj (1)

usei,j ~ Binomial(ηi,j,1) (2)

where i indexes the individual relocations and con-
trol points of the j th seal, and νj is the random effect of
the j th seal. Thus ηi,j is the linear predictor, which is
logit linked to observations (usei,j) via a binomial
error function. The overall interpretation is of a mod-
ified RSF (Manly et al. 2007). 

Simulating animal movements

To produce the Monte Carlo control locations de -
scribed above, we first consider that animal tracks
can be represented as sequential movement vectors,
each characterized by elapsed time, bearing and
length, from which secondary components can be
calculated (e.g. dividing length by elapsed time
yields average speed). Locations from animal move-
ments are autocorrelated in space and time for many
reasons, including physical limitations on travel
speeds, the influences of habitat, behavior (resting),
etc. There has been increasing interest in studying
and modeling animal movements with a new surge
of papers and ideas (see Hooten et al. 2017).

In some of these new models, authors attempt to
incorporate habitat in directing movement (Christ et
al. 2008, Forester et al. 2009, Potts & Lewis 2014), or
relate movement to habitat (Bestley et al. 2013).
However, to create the Monte Carlo pseudotracks,
our goal was not a model of animal movement per se,
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but rather to project movement in the absence of
environmental influences for the purpose of compar-
ison to real tracks. Building covariates into the sSSM
(e.g. Bestley et al. 2013) would have certainly been
more elegant. However, it remains difficult to incor-
porate many covariates into such models, and many
proposed implementations remain at the demonstra-
tion phase of development. Instead we take an ap -
proach that is more pragmatic and simpler to ana-
lyze, and though less elegant still yields reasonable
inference.

Pseudotracks were simulated so that they were
structurally similar (i.e. in terms of vector compo-
nents) to their paired real tracks, but without the in-
fluence of habitat. To do this, we used time values for
each simulated track that were identical to those of
their paired observed track, which was simplified by
the fact that the sSSM already produced temporally
regular location estimates for the real tracks. The dis-
tance components of each simulated track
were modeled using the step-length distribu-
tions of the real data. Similarly, se quential
bearings were expected to be both autocor-
related and related to speed, so we also mod-
eled the bearing components of each simu-
lated vector. Using these models for speed
and bearing, we simulated 20 tracks for each
of the 29 animals (see Fig. 1 for an example of
one of the 20 simulated pseudotrack sets).
Full details of the simulation are available in
Cameron et al. (2018) and Supplement 1.

We assessed a range of biologically reason-
able models and interactions using the co -
variates listed in Table 1. A likelihood-based
model-selection procedure (such as Akaike’s
information criterion, AIC) was not valid be -
cause the mean and standard error ob tained
for each logistic regression parameter were
based on Monte Carlo methods. In stead,
model selection followed a backward step-
wise procedure based on p-values. We
started with a model that had all single effect
covariates, an interaction between isice and
Dedge, plus the interaction of sex with all other
covariates and the isice×Dedge interaction. We
then removed interaction terms that were
least significant one at a time. After obtaining
only those interactions still significant at α =
0.05, we then started to remove single effects
that were least significant until a parsimo-
nious model was obtained with all terms sig-
nificant at α = 0.05. The final model was
interpreted as an RSF, where the intercept

was not meaningful, but the regression coefficients
indicated preference or avoidance in the direction of
the coefficient.

Factors affecting movement behavior

Conditions affecting the expressed movement
behavior (as inferred by the sSSM) were analyzed
using a logistically transformed response variable,
sSSM inferred behavioral state B, fit in a mixed-
effects linear regression using the R package nlme
(Pinheiro et al. 2017) with the following structure:

logit(Bi,j) ~ β0 + β1x1,i,j + β2x2,i,j … βpxp,i,j

+ φ logit(Bi–1,j) + νj + εi,j (3)

where Bi,j is the sSSM inferred behavioral state
expressed along a continuum between 0 and 1 (see
Breed et al. 2009 for discussion of using these contin-

Fig. 1. One set of pseudotracks used in the resource selection func-
tion (RSF) analysis of bearded seals. Twenty similar sets were proba-
bilistically generated using parameters estimated from real tracks.
Pseudotrack locations were subsequently used as case controls to es-
timate RSF parameters against the real relocation data (see ‘Materials 

and methods’ and Supplement 1)
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uous estimates), x values represent covariates and β
values are the respective estimated parameters, φ is
the autocorrelation parameter, νj is the individual
ran dom effect, and εi,j is the uncorrelated residual
variation. This approach allowed us to incorporate
random effects and a first-order autocorrelation
parameter so that bias in variance and parameter esti-
mates attributable to autocorrelation is controlled. A
variety of models were tested using the ex planatory
variables listed in Table 1 and biologically reasonable
interactions to explain inferred behavioral state (B).
As these models were fit using ordinary maximum
likelihood, they were compared using AIC.

RESULTS

sSSM fits

The model identified and inferred 2 clear behav-
ioral/movement states. The overall seasonal move-
ment pattern followed the expected migratory pat-
tern, with many animals initially moving north from
the capture area before freeze-up while open water
was still extensive. As sea ice formed, seals gradually
moved south, passing through the Bering Strait and

wintering mostly in the Bering Sea (a few individuals
wintered just north of the Bering Strait in the Chuk chi
Sea). In the fall (October−November), seal movement
tended to be more directed and rapid (transiting be-
havior), while later in the season after freeze-up, resi-
dent-type movement behavior was much more likely
(Fig. 2). sSSMs also handled Argos error to produce
better location estimates and those better estimates
were used in all subsequent analyses.

After freeze-up, some segments of movement path-
ways were inferred as ‘resident’ during long dura-
tions of straight movements but with very short move
steps (as compared to movements inferred as ‘tran-
sit’). These almost certainly represent seals drifting
passively on ice floes. In some sense, one could think
of this as a third behavior, but as seals are moving
passively, the sSSM inference of ‘resident’ is not
unreasonable as the observed movement pattern
during periods drifting on pack ice is more similar to
‘resident’ than ‘transit’ behavior. See Auger-Méthé et
al. (2016) for further discussion of state-space model
inference of behavior in tracked animals moving in
drifting sea ice.

Habitat selection

The backward stepwise selection began by includ-
ing all main effects and all pairwise interactions of
the variables listed in Table 1 and also 3-way interac-
tion between Dedge, isice, and season. The least
informative effects were sex and all but 1 interaction
including sex, which were not significant at α = 0.05
and were dropped in the first few rounds. Subse-
quently, the main effect of season was dropped; it
was only important in the context of its effect on
other covariates (i.e. as interactions). Season altered
relationships between use and sea ice concentration,
distance to the ice edge, and distance from shore.
The final model and parameter estimates are shown
in Table 2.

The relationship between use and sea ice concen-
tration was extremely important. However, the
results differed from recent analyses by Cameron et
al. (2018), which found that probability of use more or
less steadily increased with sea ice concentration and
plateaued at 80% and did not appreciably dip from
this peak as density increased from 80 to 100%. Our
analysis found that use was more strongly explained
by the SI 2

conc term. This predicted an inverse para-
bolic relationship, with probability of use clearly
peaking in sea ice concentrations of around 50−60%
(Fig. 3), and substantially decreasing as concentra-
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Variable    Definition
                  
Dsh              Distance to shore, i.e. nearest coastline

(continuous, log transformed)

Dedge          Distance to sea ice edge (15% concentration)
(continuous, log transformed)

SIconc          Sea ice concentration (expressed continu-
ously between 0 and 1, logit transformed)

SI 2
conc          SIconc squared, added to capture preference

for intermediate sea ice density

Sex             Male or female (categorical)

Dpth           Water depth (continuous, log transformed)

ssn              Season; split into 3 categories
(September−November; December−January;
February−April)

isice             Simple categorical on sea ice density to
make for more interpretable interactions

                  Sea ice concentration >15%, isice = 1,
otherwise isice = 0

B                 Switching state-space model (sSSM) inferred
behavioral state, expressed continuously
between 0 and 1

Table 1. Definitions of variables used in mixed-effects and
generalized linear mixed models. The first 7 variables were
used as main fixed effects, while B was used as a response
variable in bearded seal behavior models. Year and individ

ual were included as random effects and are not listed
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tions increased beyond 60%. In fact, the linear term
SIconc did not differ from 0 in winter and spring.

The relationship with sea ice differed in the fall. The
fall season featured a general lack of access to sea ice
in the first month, which was prior to the seasonal ex-
pansion of sea ice cover over the Chukchi and Bering
Shelves. This may explain the relatively flat selection
surface for sea ice concentration compared to other
seasons (Fig. 3). In general, probability of use in-
creased farther from shore as indicated by the positive
parameter shown in Table 2, but this relationship was
weaker in the fall. Seals seem to move farther offshore
when sea ice is available to rest on and/or they are
forced away from shore by shore-fast ice.

A few other results are notable. We found evidence
that females used somewhat shallower areas than
males for this juvenile age class, but other habitat co-
variates did not differ between the sexes. Probability
of use generally increased with water depth. There
was a significant interaction between distance to ice
edge and whether the seal was in front of or behind
the ice edge. The probability of use was generally
lower in front of the ice edge and dropped more rap-
idly as compared to behind the edge (Fig. 4). An
overall predictive figure using sea ice data observed
on 23 November 2009 visualizes the strong relation-
ship between sea ice edge and predicted use; young
bearded seals preferred to be near the ice edge and
in intermediate sea ice concentrations (Fig. 5).

Movement behavior

Initial explorations of candidate models and covari-
ates affecting inferred behavioral state (B) suggested
that sea ice and season would be key variables. How-
ever, these were not the only effects explaining
movement behavior. In addition to these main ef -
fects, we selected several key interactions that
address specific hypotheses about how covariate
interactions might alter expressed behavior. In par-
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Fig. 2. Switching state-space model (sSSM) fits of all bearded
seal tracks, broken down by season: (A) September−
November, (B) December−January, (C) February− April. Blue
indicates inferred directed movement; red indicates inferred
encamped/ resident behavior. Tracks are plotted against ba-
thymetry (100 m contour is drawn for reference). Additionally,
the position of the 15% ice edge is shown at the beginning
(yellow) and end (cyan) of the season plotted. Ice data are
from the 2009−2010 season, but are generally representative
of the freeze-up phenology. In panel (A), the ice edge on
1 October is north of the projected area and is therefore not 

plotted
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ticular we asked the following questions:
Does sex alter the effect of sea ice on move-
ment behavior? Does sex affect how distance
from shore or distance from ice edge affects
movement behavior? Does season affect how
distance from shore or distance from ice edge
affects movement behavior? And finally, how
does depth interact with sex, sea ice, or sea-
son to affect expressed movement behavior?

To address these questions, we constructed
a full model containing 6 main effects (SI, SI 2,
ssn, Dpth, Dsh, Dedge; see Table 1) and 9 pair-
wise interaction terms (sex was included only
in interactions to test how it influenced the
effects of other covariates). The full model
had 21 degrees of freedom (shown in
Table 3). In our multi-model comparison, we
tested all possible models but limited models
to have at least 5 covariates to lower the total
number of models needed to be fit. The top
14 models are shown in Table 3 and include
the full model which ranked 14th; the
remainder of the fitted models are shown in
Supplement 2 at www. int-res. com/ articles/
suppl/  m600 p223_ supp. xlsx.

AICs indicate that the top models (shown in
Table 3) are all nearly equivalent. However, a large
number of models have no support (full selection
table in Supplement 2), so the covariates included in
the selected models are clearly predictive. We could
take a multi-model averaging approach to resolve
the equivalence; however, our goal is not prediction
per se. Instead, we interpret the consistent pattern of
inclusion of covariates across the top models. Main
effects of distance to shore (Dsh), sea ice concentra-
tion (SIconc), and season were always included. Inter-
actions with distance to shore and distance to ice
edge were likewise always included. Parameter esti-
mates of a model including only these key variables
are shown in Table 4.

Parameter estimates indicate that young bearded
seals are sensitive to distance to shore, and the
closer the seals are to shore, the more likely they
are to exhibit a transiting movement pattern (Table
4). Transiting movement is also considerably more
likely during the fall than in winter or spring, con-
sistent with Fig. 2. When other variables are held
constant, increasing sea ice concentration decreases
the probability of transit behavior. Increasing dis-
tance from the ice edge also decreased the proba-
bility of transiting behavior (and thus increased the
probability of resident behavior), but only behind
the ice edge. At extremely high sea ice densities,
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Effect                                             Linear          ±95% CI         Pr > t
                                                     estimate

Intercept                                       −0.170      −1.593, 1.253        0.8173
log(Dsh)                                            1.620        1.524, 1.717      <0.0001
log(Dpth)                                         1.227        0.828, 1.626      <0.0001
logit(SIconc):ssn = fall                    −0.206      −0.242, −0.170    <0.0001
logit(SIconc):ssn = winter                 0.042      −0.028, 0.112        0.2665
logit(SIconc):ssn = spring               −0.006      −0.038, 0.025        0.7021
logit(SIconc)2:ssn = fall                   −0.062      −0.069, −0.056    <0.0001
logit(SIconc)2:ssn = winter             −0.110      −0.135, −0.086    <0.0001
logit(SIconc)2:ssn = spring             −0.115      −0.125, −0.105    <0.0001
log(Dsh):isice = 1                            −0.644      −0.731, −0.556    <0.0001
log(Dpth):isice = 1                            0.922        0.788, 1.055      <0.0001
log(Dpth):sex = female                −0.348      −0.475, −0.221    <0.0001
log(Dsh):log(Dpth)                         −0.526      −0.553, −0.499    <0.0001
log(Dsh):ssn = spring                       0.467        0.371, 0.561      <0.0001
log(Dsh):ssn = winter                      0.485        0.429, 0.542      <0.0001
log(Dedge):isice = 0:ssn = all           −0.334      −0.555, −0.112      0.0082
log(Dedge):isice = 0:ssn = spring    −0.687      −0.869, −0.505    <0.0001
log(Dedge):isice = 0ssn = winter     −0.641      −0.878, −0.404    <0.0001
log(Dedge):isice = 1:ssn = fall          −0.486      −0.708, −0.263      0.0004
log(Dedge):isice = 1:ssn = spring    −0.490      −0.719, −0.260      0.0005
log(Dedge):isice = 1:ssn = winter    −0.565      −0.798, −0.333      0.0001

Table 2. Selected final resource selection function model, parameter
estimates, 95% confidence intervals (CI), and p-values indicating if
uncertainty regions around parameter estimates include 0. Variables 
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bearded seals appear to be unable
to switch into the transit state
(Fig. 6). Distance to shore was also
important and seasonally variable.
In winter and spring, animals that
were more distant from shore were
more likely to express a resident
state. Finally, female behavior
seemed more affected by distance
from shore than male behavior, but
this effect is weak compared to
other effects (Table 4).

The overall interpretation in the
context of the RSF findings suggests
simplythatthedeeperanimalswerein
the ice pack (as ice density ap -
proached 100%), the more likely they
were to be in a resident state. Con-
versely, open water was associated
with a transiting behavioral state.
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Fig. 5. (A) Sea ice data remotely sensed on 23 November
2009. (B) Bathymetry, shown because it is also an important
variable. (C) Overall model prediction of use by bearded
seals projected onto space using data from panel (A). This is
an example, and similar predictive maps could be made 

using sea ice data from any date
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DISCUSSION

The effects that sea ice loss will have on bearded
and other ice seals is a serious potential impact of cli-
mate change (Cameron et al. 2010). Sea ice loss is
understood to affect lower trophic levels of Arctic
marine food webs through increased primary pro-
ductivity, changes in plankton community structure,
and altered benthic−pelagic coupling (Arrigo & van
Dijken 2015, Barber et al. 2015).

These changes are likely to alter the total primary
production in the system, but even if they do not,

they will almost certainly affect the temporal and
spatial distribution of resources available to mid- and
upper-trophic level predators. To the extent that
upper trophic level species are adaptable, they will
be able to adjust to such temporal and spatial
changes in productivity. However, Arctic species at
the highest trophic levels often have evolved behav-
ioral dependence on sea ice as a platform. These
include species such as ringed seals Pusa hispida and
polar bears Ursus maritimus. In other areas of the
Arctic, these species have changed their behavior,
are showing poorer body condition, decreased vital
demographic rates, and declining population sizes
(Kovacs et al. 2011, Molnár et al. 2011, Luque et al.
2014, Hamilton et al. 2015, Pilfold et al. 2017).

Like ringed seals, bearded seals, as well as ribbon
Histriophoca fasciata and spotted seals Phoca largha,
which co-occur in the Bering−Chukchi ecosystem, are
sea-ice dependent. To date there is no indication that
any bearded seal populations have been negatively
affected by changes in sea ice extent or phenology
(Cameron et al. 2010, Crawford et al. 2015). However,
the lack of any negative trends may simply be due to
highly uncertain and infrequent population estimates,
which is a consequence of the logistical difficulty
of surveying this high-Arctic species. Various world
population estimates have been made over the past
50 yr, and have ranged from several hundred thou-
sand to over 1 million individuals (Cameron et al.
2010); the variation among estimates shows no tempo-
ral trends and likely arises from differing estimation
methods and reliance on various strong assumptions.

Still, given the demonstrated effects of sea ice
degradation on other Arctic species, bearded seals
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Dsh    SI      SI 2   ssn   Dpth: SI   Dpth: ssn   Dpth: sex    Dsh: SI     Dsh: ssn   Dsh: sex   Dedge: SI   Dedge: ssn   SI: sex      AIC

+         +       +       +          +                                                     +              +              +              +                 +                       −8556.1
+         +         +       +           +                                   +               +              +              +              +                 +                       −8555.9
+         +                 +                             +                 +               +              +              +              +                 +                       −8555.5
+         +         +       +           +                +                 +               +              +              +              +                 +                       −8555.5
+         +                 +           +                                                     +              +              +              +                 +                       −8555.4
+         +                 +           +                                   +               +              +              +              +                 +                       −8555.4
+         +         +       +                             +                 +               +              +              +              +                 +                       −8555.4
+         +                 +                             +                                  +              +              +              +                 +                       −8555.3
+         +                 +           +                +                 +               +              +              +              +                 +                       −8555.2
+         +         +       +                             +                                  +              +              +              +                 +                       −8555.2
+         +         +       +           +                                                     +              +              +              +                 +              +       −8555.2
+         +         +       +           +                                   +               +              +              +              +                 +              +       −8555.1
+         +                 +                             +                 +               +              +              +              +                 +              +       −8554.7
+         +         +       +           +                +                 +               +              +              +              +                 +              +       −8554.7

Table 3. Multi-model selection table for covariates and interactions predicting switching state-space model (sSSM) inferred be-
havioral state of bearded seals. Pluses (+) indicate the inclusion of a covariate or interaction. The top 14 models are listed, with
the last row showing the full model. The full selection table is provided in Supplement 2. See Table 1 for variable definitions. 

AIC: Akaike’s information criterion

Effect                               Linear       95% CI          Pr > t
                                       estimate

Intercept                          −1.935          0.570       <0.0001
logit(SI conc)                      −0.066          0.023       <0.0001
log(Dsh)                              0.041          0.025         0.0026
ssn = spring                       2.173          0.325       <0.0001
ssn = winter                       0.434          0.172       <0.0001
logit(SI):log(Dedge)            0.002          0.006         0.0852
logit(SI):log(Dsh)               0.013          0.006       <0.0001
log(Dedge):ssn = spring    −0.025          0.022         0.0294
log(Dedge):ssn = winter   −0.018          0.018         0.0027
log(Dsh):ssn = spring       −0.490          0.073       <0.0001
log(Dsh):ssn = winter      −0.108          0.043       <0.0001
log(Dsh):sex2                     0.056          0.029         0.0002

Table 4. Parameter estimates for key variables affecting
switching state-space model (sSSM) inferred behavioral
state of bearded seals. Positive parameters indicate that the
effect increases the probability of directed/more correlated
movement patterns, negative parameters indicate that the
effect increases the probability of more resident/less corre-
lated movement patterns. Variables are defined in Table 1
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are likely now, or will soon be, affected by changes in
sea ice even if those effects have not been clearly
quantified. Our analysis informs habitat preference
and movement behavior of young breaded seals
across more or less the entire Chukchi and Bering
Sea range and provides continuous longitudinal
observations of behavior and habitat preference
through the fall, winter, and into the spring as sea ice
seasonally expands across the Bering−Chukchi Sea.

Dynamic habitat selection of seasonal sea-ice
conditions

Recent analyses from aerial survey data indicate
that bearded seals prefer ice concentrations around

60% during April and May (Conn et al. 2014, 2015).
During the ice season (winter and spring), our analy-
sis found preferred sea ice concentrations around
50−60%, almost exactly consistent with estimates
derived from aerial survey data. However, distance
to the sea ice edge, which we defined as 15% con-
centration, as well as whether an animal was in front
of or behind the edge, were important contingent
factors modifying the sea ice concentration effect. As
a result, during the winter and spring (defined here
as December−April), dense sea ice well behind the
ice edge was not preferred habitat. In fact, predic-
tions of high probability use areas were relatively
small compared to the overall range of bearded seals,
and focused on intermediate to dense sea ice imme-
diately proximate to the sea ice edge (Fig. 5). Thus
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Fig. 6. Predicted bearded seal behavioral state based on environmental covariates projected onto typical sea ice seascapes: (A)
late November and (C) early January. Corresponding sea ice densities are shown in (B) and (D). States were predicted from 

parameters shown in Table 4
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the location of the ice edge, for the juvenile age
classes that our data represent, was an important fac-
tor in addition to sea ice concentration. Overall the
relationship between bearded seals and sea ice that
we report here, using our biologging approach and
careful statistical analysis, is remarkably consistent
with observations made and reported decades ago
based on classic natural history observations and
field methods (Burns 1981).

Annual movement patterns in our bearded seal
tracking data show an overall migration-like pattern,
moving north in the summer to follow the sea ice as it
retreats, and then southward in the fall as sea ice
advances. This is consistent with a behavioral track-
ing of preferred habitats as those habitats seasonally
shift.

In other ice-associated Arctic animals (Heide-Jør-
gensen et al. 2002, 2010, Laidre & Heide-Jørgensen
2005), entrapments are frequently reported. How-
ever, because bearded seals are capable of creating
and maintaining breathing holes, such entrapments
likely only restrict movement and probably do not
represent a high mortality risk (Burns 1981, Smith
1981, Cleator & Smith 1984). Our behavioral predic-
tions corroborate this conclusion, where, during win-
ter, juvenile bearded seals are predicted to be in the
transit behavioral state even when sea ice density is
quite high (>80%), whereas at or near 100% sea ice,
the behavioral state is highly likely to be resident.
This suggests that dense sea ice in winter and spring
restricts movement.

Individuals wintering in dense ice might also be
expressing a more mature behavioral pattern. Juve-
niles might not be as capable as mature adults at
breaking, maintaining, or defending breathing holes,
so thicker ice pack may be more risky for juveniles,
and they may avoid it to a greater degree than adults.
As they become older and physically mature, these
individuals might select areas of denser ice farther
behind the ice edge.

The sea ice edge by itself is probably not better for-
aging habitat than pack ice well behind the sea ice
edge. As benthic feeders, bearded seals can use sea
ice over any shallow continental shelf area as a haul-
out platform from which to forage. As noted, the risk
of entrapment, or simply limited access to air due to
unbroken sea ice, may increase with increasing dis-
tance behind the ice edge. Thus, the sea ice edge
affords the same foraging platform as sea ice well
behind the edge, but seals tracking the edge may
avoid entrapment and have easy access to air while
maintaining their ability to move broadly and access
a wider range of foraging patches through the winter.

Although annual movements of bearded seals in
the Bering and Chukchi Seas have been described as
‘migrations’ (Dingle & Drake 2007, Cameron et al.
2010), it is unclear if that is an appropriate character-
ization. Our data suggest that the seasonal move-
ment pattern might be better described as behavioral
tracking of preferred habitat, a behavioral paradigm
that might be better classified as nomadism (Mueller
& Fagan 2008, Singh et al. 2012). The sea ice edge is
seasonally dynamic, and bearded seals — in our data
juveniles, but likely adults as well — may simply be
continuously adjusting their position to be in optimal
habitat as the edge moves, a trait typical of nomadic
animals. A migration-like movement pattern emerges
from the behavioral tracking and the predictable sea-
sonal expansion and retraction of sea ice. The move-
ment pattern observed is probably some intermediate
between nomadic and migratory behavior. A truly
migratory pattern may arise at maturity, but move-
ment may remain nomadic in adulthood.

Behavioral tracking of dynamic habitat conditions
is not unique. Some of the best examples of this phe-
nomenon come from terrestrial species during spring
migrations. Elk, for example, abandon montane habi-
tats in the fall as deep winter snows cover forage and
are energetically expensive to move through (Bischof
et al. 2012, Fryxell & Avgar 2012). In the spring, as
these herbivores return to summer ranges, they pre-
cisely track green-up to maximize nutrition. This
tracking has been coined ‘surfing the green wave’ as
the animals remain at the crest of a moving wave of
optimal habitat as green-up moves up elevational or
latitudinal gradients (Fryxell & Avgar 2012). The
gradual movement of bearded seals in the Bering−
Chukchi system, which similarly keeps up with sea
ice formation in the fall, is consistent with such
behavioral tracking. The fall southward migration
might analogously be conceptualized as ‘surfing the
white wave’ of freeze-up.

Juvenile versus adult behavior

This study focused on juvenile bearded seals rang-
ing from approximately 6 mo to 3 yr of age. During
the summer and early fall, these young animals are
less associated with sea ice than adults, and come
into bays and estuaries along the Alaskan coast
(Burns 1981, Cameron et al. 2010). This behavior
makes them more accessible for capture and tagging
than adults, but also reveals that their habitat selec-
tion and behavior differs from, and thus may not well
represent, adult behavior. Until more adults are
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tagged, it remains uncertain how representative
these juvenile data are of older age classes, although
recent work by Conn et al. (2014) suggests both sim-
ilarities and differences.

Selection for the ice edge may be a characteristic of
juvenile behavior. These young animals may be less
able to cope with the fewer breaks and fractures
available in dense ice well behind the edge, and may
be more susceptible to displacement from the avail-
able areas by older animals — a potentially danger-
ous situation if there are no other breaks in the sea
ice nearby (Stirling 1977, Lake et al. 2005). Older
individuals who are more experienced and physi-
cally mature may be better able to cope with denser
ice with fewer breaks, allowing them to winter
deeper in the ice pack, and thus adult distributions
may be less focused on the sea ice edge — which
analyses of spring transect data appear to support
(Conn et al. 2014). If this is the case, it is possible that
differential habitat selection may explain reported
differences in diets across age classes, although it is
equally likely that diet differences are due simply to
behavioral or physiological ontogeny (Lowry et al.
1980, Weathers & Sullivan 1989, Antonelis et al.
1994). Juveniles in other mammals, including pho-
cids, often segregate from adults to avoid negative
intra-specific interactions. The ice edge may be a
safer place for juveniles if they do encounter aggres-
sive conspecific adults, which would permit easy
escape from harassing adults. However, Stirling &
Archibald (1977) re ported that seals at the ice edge
experience higher levels of polar bear predation, so
selection of this habitat may come with the trade-off
of increased predation risk (but note that polar bears
do not range to the winter ice edge in the southern
Bering Sea).

Interpretation in the context of future sea ice loss

The dynamic tracking of the sea ice edge and inter-
mediate sea ice densities by juvenile bearded seals
may have some important consequences with respect
to their resilience to sea ice degradation. Unlike in
many migrating animals which typically move across
large tracks of unsuitable habitat before arriving at a
summer breeding ground, there is much lower
potential for phenological mismatch, as bearded
seals do not appear to be migrating per se, and
instead simply track the dynamics of optimal habitat.
Moreover, bearded seals are benthic foragers and
the continental shelf is extensive in the Bering and
Chukchi Seas, extending south to the Aleutian Is -

lands in the eastern reaches and north to the 75th
parallel. These different regions of the shelf may
offer differing food resources to bearded seals, but
the broad use observed here and in other tracking
studies suggests that most shelf areas are probably
relatively interchangeable and their suitability at any
given time is determined by presence of enough sea
ice that it affords a stable haul-out platform.

There may be an issue whenever the sea ice edge
extends (or contracts) such that it is situated over
deep ocean water. This can happen in the western
Bering Sea during winter, but in eastern regions,
where most of our seals wintered, the shelf is con-
tiguous all the way to the Aleutian Islands, and sea
ice never extended past the shallow shelf environ-
ment. Seals were definitely sensitive to depth, and it
may be that, where the ice edge extends well past
the edge of the continental shelf, the ice edge may no
longer be preferred habitat. In any case, reduced
winter sea ice extent is unlikely to seriously impact
bearded seals over at least the next few decades, as
large areas of winter sea ice will still be positioned
over the continental shelf (Cameron et al. 2010).

In other seasons, however, changes in sea ice and
the position of the sea ice edge could be more signif-
icant. Historically, bearded seals are reported to use
multi-year pack ice in the Chukchi and Beaufort Seas
during summer and fall (Burns 1970, 1981). Over the
period that those observations were made, the sum-
mer sea ice minimum still extended far enough south
that it extensively overlapped with the Chukchi,
Beaufort, and East Siberian continental shelves.
More recent minimum summer sea ice extents have
retreated far enough north that the sea ice edge only
just overlaps the shelf or is just into the deep ocean
basin. To date, even where these recent summer
minimums have retreated over deep waters, they
have remained there only briefly and have still been
positioned relatively close to the shelf such that they
remained available as a haul-out platform from
which relatively short foraging trips can be made.
This situation could change relatively quickly in the
foreseeable or even near future.
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