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INTRODUCTION

Ecosystem-based fisheries management (EBFM),
which considers trophic dynamics, interactions be -
tween marine species and human activities, and en -
vironmental influences on species ecology, is gaining

traction worldwide, including in the Gulf of Mexico
(GOM) large marine ecosystem (LME) (Fig. 1)
(Patrick & Link 2015, Grüss et al. 2017, Harvey et al.
2017). In the GOM, EBFM efforts include plans to
mitigate bycatch in commercial fisheries such as the
shrimp trawl and pelagic longline fisheries, measures
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functions for the dolphin species represented in the Ecospace model of the West Florida Shelf. Pref-
erence functions specify the preferences of species for certain environmental conditions and are
used by Ecospace to allocate species biomasses in space. We also took advantage of our mapping
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tles in the US GOM and their areas of bycatch in the US pelagic longline fishery. The present study
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KEY WORDS:  Distribution maps · Preference functions · Ecosystem models · Cetaceans · Florida
manatee · Sea turtles · Gulf of Mexico · Ecosystem-based fisheries management

Resale or republication not permitted without written consent of the publisher



Mar Ecol Prog Ser 602: 255–274, 2018

to mitigate the lionfish (Pterois spp.) invasion, and
strategies for developing marine protected areas
(MPAs) (Grüss et al. 2017). Ecosystem modeling plat-
forms are key tools for assisting EBFM, due to their
ability to simulate the impacts of anthropogenic and
environmental stressors and resource management
for multiple ecosystem components at multiple tem-
poral and spatial scales (Christensen & Walters 2011,
Collie et al. 2016). There now exists a wide variety
of ecosystem modeling frameworks, ranging from
simple extended single-species models to complex
trophodynamic and biogeochemical-based end-to-
end modeling platforms (see Plagányi 2007 and
O’Farrell et al. 2017 for a review).

The trophodynamic Ecopath with Ecosim (EwE)
with Ecospace approach (Walters et al. 1999, Coll et
al. 2015, Colléter et al. 2015) and the biogeochemi-
cal-based end-to-end Atlantis approach (Fulton et al.
2011, Weijerman et al. 2016) are among the most
 frequently used ecosystem modeling platforms. Both
EwE with Ecospace and Atlantis represent all marine
organisms, from bacteria and primary producers to
apex predators. The Ecopath component of EwE is a
static mass-balance description of a food web that
provides initial conditions for dynamic modeling,
including steady-state biomasses per km2 (Christen -
sen & Pauly 1992, Christensen & Walters 2004). The
Ecosim component simulates the dynamics of the
marine ecosystem of interest at monthly time steps by
altering fishing effort, fishing mortality, and environ-
mental forcing functions (Walters et al. 1997, 2000).
Finally, Ecospace replicates Ecosim dynamics over
a 2-dimensional domain and simulates dispersal,

migration, ontogenetic habitat shift, and advection
patterns, while also representing trophic interactions
and spatio-temporal changes in fishing effort (Wal-
ters et al. 1999, 2010). By contrast, Atlantis takes a
biogeochemical approach, and employs irregular 3-
dimensional polygons to characterize biogeography
and a detailed biological sub-model to simulate the
spatio-temporal dynamics of animal abundances and
biomasses as well as nutrient, detritus, and  bacteria
cycles (Fulton et al. 2004, 2007, 2011). The sophistica-
tion of EwE with Ecospace and Atlantis allows these
modeling approaches to tackle a wide number of
EBFM issues, including MPA effectiveness (e.g.
Salomon et al. 2002, Martell et al. 2005, Savina et al.
2013, Olsen et al. 2018), the consequences of bycatch
reduction measures (e.g. Fulton et al. 2007, Walters
et al. 2010, Morzaria-Luna et al. 2012, 2013), and
management strategy evaluations integrating eco-
system considerations (e.g. Fulton et al. 2014, Masi
et al. 2018).

The sophistication of EwE with Ecospace and
Atlantis, however, also demands a very large number
of inputs, which are not necessarily readily available
for all the studied marine organisms (Grüss et al.
2016). For example, to allocate species biomasses
over space and simulate spatial overlap among mar-
ine organisms, their prey, their predators, and human
activities, Ecospace must be given preference func-
tions that specify the preferences of species groups
for certain environmental conditions (Christensen et
al. 2014). These preference functions are then com-
bined with spatio-temporal environmental data in a
calculation of species group spatial distributions by

256

Fig. 1. Gulf of Mexico large
marine ecosystem. Depth
contours are labeled at 20,
40, 60, 80, 100, 200, and
1000  m. Important features
are labeled and include the
Campeche Bank, Tamau -
lipas waters, the Florida
Panhandle, and the West
Florida Shelf. MS: Missis-
sippi; AL: Alabama. Black
dashed-dotted line: US ex-

clusive economic zone
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Ecospace’s habitat capacity model (Fig. 2) (Chris-
tensen et al. 2014, Grüss et al. 2016). To fulfill the
same capacity, Atlantis must be directly provided
with distribution maps that specify the annual or sea-
sonal distribution of species groups in the horizontal
plane (Drexler & Ainsworth 2013, Grüss et al. 2014).

In the GOM, a methodology was recently proposed
and applied to produce distribution maps and prefer-
ence functions in bulk for the Atlantis model of the
GOM, called ‘Atlantis-GOM’, which has a very coarse
spatial resolution, and the Ecospace model of the
West Florida Shelf (WFS), called ‘WFS Reef fish Eco-
space’, which has a much finer spatial resolution (see
Fig. 3) (Grüss et al. 2016). This methodology consists
of (1) compiling a large monitoring database by gath-
ering all fisheries-independent data collected using
random-station designs, and fisheries-dependent data
obtained by randomly sampling fisheries operations
in the US GOM; (2) fitting statistical habitat models,
including generalized additive models (GAMs), to
this large monitoring database; and (3) employing
the fitted statistical habitat models to generate distri-
bution maps and preference functions (Grüss et al.
2018a,b,c). However, the large monitoring database
compiled for the US GOM includes only limited data
for marine mammals and sea turtles; thus, distri -
bution maps and preference functions for marine
mammals and sea turtles could not be produced for
Atlantis and Ecospace. Nevertheless, producing reli-

able distribution maps and preference functions for
marine mammals and sea turtles for Atlantis and
Ecospace remains a priority, because the patterns of
spatial overlap among marine mammals and sea tur-
tles and exploited fish species and human activities
(e.g. fishing) can have a large influence on the pre-
dictions made by Atlantis and Ecospace for assisting
EBFM (e.g. when evaluating the performance of by -
catch mitigation measures).

The Atlantis-GOM model represents 3 cetacean
groups (dolphins, Odontoceti, and Mysticeti), 1 siren-
ian group (manatee) and 3 sea turtle groups (logger-
head, Kemp’s ridley and leatherback sea turtles),
while the WFS Reef fish Ecospace model represents
only one cetacean species (common bottlenose dol-
phin Tursiops truncatus) (see Table 1). In the GOM,
 several cetacean line-transect shipboard and aerial
monitoring programs have been implemented, which
provide density estimates for cetaceans (reviewed in
Roberts et al. 2016). A blending of these data was
used in Roberts et al. (2016) and Mannocci et al.
(2017) to develop Tweedie GAMs for the US GOM
and the GOM LME, respectively; these Tweedie
GAMs model species absolute density (individuals
per unit area) as a function of environmental param-
eters. The predictions made by these GAMs are
available to generate distribution maps for the ceta -
cean groups represented in Atlantis-GOM and pref-
erence functions for common bottlenose dolphin

257

Fig. 2. Habitat capacity computations in the Ecospace modeling platform. During model run, spatial estimates of environmen-
tal parameters are read from data layers for each monthly time step, and the habitat capacity in each cell of the Ecospace
model is computed as the product of preferences for the environmental parameter values. The preference functions used in
Ecospace’s habitat capacity model are calculated beforehand from the predictions of generalized additive models integrating
environmental covariates in the original scale (i.e. not in the link scale), as described in detail in the main text. Figure inspired 

by Christensen et al. (2014) and Grüss et al. (2016)
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for WFS Reef fish Ecospace. Presence-only data are
available for sea turtle species for the entire GOM
LME from the Ocean Biogeographic Information
 System (OBIS) (OBIS 2017). MaxEnt is a statistical
approach frequently employed for modeling species
distributions from presence-only and environmental
data (Phillips et al. 2006, 2017), which is appropriate
to employ with the OBIS sea turtle data for the GOM
LME; then, MaxEnt predictions can be used to con-
struct distribution maps for the sea turtle groups
 represented in Atlantis-GOM. Finally, presence-only
data are also collected for manatees, via an ensemble
of aerial surveys in WFS waters in winter only (Mar-
tin et al. 2015), and via other ways (e.g. citizen scien-
tists) in the other US GOM States all year round (Fertl
et al. 2005, Carmichael et al. 2017, Hieb et al. 2017).
Manatees undertake extensive migrations in spring
and fall (Irvine & Campbell 1978, Laist & Reynolds
2005, Laist et al. 2013); therefore, the Atlantis-GOM
ecosystem model must be provided with seasonal
distribution maps for that group. Given the complex
nature of the presence-only data available for the
manatee (particularly the fact that data are available
for the WFS only for the winter season) and the very
coarse resolution of the Atlantis-GOM ecosystem
model, it is reasonable to base the production of sea-
sonal distribution maps for the manatee for Atlantis-
GOM on rules of thumb rather than a statistical
method.

In this study, we present the 3 methods we devel-
oped for constructing distribution maps for the
cetacean, sirenian, and sea turtle groups represented
in the Atlantis-GOM model, and we employ another

method initially designed for fish and invertebrates
(Grüss et al. 2018a) for generating preference func-
tions for the common bottlenose dolphin for the WFS
Reef fish Ecospace model. The first method we devel-
oped was for the 3 cetacean groups represented in
Atlantis-GOM and relied on the GAMs fitted in
Roberts et al. (2016) and Mannocci et al. (2017). The
second method we developed was for the manatee
and relied on sighting records and results from
 previous studies. The seasonal distribution maps
 generated using the second method are the first
quantitatively supported maps of Florida manatee
distribution along the entire US GOM. Finally, the
third method we developed was for the 3 sea turtle
groups represented in Atlantis-GOM and consisted
of fitting MaxEnt models to presence-only data from
OBIS and environmental data. As an example man-
agement application, we also used the results for
some cetaceans and sea turtles to estimate the per-
centage of spatial overlap between the hotspots of
these marine organisms in the US GOM and their
areas of bycatch in the US pelagic longline fishery.

MATERIALS AND METHODS

Study ecosystem models and species

The GOM is one of the world’s 64 LMEs, bordered
by Mexico, Cuba, and the US (Fig. 1). The spatial
domain of the Atlantis-GOM model (Ainsworth et al.
2015) covers the entire GOM LME (Fig. 3a), and is
made of 63 irregular polygons and 2 ‘boundary poly-
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Fig. 3. Spatial domains of the ecosystem models considered in this study. (a) Spatial polygons of the Atlantis model of the Gulf
of Mexico (GOM) referred to as ‘Atlantis-GOM’. Dark gray shading: Atlantis-GOM polygons in the US GOM; lighter gray:
polygons located outside the US GOM (i.e. in the Mexican or Cuban GOM or in international waters). The 2 ‘boundary poly-
gons’ of Atlantis-GOM, which do not interact with the rest of the model, are filled in white. MS: Mississippi; AL: Alabama. (b)
Spatial cells of the Ecospace model of the West Florida Shelf referred to as ‘WFS Reef fish Ecospace’ (filled in dark grey)
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gons’ that do not interact with the rest of the Atlantis-
GOM model (Fig. 3a). In total, 91 species groups are
explicitly considered in Atlantis-GOM, including the
3 cetacean groups (dolphins, Odontoceti and Mys-
ticeti), the sirenian group (manatee) and the 3 sea
turtle groups (loggerhead, Kemp’s ridley and leather-
back sea turtles) considered in this study (Table 1).
The dolphin group comprises 14 species, the Odonto-
ceti group 6 species, and the Mysticeti group 2 spe-
cies (Table 1).

The spatial domain of the WFS Reef fish Ecospace
model covers the entire WFS region excluding the
Florida Keys, has a spatial resolution of 20 km
(Fig. 3b; Chagaris 2013), and is made of 465 regular
cells (Fig. 3b). A total of 71 species groups are explic-
itly considered in WFS Reef fish Ecospace, including
the dolphin species considered in this study (common
bottlenose dolphin). Henceforth, we refer to the com-
mon bottlenose dolphin as ‘dolphin’.

Distribution maps for Atlantis-GOM

Cetaceans

The habitat-based density models developed and
validated in Roberts et al. (2016) and Mannocci et al.

(2017) that we employed in
this study actually combine
a detection function, which
models the probability of de-
tecting a species from an ob-
servation platform given that
it is present, with a Tweedie
GAM, which models species
absolute density as a func -
tion of environmental param-
eters. For each of the 22 spe-
cies making up the cetacean
groups represented in Atlan -
tis-GOM (as well as for other
cetacean species), Roberts et
al. (2016) and Mannocci et al.
(2017) fitted habitat-based
density models to the aggre-
gation of 6 systematic line-
transect ship board and aerial
monitoring data sets and a
set of per tinent environmen-
tal data. Through the use of
detection functions, where
possible, the models of Ro -
berts et al. (2016) and Man-

nocci et al. (2017) corrected for availability bias (the
chance that animals would be missed because they
were submerged) and perception bias (the chance
that animals at the surface would be missed despite
being present directly along the survey trackline, e.g.
because of small size or cryptic behaviors). Roberts et
al. (2016) developed models for the US Atlantic and
GOM regions, which were both entirely covered by
shipboard and aerial monitoring data. Mannocci et al.
(2017) needed to map the spatial distributions of
cetacean species in a large region of the western
North Atlantic (including the GOM LME) that was not
entirely covered by cetacean monitoring programs.
Faced with this ex tra polation problem, Mannocci et
al. (2017) developed models that were more general
than those of Roberts et al. (2016); Mannocci et al.
(2017)’s models integrated only a few environmental
parameters and smooth relationships between envi-
ronmental parameters and cetacean density.

To generate distribution maps usable in Atlantis-
GOM for dolphins, Odontoceti, and Mysticeti, we
proceeded in 3 steps. First, for each of the species
belonging to the 3 cetacean groups, we constructed
annual density maps with a 20 km resolution for the
GOM LME (Fig. 4a), using the annual density sur-
faces predicted from Roberts et al. (2016)’s models
within the extent of the area where cetacean moni-
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Species group                  Species making up the group

Dolphins                           Common bottlenose dolphin Tursiops truncatus, Atlantic
spotted dolphin Stenella frontalis, Clymene dolphin Stenella
clymene, Fraser’s dolphin Lagenodelphis hosei, pantropical
spotted dolphin Stenella attenuata, rough-toothed dolphin
Steno bredanensis, spinner dolphin Stenella longirostris,
striped dolphin Stenella coeruleoalba, false killer whale
Pseudorca crassidens, killer whale Orcinus orca, melon-
headed whale Peponocephala electra, pygmy killer whale
Feresa attenuata, Risso’s dolphin Grampus griseus, short-
finned pilot whale Globicephala macrorhynchus

Odontoceti                       Blainville’s beaked whale Mesoplodon densirostris, Cuvier’s
beaked whale Ziphius cavirostris, Garvais’ beaked whale
Mesoplodon europaeus, dwarf sperm whale Kogia sima,
pygmy sperm whale Kogia breviceps, sperm whale Physeter
macrocephalus

Mysticeti                          Bryde’s whale Balaenoptera edeni, fin whale 
                                         Balaenoptera physalus

Manatee                           West Indian manatee, Florida subspecies 
                                         Trichechus manatus latirostris

Loggerhead sea turtle     Loggerhead sea turtle Caretta caretta

Kemp’s ridley sea turtle   Kemp’s ridley sea turtle Lepidochelys kempii

Leatherback sea turtle    Leatherback sea turtle Dermochelys coriacea

Table 1. Marine mammal and sea turtle groups and species explicitly considered in the 
Atlantis-Gulf of Mexico (GOM) ecosystem model
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toring programs were conducted (i.e. the US GOM),
and the annual density surfaces predicted from Man-
nocci et al. (2017)’s models outside of the monitored
area where extrapolation is required (i.e. the rest of
the GOM LME). Second, we added together the
annual density maps for the 22 individual cetacean
species to obtain density maps for the 3 cetacean
groups. For example, we added together the density
maps for Bryde’s whale Balaenoptera edeni and fin
whale Balaenoptera physalus to arrive at a density
map for Mysticeti. Third, to obtain distribution maps
for dolphins, Odontoceti, and Mysticeti usable in
Atlantis-GOM, we averaged the densities from the
20 × 20 km density maps over the extent of each
Atlantis-GOM polygon and rescaled the resulting
estimates into relative abundances such that the sum
of relative abundances was equal to 1.0.

Manatee

In the US, manatees occur in greatest numbers
year-round in Florida, but are also found in the other

GOM States (Alabama, Mississippi, Louisiana, and
Texas; Fertl et al. 2005, Deutsch et al. 2008, Pabody
et al. 2009, Hieb et al. 2017). The manatee population
of the Mexican and Cuban GOM is negligible com-
pared to that of the US GOM (Deutsch et al. 2008,
Alvarez-Alemán et al. 2010). During winter months,
manatees aggregate in Florida waters where they
typically remain within 30 km of warm-water refuges
(e.g. warm-water natural springs, coastal power
plants, boat basins; Irvine & Campbell 1978, Laist &
Reynolds 2005, Laist et al. 2013). In this study, we
relied on the 2 sources providing sighting data for
manatees for the US GOM: (1) the Manatee Synoptic
Surveys, an ensemble of aerial surveys which was
initiated in 1991 and is conducted in Florida during
winter months every year (Martin et al. 2015); and (2)
the sighting records for all US GOM states compiled
in Fertl et al. (2005), Carmichael et al. (2017) and
Hieb et al. (2017), which come from many resources
(other than the Manatee Synoptic Surveys) and date
back to 1912.

To generate distribution maps for the manatee for
each season (spring, summer, fall, and winter) that
are usable in the Atlantis-GOM ecosystem model, we
proceeded in 2 steps. Here, the northeastern GOM
refers to the region of West Florida southeast of Pan -
ama City Beach and extending to the Florida Keys,
and the northwestern GOM refers to the re mainder
of the US GOM to the west (Fig. 3a).

First, we used the georeferenced sighting records
for the period 1991 to 2016 to determine the propor-
tion of the manatee population of the GOM present in
the northwestern GOM in each season. To estimate
this proportion, we proceeded as follows: (1) for each
year of the period 1991 to 2016, we divided the total
number of sightings in the northwestern GOM per
season by the total number of manatees sighted in
West Florida through the Manatee Synoptic Surveys;
and (2) computed the mean of the resulting estimates.
These calculations are based on the as sumption that
almost the entire manatee population of the GOM is
present in West Florida during the winter months
(Martin et al. 2015). The other as sumption we made is
that each individual manatee sighted in the north-
western GOM represented a unique individual. This
assumption is justified by the fact that manatee abun-
dance is low in the northwestern GOM relative to the
northeastern GOM all year round (Deutsch et al.
2008, Hieb et al. 2017). Moreover, although it is likely
that some encounters in the northwestern GOM rep-
resent repeated sightings of the same individuals,
this potential source of error is offset by individuals
never detected in the northwestern GOM.
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Fig. 4. Spatial grids used to produce distribution maps for
the present study. (a) 20 × 20 km grid for the Gulf of Mexico
(GOM) large marine ecosystem; (b) 20 × 20 km grid for the 

US GOM
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Second, we apportioned the manatee population
into Atlantis-GOM polygons for each season (Fig. 3a).
To do this, we made 2 assumptions: (1) a certain pro-
portion of the manatee population of the GOM was
present in the northwestern GOM, based on the esti-
mates produced in Step 1; and (2) the remainder of
the manatee population was homogeneously distrib-
uted in the 5 Atlantis-GOM polygons located in the
coastal northeastern GOM. The second assumption is
reasonable given the very low spatial resolution of
Atlantis-GOM and the spatial distribution patterns of
the manatee in West Florida suggested in previous
studies (e.g. Deutsch et al. 2003, USFWS 2007, Martin
et al. 2015). Then, for each season, we apportioned
all georeferenced sightings for the northwestern
GOM for the period 1991 to 2016 for that season to
the Atlantis-GOM polygons that contained the data
points, using a ray-casting algorithm (Shimrat 1962).
Finally, we estimated relative manatee abundance in
each Atlantis-GOM polygon, p, of the northwestern
GOM in season s (Np,s) as follows:

                                                                                    (1)

where Sp,s is the total number of sightings during the
period 1991 to 2016 in polygon p and season s (deter-
mined by the ray-casting algorithm), and Ps is the
proportion of the manatee population of the GOM
that is present in the northwestern GOM in season s.

Sea turtles

To construct distribution maps for the 3 sea turtle
groups represented in Atlantis-GOM, we developed
a MaxEnt model (Phillips et al. 2006) for each of the 3
groups. MaxEnt takes as input presence-only (occur-
rence) data, as well as an environmental landscape
defining the value of environmental predictions over
a spatial grid (Phillips et al. 2006, 2017). From the
environmental landscape, MaxEnt defines a set of
‘back ground locations’, which it then contrasts against
the occurrence locations to estimate the spatial distri-
bution of the species under consideration; the pres-
ence of the species under consideration is not known
at the background locations (Merow et al. 2013,
Phillips et al. 2017).

We downloaded occurrence data for loggerhead,
Kemp’s ridley, and leatherback sea turtles from OBIS
(OBIS 2017). OBIS data are primarily based on
atlases, aerial surveys, vessel surveys, and satellite
telemetry (typically aggregated in 1 × 1° grids). Be -
fore fitting MaxEnt models, we cleaned OBIS data;

occurrence data were discarded if they were located
entirely over land or outside the GOM LME. After
having cleaned the OBIS data, we had a total of 866
data points for the loggerhead sea turtle, 197 data
points for Kemp’s ridley sea turtle, and 883 data
points for the leatherback sea turtle. The sea turtle oc -
currence data associated with a year of observation
span the period 1758 to 2015 for loggerhead, 1913 to
2015 for Kemp’s ridley, and 1766 to 2015 for leather-
back sea turtles, though the years during which sea
turtles were observed are often not provided.

Loggerhead, Kemp’s ridley, and leatherback sea
turtles are found throughout the GOM LME, and
their spatial distribution patterns are influenced by
bottom depth, sea surface temperature (SST), surface
salinity, and oceanic current speed (Thompson 1984,
Ogren 1989, Griffin & Griffin 2003, Luschi et al. 2003,
Plotkin 2003, Gaspar et al. 2006, Hawkes et al. 2007,
Lambardi et al. 2008, Casale et al. 2009, Howell et al.
2015). Therefore, we provided a 20 × 20 km gridded
map of environmental parameters (bottom depth,
SST metrics, surface salinity metrics, and oceanic
current speed metrics) for the entire GOM LME to
MaxEnt.

We produced an annual raster of bottom depth and
monthly rasters of SST, surface salinity, and oceanic
current speed with a resolution of 20 km for the GOM
LME. Regarding bottom depth, we accessed the
SRTM30 PLUS global bathymetry grid from the Gulf
of Mexico Coastal Observing System (http:// gcoos.
tamu.edu/), from which we constructed a continuous
raster of bathymetry for the GOM LME at a resolu-
tion of 20 km. We downloaded Ocean Surface
 Current Analyses Real-time (OSCAR) third degree
resolution ocean surface current data for the period
2005 to 2015 from https://podaac.jpl.nasa.gov/dataset/
OSCAR_L4_OC_third-deg and Aqua MODIS monthly
0.0125° SST composites (daytime; 11 microns) for the
period 2002 to 2011 from http:// coastwatch. pfeg.
noaa.gov/erddap/griddap/, from which we estimated,
respectively, oceanic current speed and SST in each
of the cells of a 20 × 20 km grid covering the entire
GOM LME for the different months of the year. For
each month, measurements of salinity at the surface
for the period 2006 to 2009 for each grid point can be
extracted from the National Oceanographic Data
Center regional climatology database (Boyer et al.
2009). These measurements are incomplete. There-
fore, we subjected surface salinity data to spline
interpolation on a 20 × 20 km grid using ArcGIS 10.4
(ESRI) to provide a continuous surface with which
to fit MaxEnt models and make predictions with
the fitted models. Following Hattab et al. (2014), we
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derived 4 metrics from the monthly SST, surface
salinity, and oceanic current speed climatologies:
annual maximum, annual minimum, annual mean,
and annual range (i.e. the difference between annual
maximum and annual minimum, which is a proxy for
seasonal variation in the parameter of interest).

We fitted MaxEnt models for loggerhead, Kemp’s
ridley, and leatherback sea turtles using the R pack-
age ‘dismo’ (Hijmans et al. 2015). The MaxEnt mod-
els of the 3 sea turtle groups were initially fitted to 13
environmental parameters: bottom depth, the 4 SST
metrics, the 4 surface salinity metrics, and the 4
oceanic current speed metrics. If, for a given sea
 turtle group, some environmental predictors con-
tributed less than 1% of the model fit, those environ-
mental predictors were removed from the MaxEnt
model of the group and the model was re-fitted
(Maunder & Punt 2004, Lynch et al. 2012); this pro -
cedure was repeated until all the environmental
parameters integrated in a MaxEnt model contri -
buted to at least 1% of the model fit.

After the individual MaxEnt models for the 3
sea turtle groups were fitted, we validated them
using the leave-group-out cross validation procedure
(Hastie et al. 2001, Kuhn & Johnson 2013), as imple-
mented in the R package ‘dismo’ (Hijmans et al.
2015). In this procedure, occurrence data for each
sea turtle species were randomly split into training
and test data sets, with 80% of the data going to the
training data set and the rest of the data to the test
data set. MaxEnt models were fitted to the training
data set and then evaluated using the test data set.
The procedure was repeated 10 times, i.e. 10 Max-
Ent models were fitted to training data sets and then
evaluated using the test data sets corresponding to
the training data sets. The metric employed to eval-
uate the MaxEnt model of each sea turtle group was
the area under the receiver operating characteristic
(ROC) curve (the AUC metric), which assesses the
ability of MaxEnt to rank a randomly chosen occur-
rence location higher than a randomly chosen back-
ground location (Merow et al. 2013). Following
Hanley & McNeil (1982), Swets (1988), and Pearce
& Ferrier (2000), we considered that the MaxEnt
model fitted for a given sea turtle group passed the
validation test if its median AUC value was greater
than 0.7. While im plementing cross validation, the R
package ‘dismo’ also runs an analysis of parameter
contribution to the MaxEnt model (Hijmans et al.
2015); we took advantage of this to estimate the me -
dian relative contributions of environmental param-
eters to the individual MaxEnt models for each sea
turtle group.

After the MaxEnt models for sea turtle species
were fitted and validated, we used the probabilities
of encounter predicted by the models to generate dis-
tribution maps for the Atlantis-GOM ecosystem
model. To make final distribution maps usable in
Atlantis-GOM, MaxEnt predictions were averaged
over the extent of each of the Atlantis-GOM poly-
gons (Fig. 3a), and the resulting estimates were nor-
malized across Atlantis-GOM polygons so that their
sum was 1.0.

Preference functions

We employed the method that Grüss et al. (2018a)
developed for fish and invertebrates to produce pref-
erence functions for dolphin for the WFS Reef fish
Ecospace ecosystem model. In brief, this method
relies on GAMs integrating environmental covariates
and consists of 2 steps. First, for each individual envi-
ronmental covariate, xi, integrated in the GAM, den-
sities, y ’i, are predicted (in the original scale, i.e. not
in the link scale) with the fitted GAM (i.e. from esti-
mated GAM parameters) over a vector of values
ranging between min{xi} and max{xi}, while keeping
the other environmental covariates constant at their
mean value from the GAM modeled dataset; min{xi}
and max{xi} are, respectively, the minimum and max-
imum value of environmental covariate xi in the
study region. Second, for each environmental covari-
ate xi, where i ∈ 1,...,n,  a preference function yi is
determined from y ’i, …,y ’n, as follows:

                                                                                    (2)

Eq. (2) entails that all the preference functions of
the species of interest range between 0 and 1, but
also accounts for the relative effect of each environ-
mental covariate on the density of the species of
interest. For example, if the GAM estimates that
environmental covariate x2 has a less pronounced
effect on the density of the species of interest than
environmental covariate x3, then the range of the
preferences associated with environmental covariate
x2 will be smaller than that associated with environ-
mental covariate x3 (e.g. 0–0.5 vs. 0–1 in the example
provided in Fig. 2). When Ecospace is running, spa-
tial estimates of environmental variables are read
from data layers for each monthly time step, and the
habitat capacity, C, in each cell of the Ecospace
model is computed as the product of preferences for
the environmental conditions (e.g. C = y1 · y2 · y3 in
the example provided in Fig. 2). Then, if at a given
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monthly time step, say, the value of environmental
variable x2 is optimal and that of environmental vari-
able x3 is entirely suboptimal in Ecospace cell 1 (such
that y1, y2 and y3), while the value of environmental
variable x3 is optimal and that of environmental vari-
able x2 is entirely suboptimal in Ecospace cell 2 (such
that y1, y2 and y3 = 1), then habitat capacity in Eco-
space cell 1 (C1) will be lower than habitat capacity in
Ecospace cell 2 (C2 = 0.5).

To generate preference functions for dolphin, we
used the Tweedie GAM of the common bottlenose
dolphin developed and validated in Roberts et al.
(2016). This GAM integrates 7 environmental covari-
ates: bottom depth, bottom slope, distance to shore,
distance to fronts, SST, zooplankton biomass, and
eddy kinetic energy. The spatio-temporal patterns of
these 7 environmental covariates in the WFS Reef
fish Ecospace model are described in Fig. S1 in the
Supplement at www .int-res. com/ articles/ suppl/ m602
p255_ supp. pdf, and their range values in the WFS
region are provided in Table 2.

Estimation of the percentage spatial overlap
between animal hotspots and their areas of bycatch

in the US pelagic longline fishery

We took advantage of inferring the spatial distribu-
tions of cetaceans and sea turtles in the GOM in this
study to estimate the percentage of spatial overlap
between the hotspots of these marine organisms in
the US GOM and their areas of bycatch in the US
pelagic longline fishery. This analysis provided an
estimation of the degree of exposure of cetaceans
and sea turtles to bycatch in the US pelagic longline
fishery. Mysticeti and Kemp’s ridley sea turtles were
not considered in this analysis, because they have
not been observed as bycatch in the US pelagic long-
line fishery (Beerkircher et al. 2002). 

To conduct the analysis, we proceeded in 3 steps.
First, we determined the hotspots of cetaceans and
sea turtles in the US GOM. To determine the hotspots
of cetaceans, we added together the density maps of
dolphins and Odontoceti generated previously and
retained only the resulting density estimates for the
US GOM (Fig. 4b). Then, we identified the hotspots
of cetaceans in the US GOM as those cells where the
density of cetaceans was equal to or greater than
their mean density over the entire US GOM (Brodeur
et al. 2008, 2014, Grüss et al. 2018a). To determine
the hotspots of sea turtles, we produced a map of rel-
ative abundance (such that the sum of relative abun-
dances was equal to 1.0) for loggerhead and leather-
back sea turtles for the US GOM from the probability
of encounter maps generated previously for the 2 sea
turtle species for the GOM LME. Then, we added
together the maps of relative abundance for logger-
head and leatherback sea turtles, and we normalized
the resulting spatial estimates so that they summed
to 1.0; we thus obtained a map of relative abundance
for sea turtles for the US GOM. Finally, we identified
the hotspots of sea turtles in the US GOM as those
cells where the relative abundance of sea turtles was
equal to or greater than their mean relative abun-
dance over the entire US GOM (Brodeur et al. 2008,
2014, Grüss et al. 2018a).

Second, we determined the areas of bycatch of
cetaceans and sea turtles in the US pelagic longline
fishery. To do so, we relied on the bycatch data col-
lected by the pelagic observer program (POP). POP
places trained observers randomly on US pelagic
longline vessels throughout the GOM all year round
(Beerkircher et al. 2002). NOAA’s Southeast Fish-
eries Science Center provided us with POP data for
the period 2000 to 2015. From this data set, we
extracted the geographic coordinates of the areas
where cetaceans and sea turtles were caught as
bycatch. These data allowed us to map the areas of
bycatch of cetaceans and sea turtles in the US GOM.

Third, we estimated the percentage of spatial over-
lap between hotspots of cetaceans and sea turtles in
the US GOM and the areas of bycatch of these mar-
ine organisms in the US pelagic longline fishery (PO,
in %). For cetaceans, this percentage was obtained as
follows (Drapeau et al. 2004, Brodeur et al. 2008,
Grüss et al. 2018c):

                                                                                    (3)

where Ncetaceans,bycatch is the number of cells of the
spatial grid for the US GOM (Fig. 4b) that are both
hotspots of cetaceans and areas of bycatch of

N

N
PO ·100cetaceans

cetaceans, bycatch

cetaceans
=
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Environmental covariate           Range values in the 
                                                    West Florida Shelf region

Bottom depth                              2−363 m
Bottom slope                               0−1.5 degrees
Distance to shore                        2 × 103 − 251 × 103 m
Distance to fronts                       0−1.7 × 106 m
Sea surface temperature            13−31°C
Zooplankton biomass                 0−27 g m−2

Eddy kinetic energy                   0−0.1 cm2 s−2

Table 2. Environmental covariates integrated in the general-
ized additive model of the common bottlenose dolphin 

Tursiops truncatus developed in Roberts et al. (2016)

http://www.int-res.com/articles/suppl/m602p255_supp.pdf
http://www.int-res.com/articles/suppl/m602p255_supp.pdf
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cetaceans in the US pelagic longline fishery, and
 Nceataceans is the number of cells of the spatial grid for
the US GOM that are hotspots of cetaceans. For sea
turtles, PO was estimated in a similar way:

                                                                                    (4)

where Nseaturtles,bycatch is the number of cells of the
spatial grid for the US GOM that are both hotspots of
sea turtles and areas of bycatch of sea turtles in the
US pelagic longline fishery, and Nsea turtles is the num-
ber of cells of the spatial grid for the US GOM that
are hotspots of sea turtles.

RESULTS

Distribution maps

Cetaceans

The dolphin group represented in the Atlantis-
GOM ecosystem model is predicted to be present
across the entire GOM LME (Fig. 5a,b). The spatial
distribution patterns predicted for the dolphin group
primarily reflect those of the common bottlenose dol-
phin, because of the very high densities predicted for
that species in coastal areas, especially those of the

PO ·100sea turtles
sea turtles, bycatch

sea turtles

N

N
=
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Fig. 5. Maps produced for the (a,b) dolphin group, (c,d) Odontoceti group, and (e,f) Mysticeti group represented in the At-
lantis-Gulf of Mexico (GOM) ecosystem model; (a,c,e) are density maps for the entire GOM large marine ecosystem generated
from the predictions of habitat-based density models; (b,d,f) are maps of relative abundance usable in Atlantis-GOM (such 

that the sum of relative abundances for each map is equal to 1.0)
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southern WFS and the Campeche Bank (Figs. 5a,b &
Fig. S2 in the Supplement). The other areas of the
GOM LME where the density of the dolphin group
is predicted to be relatively high are the mid- and
outer-shelf areas of the GOM LME, which are domi-
nated by Atlantic spotted dolphin Stenella fron -
talis, and the moderately deep slopes of the northeast-
ern and north-central GOM, which are dom inated by
pantropical spotted dolphin Stenella attenuata (Fig. S2).

The Odontoceti group represented in Atlantis-
GOM is predicted to be present all along the conti-
nental slope of the GOM LME and in the deep waters
of the LME (Fig. 5c,d). The species making up the
Odontoceti group have similar spatial distribution
patterns and densities in the GOM LME (see Fig. S3
in the Supplement). Consequently, the spatial distri-
bution patterns predicted for the Odontoceti group
are not primarily dictated by a given species. The
density of Odontoceti tends to be higher along the
continental slope than in the deeper areas of their
distribution area (Figs. 5c,d & S3).

The Mysticeti group represented in Atlantis-GOM
is predicted to have much lower densities in the
GOM LME than dolphins and deep-diving Odontoc-
etae (compare Fig. 5e vs. a & c). The spatial distribu-
tion patterns predicted for the Mysticeti group prima-

rily reflect those of Bryde’s whale; this species is
essentially concentrated in the area of the WFS edge
northwest of Tampa, Florida (Figs. 5e,f & Fig. S4 in
the Supplement).

Manatee

The proportion of the manatee population of the
GOM present in the northwestern GOM (i.e. in the re-
gion west of Panama City Beach) was estimated to
be 0.09% in winter, 1.91% in spring, 4.19% in sum-
mer, and 1.48% in fall. Consequently, the relative
number of manatees in the northwestern GOM is rel-
atively low in all seasons and is easier to visualize with
a transformation (e.g. a root-root transformation, as in
Fig. 6). Hotspots of relative abundance for the mana-
tee in the northwestern GOM are located in the
region between Panama City Beach and Apa lachi -
cola, Florida in winter (Fig. 6a), in the Florida Panhan-
dle and in Alabama and Mississippi coastal waters
in spring (Fig. 6b), in the Florida Panhandle and in
 Alabama, Mississippi, and eastern Louisiana coastal
waters in summer (Fig. 6c), and in the region between
Panama City Beach and Apalachicola and in Alabama
and Mississippi coastal waters in fall (Fig. 6d).
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Fig. 6. (a−d) Seasonal maps of root-root transformed relative abundance for the Florida manatee Trichechus manatus
latirostris for the Atlantis-Gulf of Mexico (GOM) ecosystem model. Root-root transformation was used here to emphasize the 

areas of the GOM with low Florida manatee abundance
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Sea turtles

Because they contributed less than 1% of the model
fit, 2 of the environmental parameters initially inte-
grated in the MaxEnt models of loggerhead and
leatherback sea turtles were excluded (Table 3). For
the same reason, 8 of the 13 parameters initially inte-
grated in the MaxEnt model of Kemp’s ridley sea tur-
tle were excluded. The median AUC values of the
MaxEnt models of loggerhead sea turtle (0.869),
Kemp’s ridley sea turtle (0.914), and leatherback
sea turtle (0.928) were all greater than 0.7 and thus
passed the validation test. The environmental param-
eters that made the largest contribution to the Max-
Ent models were maximum annual oceanic current
speed and oceanic current speed annual range in the
case of loggerhead sea turtle, oceanic current speed
annual range and mean annual SST in the case of
Kemp’s ridley sea turtle, and SST annual range in the
case of leatherback sea turtle (Table 3).

Loggerhead sea turtles were predicted
to occur throughout the GOM LME,
except in the nearshore areas of Louis i -
ana and Mississippi (Fig. 7a,b). The high-
est probabilities of encounter of logger-
head turtles were predicted on the WFS
and in the Florida Panhandle.

Kemp’s ridley sea turtles were pre-
dicted to occur quasi-exclusively on the
GOM shelf (Fig. 7c,d). The highest prob-
abilities of encounter of Kemp’s ridley
sea turtle were predicted along the north -
ern GOM shelf, between the Sarasota
region and Tamaulipas waters.

Leatherback turtles were predicted to
be encountered over the entire GOM
LME (Fig. 7e,f). However, the probability
of encounter of leatherback turtles was
predicted to be highest in the Florida
Panhandle, all along the continental
slope of the US GOM and, to a lesser
extent, in the deep regions of the US and
Mexican and Cuban GOM.

Preference functions

We produced 7 preference functions
for the common bottlenose dolphin for
the WFS Reef fish Ecospace ecosystem
model, which are all easily interpretable
(Fig. 8). Some of these preference func-
tions have a more pronounced effect on

dolphin density than others. Depth has a much larger
effect on dolphin density than all the other environ-
mental parameters integrated in the GAM of dolphin;
dolphin density on the WFS is predicted to peak at
depths ranging between 5 and 45 m (Fig. 8; note the
different scales on the y-axes).

Estimation of the percentage spatial overlap
between animal hotspots and their areas of bycatch

in the US pelagic longline fishery

We found 29 records of bycatch for cetaceans (dol-
phins and Odontoceti) in the POP dataset (Fig. 9a).
Consequently, as hotspots of cetaceans were predicted
to cover a relatively large fraction of the US GOM
(Fig. 9b), the percentage of spatial overlap between
hotspots of cetaceans in the US GOM and the areas of
bycatch of cetaceans in the US pelagic longline fishery
(i.e. PO) was predicted to be very low (1.5%).
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Sea turtle Median Median relative contributions of environ-
species AUC mental parameters to the MaxEnt model of 

value the species (%)

Loggerhead 0.869 Maximum annual oceanic current speed (23.6)
sea turtle Oceanic current speed annual range (23.3)

Maximum annual surface salinity (13.9)
SST annual range (7)
Mean annual SST (5.6)
Mean annual surface salinity (5.6)
Depth (5.5)
Minimum annual oceanic current speed (4.8)
Mean annual surface salinity (4.5)
Mean annual oceanic current speed (3.8)
Maximum annual SST (3)

Kemp’s ridley 0.914 Oceanic current speed annual range (36.3)
sea turtle Mean annual SST (30.7)

Minimum annual surface salinity (15.9)
Depth (15.3)
Maximum annual oceanic current speed (3.3)

Leatherback 0.928 SST annual range (28)
sea turtle Depth (16.5)

Mean annual surface salinity (12.2)
Minimum annual surface salinity (10.1)
Mean annual oceanic current speed (7.7)
Mean annual SST (6.4)
Minimum annual oceanic current speed (5.2)
Maximum annual surface salinity (4.8)
Maximum annual SST (3.5)
Oceanic current speed annual range (3)
Minimum annual SST (2.8)

Table 3. Median area under the receiver operating characteristic curve
(AUC) of the MaxEnt models of loggerhead sea turtle Caretta caretta,
Kemp’s ridley sea turtle Lepidochelys kempii, and leatherback sea turtle
Dermochelys coriacea, and median relative contributions of environmen-
tal parameters to the 3 models. The estimates reported here were obtained
using 10 cross validation runs implemented with the R package ‘dismo’ 

(Hijmans et al. 2015). SST: sea surface temperature
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In contrast, we found about 10 times more records
(268) of bycatch for sea turtles (loggerhead and leath-
erback sea turtles) than for cetaceans in the POP
dataset (Fig. 9c), while hotspots of sea turtles were
predicted to cover a large fraction of the US GOM
(Fig. 9d). The PO estimated for sea turtles was mod-
erately high (37.9%).

DISCUSSION

The spatial allocation of species biomasses in spa-
tially explicit ecosystem models has usually relied on
simplistic methods (see Grüss et al. 2016 for a
review). For example, the biomasses of marine mam-
mals and sea turtles were previously allocated over

the Atlantis-GOM spatial domain based on the
known depth preferences of these animals rather
than using distribution maps (Ainsworth et al. 2015).
To provide ecosystem models with better in puts and,
therefore, allow these models to make more reliable
predictions, new methods have re cently been de -
signed; these methods made the most comprehen-
sive possible use of monitoring and environmental
data to produce preference functions (Grüss et al.
2018a) and distribution maps (Grüss et al. 2018b,c)
for fish and invertebrates. In this study, we developed
new methods to generate distribution maps for mar-
ine mammals and sea turtles. We also employed
Grüss et al. (2018a)’s method to produce preference
functions for the common bottlenose dolphin. The
methods we developed for constructing distribution
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Fig. 7. Maps produced for (a,b) loggerhead sea turtle Caretta caretta, (c,d) Kemp’s ridley sea turtle Lepidochelys kempii, and
(e,f) leatherback sea turtle Dermochelys coriacea for the Atlantis-Gulf of Mexico (GOM) ecosystem model; (a,c,e) are probabil-
ity of encounter maps for the entire GOM large marine ecosystem generated from the predictions of MaxEnt models;
(b,d,f) are maps of relative abundance  usable in Atlantis-GOM (such that the sum of relative abundances for each map is 

equal to 1.0)
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maps in this study relied on statistical habitat models
(GAMs or MaxEnt models) fitted to density or occur-
rence estimates and environmental data, or on the
treatment of sighting data and results from previous
studies. In the case of dolphins, Odontoceti, and Mys-
ticeti, we also demonstrated the benefits of combin-
ing the predictions of different statistical habitat
models for obtaining distributions for a LME which is
not entirely covered by monitoring programs. This
approach allowed us to rely on more elaborate statis-
tical habitat models when inferring spatial distribu-
tions where robust monitoring data were available
(the US GOM) and to fall back to more parsimonious
statistical habitat models when extrapolating spatial
distributions in un surveyed areas (the GOM LME
outside US waters).

The mapping efforts for dolphins, Odontoceti, and
Mysticeti conducted in this study highlighted greatly
differing spatial patterns for the 3 cetacean groups.
The combination of the predictions made by the
habitat-based density models of Roberts et al. (2016)
and Mannocci et al. (2017) revealed that in the GOM
(1) dolphin density is highest over the continental
shelf, where common bottlenose dolphins predomi-
nate, and lower over the continental slope and
deeper areas, where diversity is higher (Fig. 5a,b); (2)
Odontoceti hotspots are found along the continental
slope and in the deep waters (Fig. 5c,d); and (3) Mys-
ticeti are primarily concentrated in the area of the
WFS edge northwest of Tampa (Fig. 5e,f). The pre-
dictions made for dolphins, Odontoceti, and Mys-
ticeti in the present study reflect absolute density
(ind. km−2), as the habitat-based density models of
Roberts et al. (2016) and Mannocci et al. (2017) did
not consist solely of GAMs fitted to environmental

parameters, but also integrated detection functions
that correct for availability and perception biases.
The distribution maps we constructed for cetaceans
in this study are useful inputs for ecosystem models
like Atlantis-GOM that simulate the dynamics of
numerous species groups, each of which generally
includes a large number of species for computational
convenience. However, our distribution maps should
ideally not be used in cetacean-focused studies, due
to the large ecological and distributional differences
among the species making up the dolphin, Odonto-
ceti, and Mysticeti groups considered in this study
(e.g. common bottlenose dolphin and killer whale
Orcinus orca, both included in the dolphin group
considered in this study; Roberts et al. 2016). More-
over, some of the species making up the cetacean
groups represented in Atlantis-GOM are migratory,
while the others are resident. For example, in the
Mysticeti group represented in Atlantis-GOM, fin
whales migrate to the GOM during the winter season
(Gambell 1985), whereas the Bryde’s whale popula-
tion of the GOM is probably resident (LaBrecque et
al. 2015). Thus, cetacean-focused studies mapping
the spatial distributions of cetaceans in the GOM
should produce annual or seasonal distribution maps
for cetacean species depending on whether these
species undertake seasonal migrations or not, rather
than solely annual distribution maps as we did in the
present study.

This study is the first to quantitatively map Florida
manatee spatial distribution over the entire US GOM.
This effort primarily highlighted that hotspots of this
species in the northwestern GOM differ from one
season to the next (Fig. 6); this is due to the aggrega-
tion of Florida manatees in West Florida waters dur-
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Fig. 8. Preference functions
produced for the West Flo -
rida Shelf (WFS) Reef fish
Ecospace ecosystem model
for the common bottlenose
dolphin Tursiops truncatus.
Note the different scales on 

the y-axes
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ing winter and the seasonal migrations that manatees
undertake in spring and fall between warm-season
residence and overwintering sites (Aven et al. 2016,
Hieb et al. 2017). The main limitation of our approach
is the assumption that the spatial distribution of the
Florida manatee population of the GOM is homo -
geneous in the Atlantis-GOM polygons located in
coastal northeastern GOM. While this assumption
is reasonable for producing distribution maps for
Atlantis-GOM, which has a very coarse spatial reso-
lution, we recommend future studies try to infer
detailed spatial distribution patterns for the Florida
manatee in the entire US GOM including the WFS,
using a spatial grid with a finer resolution than that of
Atlantis-GOM. Future studies could also develop a
statistical habitat model for the Florida manatee pop-
ulation of the GOM. Such an endeavor would require
careful reflection on which data are most appropriate
to use (e.g. sighting, focal survey, telemetry/GPS)
and how to use them, given that different types of
data exist at different quantities and qualities among
different locations of the US GOM. A statistical habi-
tat model for the Florida manatee population of the
GOM may also benefit from integration of a detec-
tion function to correct for the availability and per-
ception biases that can be associated with manatee
sightings (Martin et al. 2015). The statistical model
for the Florida manatee could be a binomial GAM, in
which case (1) pseudo-absences should be generated
by randomly sampling within the spatial grid defined

for the species, so as to obtain presence/absence esti-
mates (Pearce & Boyce 2006, Aarts et al. 2012, Ren-
ner et al. 2015); and (2) since the likelihood of Florida
manatees being reported as present is strongly re -
lated to sampling characteristics (e.g. the proximity
to boat ramps; Aven et al. 2015), variables associated
with sampling bias (e.g. distance to boat ramps)
should be integrated in the binomial GAM (Renner &
Warton 2013, Renner et al. 2015).

The distribution maps produced for sea turtles from
MaxEnt predictions in this study highlighted dif ferent
spatial distribution patterns for loggerhead, Kemp’s
ridley, and leatherback sea turtles. These mapping
efforts are valuable for improving the spatial alloca-
tion of sea turtle biomasses in the Atlantis-GOM eco-
system model, which before simply relied on the
known depth preferences of sea turtles (Ains worth et
al. 2015). For instance, the MaxEnt model for leather-
back sea turtle predicted high probabilities of en -
counter near the Florida Panhandle, consistent with
earlier reports (Collard 1990, Troëng et al. 2004).
Likewise, our mapping concurred with previous stud-
ies that indicated that loggerhead sea turtle hotspots
in the US GOM were located on the WFS and in the
Florida Panhandle (Foley et al. 2014, Hardy et al.
2014) and that loggerhead sea turtle foraging areas
primarily occured over the continental shelf of the
GOM eastward of 90° W (from eastern Louisiana to
the Florida Keys in the US, and on the Campeche
Bank in Mexico) with relatively rare in cursions west-
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Fig. 9. (a,c) Areas of bycatch of cetaceans and sea turtles in the US pelagic longline fishery, and (b,d) distribution hotspots of
cetaceans and sea turtles in the US Gulf of Mexico; (a,b) are for cetaceans (dolphins and Odontoceti), while (c,d) are for sea tur-
tles (loggerhead turtle Caretta caretta and leatherback turtle Dermochelys coriacea); (a) and (c) were determined from the
 bycatch data collected by the pelagic observer program over the period 2000−2015, while (b) and (d) were obtained from the 

predictions of statistical habitat models
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ward (Hart et al. 2014). In the US GOM, the MaxEnt
model for Kemp’s ridley sea turtles depicted the dis-
tribution of the species well (e.g. constrained to the
continental shelf), but the model likely underesti-
mated the probability of encounter of Kemp’s ridley
sea turtles in the Mexican GOM (Shaver et al. 2016).
This issue highlights the need for more GOM-wide
location data for future studies.

Another issue for sea turtles is that the spatial dis-
tribution patterns of smaller (younger) sea turtles dif-
fer from those of their larger counterparts (Carr 1980,
Scott et al. 2014, Lamont et al. 2015). Direct observa-
tions of these small and cryptic animals by satellite
telemetry or aerial surveys is not possible (Putman et
al. 2013) and the distribution maps presented in this
study probably best reflect the distributions of larger
sea turtle life stages. One way forward may be the
use of simulations with individual-based movement
models (e.g. Ichthyop; Lett et al. 2008), in which the
dispersal of young sea turtles from nesting areas to
nursery habitat (Putman et al. 2013, 2015) and the
seasonal and reproductive migrations of adult sea
turtles (Painter & Hillen 2015) would be simulated.
The spatial distribution patterns of young and adult
sea turtles at different seasons of the year would then
be inferred by considering the geographic location of
individual sea turtles at a certain age.

Using the method developed in Grüss et al.
(2018a), we additionally produced preference func-
tions for the common bottlenose dolphin for an Eco-
space model, which were easily interpretable and
accounted for the relative effect of each environmen-
tal parameter on dolphin density (Fig. 8). These pref-
erence functions were readily interpretable due to
the restriction of the thin-plate regression splines
used in the GAM of the common bottlenose dolphin
to 4 degrees of freedom (Roberts et al. 2016). GAMs
are preferable to generalized linear models (GLMs)
for generating preference functions because they
allow for the estimation of non-linear relationships
between environmental parameters and marine
organisms, more realistically representing how the
environment influences spatial distribution patterns
(Grüss et al. 2018a). The predictions of MaxEnt mod-
els could also be employed for constructing prefer-
ence functions. However, this endeavor should be
pursued only if it is not possible to develop a GAM
for the species or species group of interest, because
the partial dependence plots derived from a MaxEnt
models are generally very difficult to interpret (Phillips
et al. 2006).

In the present study, we did not evaluate the im -
pacts of the distribution maps and preference func-

tions we produced for Atlantis-GOM and WFS Reef
fish Ecospace on the predictions and performance of
these ecosystem models. The main reason for this is
that, beforehand, it will be necessary to recalibrate
the 2 ecosystem models enhanced by our products
and those generated for fish, invertebrates, and sea-
birds in other studies (Grüss et al. 2018a,b, A. Grüss
unpubl. data). It is important to note that the spatial
distributions of marine mammals and sea turtles
 presented in this study will be used to initialize the
Atlantis-GOM model, and the spatial distributions
of marine mammals and sea turtles in Atlantis-GOM
at run time will be relatively different; indeed, in
Atlantis, the distribution of the biomass of a species
group in the horizontal dimensional at each time step
is also influenced by the migration rates specified for
that species group (Fulton et al. 2004, 2007). With
respect to Ecospace, the spatial allocation of species
group biomasses is a complex process which does not
rely solely on preference functions, but also on de -
fined movement patterns as well as other factors (rel-
ative vulnerabilities to predation in non-preferred
habitat, and relative feeding rates in non-preferred
habitat) (Walters et al. 1999, Christensen & Walters
2004). It is also important to note that the simulation
of spatio-temporal dynamics in Ecospace takes place
in 2 parts: a ‘spin-up’ part to let the spatial distri -
butions of biomasses reach an equilibrium, and an
explanatory part where model results can be ex -
ploited (Chagaris 2013, Christensen et al. 2014).

In this study, we developed 3 different methods (a
method based on GAMs, a method based on MaxEnt,
and a non-statistical method) for each of our 3 study
species groups (cetaceans, sea turtles, and manatee,
respectively). However, we could have applied sev-
eral methods to our study groups. For example, as
mentioned earlier, we could have also generated
pseudo-absences for the manatee to then fit a bino-
mial GAM to the resulting presence/absence data set
and pertinent predictors. Future studies could em -
ploy several of our methods and others to obtain
products for marine mammals and sea turtles for spa-
tially explicit ecosystem models; such a multi-method
approach would allow gauging the uncertainty as -
sociated with the products delivered to ecosystem
models. For instance, the niche distribution modeling
approach BIOMOD (Thuiller et al. 2012), which fits
several types of statistical models (GAMs, MaxEnt,
and others) to the same presence/absence data set,
could be used to generate products for marine mam-
mals and sea turtles for ecosystem models. Although,
for this study, we focused on employing the best
method for each functional group using the available
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data, future studies applying multiple methods to the
same functional groups would be useful for under-
standing how the choice of a given statistical model
influences the estimated distribution maps and pref-
erence functions.

To demonstrate the usefulness of distribution maps
for marine mammals and sea turtles for EBFM efforts
beyond ecosystem modeling, we compared distribu-
tion hotspots to areas of a known potential stressor
for some species: commercial fishing bycatch. This
analysis suggested that the degree of exposure of
cetaceans to bycatch in the US pelagic longline fish-
ery is very low (1.5%), while that of sea turtles is
moderately high (37.9%). However, for cetaceans,
we hasten to note that our distribution hotspot analy-
sis (Fig. 9a,b) mainly reflects the density of pantropi-
cal spotted, common bottlenose, and Atlantic spotted
dolphins, which together dominate total cetacean
abundance in the US GOM, but not bycatch. While
pantropical spotted dolphins are frequently bycaught
in the US GOM pelagic longline fishery, the latter 2
species are not. The fishery generally operates along
the continental slope and in deep offshore waters,
but not in shelf waters where common bottlenose and
Atlantic spotted dolphins are strongly concentrated.
Other off-shelf, frequently-bycaught species, such as
Risso’s dolphin Grampus griseus and the short-finned
pilot whale Globicephala macrorhynchus, occur in
densities that are low relative to common bottlenose
and Atlantic spotted dolphins, so that our analysis did
not show many distribution hotspots off the shelf
where these bycatch events actually occur. Also, our
analysis should be considered preliminary, because
it relied on raw bycatch data collected by POP rather
than on statistical predictions of bycatch hotspots,
while POP samples only a small fraction of US pe -
lagic longline operations in most years (Beerkircher
et al. 2002). The key outcomes of our preliminary
analysis would probably not be dramatically altered
had we employed a statistical model for predicting
bycatch hotspots using the same data set, although a
larger data set might yield new hotspots. Future
studies could attempt to develop a statistical model
for mapping the bycatch areas of sea turtles, for
which a reasonable number of data points is avail-
able in the POP dataset. More generally, the distribu-
tion maps constructed using the methods developed
in this study could be employed for assisting numer-
ous EBFM efforts in the GOM, including, among
 others, ecosystem status reports (Karnauskas et al.
2013, 2017), studies evaluating the performance of
MPA strategies (Brock 2015, O’Farrell et al. 2017),
and efforts to mitigate sea turtle bycatch in the reef

fish and shrimp fisheries (Scott-Denton et al. 2012,
Monk et al. 2015).

EBFM is increasingly being considered and used
around the world, and it relies heavily on ecosystem
modeling studies (FAO 2008, Christensen & Walters
2011, Collie et al. 2016). Thus, the methods devel-
oped in this study and other recent studies (Tarnecki
et al. 2016, Grüss et al. 2018a,b,c) for improving the
inputs provided to ecosystem models are timely. It is
our hope that these efforts will continue to improve
the reliability of ecosystem models, thereby facilitat-
ing their use in the fisheries management arena and
beyond.
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