Impacts of habitat, predators, recruitment, and disease on soft-shell clams *Mya arenaria* and stout razor clams *Tagelus plebeius* in Chesapeake Bay

Cassandra N. Glaspie^{1,4,*}, Rochelle D. Seitz¹, Matthew B. Ogburn², Christopher F. Dungan³, Anson H. Hines²

¹Virginia Institute of Marine Science, College of William & Mary, PO Box 1346, Gloucester Point, Virginia 23062, USA
 ²Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, Maryland 21037, USA
 ³Maryland Department of Natural Resources, Cooperative Oxford Laboratory, 904 S. Morris St., Oxford, Maryland 21654, USA

⁴Present address: Department of Oceanography and Coastal Sciences, Louisiana State University, 3195 Energy, Coast, and Environment Building, Baton Rouge, Louisiana 70803, USA

ABSTRACT: Soft-shell clams Mya arenaria and razor clams Tagelus plebeius in Chesapeake Bay, USA, have declined in numbers since the 1970s, with severe declines since the 1990s. These declines are likely caused by multiple factors, including habitat loss, predation, recruitment limitation, disease, warming, and harvesting. We surveyed Chesapeake Bay to examine influential factors on bivalve populations, focusing on habitat (mud, sand, gravel, shell, or seagrass), predators (crabs, fish, and cownose rays), recruitment, disease, and environment (temperature, salinity, and dissolved oxygen). M. arenaria and T. plebeius were found more often in habitats with complex physical structures (seagrass, shell) than any other habitat. Pulses in bivalve density associated with recruitment were attenuated through the summer and fall when predators are most active, indicating that predators likely influence temporal dynamics in these species. Presence of M. arenaria, which is near the southern extent of its range in Chesapeake Bay, was negatively correlated with water temperature. Recruitment of M. arenaria in the Rhode River, Maryland, declined between 1980 and 2016. Infection by the parasitic protist *Perkinsus* sp. was associated with stressful environmental conditions, bivalve size, and environmental preferences of Perkinsus sp., but was not associated with bivalve densities. It is likely that habitat loss, predators, and low recruitment are major factors keeping *T. plebeius* and *M. arenaria* at low densities in Chesapeake Bay. Persistence at low densities may be facilitated by habitat complexity (presence of physical structures), whereas further reductions in habitats such as seagrass and shell hash could result in local extinction of these important bivalve species.

KEY WORDS: Bivalve · Seagrass · Oyster · Temperature · Climate · Perkinsus chesapeaki

- Resale or republication not permitted without written consent of the publisher

INTRODUCTION

The soft-shell clam *Mya arenaria* and the stout razor clam *Tagelus plebeius* are both large, deep-burrowing bivalves that are harvested in the Chesapeake Bay for human consumption and for bait (Dungan et al. 2002, Homer et al. 2011). *M. arenaria* in particular supports a large commercial fishery in the USA, and it accounted for 11% of domestic commer-

cial bivalve dollar value in 2016 (NMFS 2017). In Chesapeake Bay, *M. arenaria* has supported a commercial hydraulic dredge fishery in Virginia and Maryland starting in the early 1950s with the invention of the hydraulic dredge. Commercial clammers also harvest *T. plebeius* for eel and crab bait (Dungan et al. 2002, Homer et al. 2011).

Historically, *M. arenaria* and *T. plebeius* served important roles as biomass dominants that contributed

substantially to the food web and water quality of Chesapeake Bay (Abraham & Dillon 1986, Eggleston et al. 1992, Seitz et al. 2001). M. arenaria and T. plebeius are key prey for numerous commercially and recreationally important fish and crab species (Eggleston et al. 1992, Seitz et al. 2005, Fisher 2010). These largebodied, filter-feeding clams likely played a large role in filtration of the water column when they were abundant: M. arenaria in the Baltic Sea can filter the entire water column in less than a day (Forster & Zettler 2004), and filtration by M. arenaria in the Gulf of Maine increased water clarity in some lagoons where their densities were high (Thiet et al. 2014). Non-oyster bivalves have recently gained attention for water filtration as an ecosystem service in Chesapeake Bay (Gedan et al. 2014), but the value of filtration by thinshelled clams has not been assessed.

In Chesapeake Bay, M. arenaria has been in decline since the early 1970s, with more pronounced declines since the 1990s, and this species now exists in Chesapeake Bay at record low levels (Fig. 1). Declines during and after 1972 are attributed to impacts from Tropical Storm Agnes, a 100-year storm that drastically reduced salinities and increased sedimentation throughout Chesapeake Bay (Hyer & Ruzecki 1976, Schubel 1976, Schubel et al. 1976), which resulted in a mass mortality event for M. arenaria (Cory & Redding 1976). Due to this storm, which followed declines in abundance of M. arenaria in the late 1960s, the commercial

hydraulic dredge fishery for *M. arenaria* essentially ended in Virginia waters around 1968, and has failed to recover since then (Haven 1970). More recent (post-1990) dramatic declines in abundance of *M. arenaria* have resulted in variable, low harvests in Maryland waters (Homer et al. 2011). Since 1980, commercial clammers have gradually switched to harvest of *T. plebeius* for eel and crab pot bait (Dungan et al. 2002, Homer et al. 2011). Like *M. arenaria*, *T. plebeius* populations have experienced declines in

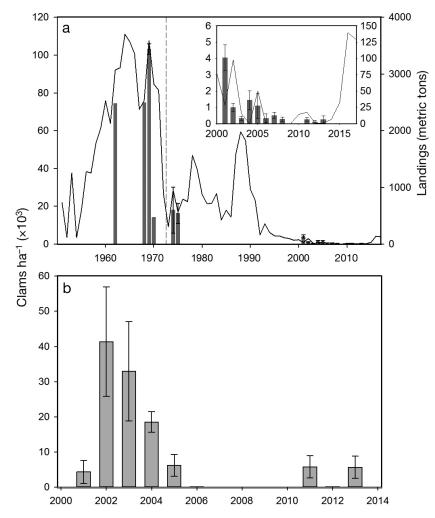


Fig. 1. (a) Mya arenaria abundance (±SE) and fishery landings (solid line) for the period 1951–2017, with inset showing amplification of abundance and landings for 2000–2017. Abundance data (shaded bars) are from Maryland Department of Natural Resources (DNR; 2001–2008) and Smithsonian Environmental Research Center (SERC; 2011–2013) fishery-independent escalator dredge sampling. Landings (1951–2016) are for Maryland and Virginia portions of Chesapeake Bay combined (National Marine Fisheries Service [NMFS] Commercial Landings Database). Landings data for 2017 are preliminary data from Maryland DNR. Vertical dashed line represents Tropical Storm Agnes (1972). Data source: NMFS Commercial Landings Database. (b) Tagelus plebeius abundance (±SE) from Maryland DNR (2001–2008) and SERC (2011–2013) fishery-independent escalator dredge sampling. Note differences in y-axis ranges

recent years; these were first documented in 2003–2004, when more than 70% of the *T. plebeius* population in Maryland perished from dramatic non-harvest mortalities (our Fig. 1; Homer et al. 2011). There are no historic landings records or a long-term time series of *T. plebeius* abundance, so the history and potential mechanisms for decline in this species are largely unknown.

Multiple factors likely control densities of *M. are-naria* and *T. plebeius* in the Chesapeake Bay and

other systems, including habitat loss (Glaspie 2018), predation (Seitz et al. 2001, Beal 2006), low recruitment (Beukema & Dekker 2005, Bowen & Hunt 2009), disease mortalities (Dungan et al. 2002), rising temperatures (Najjar et al. 2000), and commercial harvest (Brousseau 2005). Some of these factors, in particular disease and overharvesting, have been blamed for the inability of M. arenaria to recover from Tropical Storm Agnes and for the recent declines in M. arenaria and T. plebeius abundances (Fisher et al. 2011, Homer et al. 2011). Overharvesting is unlikely to be solely responsible for current trends of relatively low clam densities throughout Chesapeake Bay because fishing pressure is extremely variable there, and there has not been any commercial harvest of *M. arenaria* in the lower Bay since 1968. Therefore, while overharvesting may be a factor contributing to clam decline in the upper Bay, it is not likely a contributing factor to simultaneous declines observed in the lower Bay. The roles of the remaining factors in determining local or regional population dynamics of M. arenaria and T. plebeius are still uncertain.

There is some evidence that habitat preferences, including availability of refuge habitat that allows clams to avoid predation, may influence population dynamics of M. arenaria and T. plebeius. Habitat type can influence the distribution and abundances of M. arenaria. Growth rates can be impacted by sediment type, with higher growth rates observed in sand than in mud-gravel-shell mixtures (Newell 1982). Habitats with more structure, such as gravel, shell hash, or seagrass, can also provide refuge from predators (Sponaugle & Lawton 1990, Skilleter 1994, Irlandi 1997, Seitz et al. 2001). The availability of some refuge habitats, such as seagrass and oyster shell, has been decreasing in Chesapeake Bay (Rothschild et al. 1994, Lefcheck et al. 2017). The severe and persistent declines of Chesapeake Bay seagrass in the recent past have been attributed mostly to anthropogenic nutrient and sediment pollution, which decrease water clarity (Kemp et al. 2004). The dominant seagrass species in Chesapeake Bay, eelgrass Zostera marina, is also sensitive to warming, and the interaction between warming and poor water quality has resulted in declines in shallow beds until recently (Lefcheck et al. 2017, 2018). In the past several years, seagrass die-offs induced by extreme high temperatures in Chesapeake Bay have resulted in the prediction that Z. marina may disappear from the Bay entirely (Moore & Jarvis 2008), though seagrass may be increasing in the coastal bays, (regional coastal bays with direct connections to the Atlantic Ocean).

(Orth & McGlathery 2012). Loss of oyster reefs in Chesapeake Bay due to overfishing, habitat destruction, and disease has resulted in the ecological extinction of oysters in the Bay (Rothschild et al. 1994, Wilberg et al. 2011). As oysters have been lost, so has a major source of benthic shell substrates in the Bay. Oyster shell is a limited resource, and shell half-life is estimated to be as little as 3–10 yr in Delaware Bay (Mann & Powell 2007). Loss of this structural refuge may have implications for populations of deep-burrowing clams such as *M. arenaria* and *T. plebeius*.

The recent findings of high prevalences of the parasitic protist Perkinsus chesapeaki in M. arenaria and T. plebeius suggest that this could be a cause of the population declines of both bivalve species (Dungan et al. 2002, Reece et al. 2008). P. chesapeaki infections have reached epizootic levels in M. arenaria (McLaughlin et al. 2000). However, prevalence is not necessarily equal to pathogenicity, as seen in some disease-resistant oyster stocks in the Chesapeake Bay (Encomio et al. 2005). The cancer disseminated neoplasia also causes mortality of M. arenaria, but this disease is not as prevalent as P. chesapeaki, and is not reported to affect T. plebeius (Farley et al. 1991, Dungan et al. 2002); thus, the disease aspect of the present study focuses only on the impact of P. chesapeaki on M. arenaria and T. plebeius.

Extreme temperature, dissolved oxygen, or salinity levels may be stressful to M. arenaria and T. plebeius, resulting in mortality or metabolic constraints that make these conditions unsuitable for growth. M. arenaria is near the southern extent of its geographic range in Virginia, and is not tolerant of temperatures above 28°C, a temperature that is frequently exceeded in Chesapeake Bay during summer months (Moore & Jarvis 2008). In contrast, T. plebeius is a warm-water species that is distributed into South America (Abrahao et al. 2010), and high water temperatures (>28°C) may not be stressful for this species. Benthic species in general are intolerant of dissolved oxygen levels below 1.5 mg l⁻¹ (Rosenberg et al. 1991), and M. arenaria will decrease burial depth and extend their siphons into the water column under severe hypoxia (<1.5 mg l⁻¹; Taylor & Eggleston 2000). Thus, low dissolved oxygen is likely to be stressful for both M. arenaria and T. plebeius. Finally, T. plebeius are rarely found at salinities below 5 PSU (Holland et al. 1987), and M. arenaria are intolerant of salinities below 4 PSU (Abraham & Dillon 1986).

Settlement and post-settlement processes are also important in determining distribution of organisms in soft-sediment communities (Olafsson et al. 1994).

Larval behavior, hydrodynamics, and intense predation of postlarval bivalves control patterns of M. arenaria recruitment in other systems (Beukema & Dekker 2005, Bowen & Hunt 2009). Recruitment of M. arenaria remains high in several tributaries of Chesapeake Bay (Lovall et al. 2017), where juveniles survive to adulthood primarily in habitats with sufficient structure for protection from predators (Seitz et al. 2005). Recruitment of M. arenaria is not necessarily correlated with local abundance of adult clams (Bowen & Hunt 2009), but low densities of M. arenaria and T. plebeius throughout the Chesapeake Bay may generally limit recruitment and contribute to the loss of these bivalve species, as with bay scallops Argopecten irradians irradians in Long Island Sound (Tettelbach et al. 2015). In addition, larval and young juvenile M. arenaria are more susceptible to extreme environmental conditions such as high temperatures and low salinities (Abraham & Dillon 1986), and population dynamics for this species may be controlled by sensitive life stages.

No single factor can likely be exclusively attributed to the declines of M. arenaria and T. plebeius; thus, multiple factors were considered to gain useful insight into the problem. In this study, we used field surveys to concurrently examine habitat, predators, recruitment, and disease prevalence and intensity to disentangle the relative effects of these factors on survival and persistence of M. arenaria and T. plebeius. We hypothesized that: (1) densities of M. arenaria and T. plebeius are positively associated with presence of complex habitat such as seagrass and shell, and negatively correlated with predator densities; (2) densities of M. arenaria are negatively correlated with temperature; and (3) intensity and prevalence of infection by presumed P. chesapeaki (hereinafter, Perkinsus sp.) increase under stressful environmental conditions (i.e. positively correlated with temperature and river discharge, negatively correlated with salinity and dissolved oxygen).

MATERIALS AND METHODS

Study system

The Chesapeake Bay provides an ideal location to study the effects of habitat type, predators, recruitment, disease, and physical factors on the distribution and abundance of *Mya arenaria* and *Tagelus plebeius*. The Bay offers a range of environmental conditions including temperature, salinity, dissolved oxygen, and availability of complex habitat. Lower

Chesapeake Bay (the Virginia portion of Chesapeake Bay) is largely polyhaline (except in the upper reaches of the tributaries). Upper Chesapeake Bay (the Maryland portion of the Bay) is largely mesohaline. Bottom habitat type in the upper Bay is characterized by oyster shell hash, soft muds, fine sands, and gravel/pebbles (Smith et al. 2003). Bottom type in the lower Bay is similar to that of the upper Bay (Wright et al. 1987), except shallow shoals in the lower Bay south of the Potomac River often have mixed beds of eelgrass Zostera marina and widgeon grass Ruppia maritima (Orth et al. 2010). The entire Chesapeake Bay experiences seasonal hypoxia in deep channel water, which occasionally wells up onto the shoals with the tides and wind events (Sanford 1990, Kemp et al. 2005). Summer temperatures in the upper Bay are likely still hospitable for M. arenaria, while the lower Bay experiences periods when they are above the tolerance limit for the species.

In Chesapeake Bay, the dominant predators of M. arenaria and T. plebeius include the blue crab Callinectes sapidus, horseshoe crabs Limulus polyphemus (Botton 1984, Lee 2010), and demersal fishes (de Goeij et al. 2001, Seitz et al. 2001) including cownose rays Rhinoptera bonasus (Fisher 2010). Crabs forage for clams from the sediment and consume the entire clam (Beal 2006), whereas demersal fishes nip clam siphons, causing clams to reduce their burial depth and exposing them to increased predation by probing predators (de Goeij et al. 2001). High predation rates on infauna are also associated with seasonal migratory behavior and deep predatory excavations of cownose rays (Blaylock 1993), which are able to consume bivalves that would otherwise avoid predation by burrowing, armor, and/or size refuges (Fisher 2010).

Survey design

Clams were collected from 3 subestuaries of lower Chesapeake Bay (Lynnhaven River, York River, Mobjack Bay), and 3 subestuaries of upper Chesapeake Bay (Western Shore, Eastern Bay, Chester River) in fall 2011; spring/summer/fall 2012; and either spring/summer 2013 (for the lower Bay) or summer/fall 2013 (for the upper Bay; see Table 1 for sampling dates). Each sampling season, 4 to 9 sites within each subestuary were sampled; sites were specific tributaries or shorelines in the subestuary that were chosen to represent the range of available benthic habitat types (mud, sand, gravel, shell, or seagrass) available in the subestuary (see Table 1).

Table 1. Locations and dates of suction sampling in lower Chesapeake Bay and hydraulic dredge sampling in upper Chesapeake Bay. Sites were each sampled on multiple dates (shown as mo/d/yr; see footnotes). Means are shown for temperature, salinity, and dissolved oxygen (DO)

Region	Latitude	Longitude	Temp.	Salinity	$DO \pmod{l^{-1}}$	
Subestuary	(°N)	(°W)	(°C)	(PSU)		
Lower Bay						
Lynnhaven River ^a	36.884	76.016	24.25	22.25	7.27	
	36.896	76.082	22.35	22.87	7.77	
	36.896	76.102	22.29	23.21	7.67	
	36.899	76.047	23.55	23.18	7.82	
Mobjack Bay ^b	37.291	76.382	21.20	19.06	8.99	
	37.312	76.406	21.62	18.82	8.53	
	37.344	76.416	21.76	18.84	8.63	
	37.371	76.362	21.54	19.36	8.53	
York River ^c	37.263	76.398	22.87	20.33	8.21	
	37.281	76.583	22.41	17.40	7.46	
	37.414	76.672	23.17	12.94	8.41	
	37.440	76.704	22.78	12.13	7.08	
Upper Bay						
Chester River ^d	38.932	76.228	23.8	12.36	9.35	
	39.000	76.209	22.20	11.80	8.60	
	39.044	76.185	22.71	11.71	7.70	
	39.089	76.152	22.35	10.80	6.80	
Eastern Bay ^e	38.839	76.249	22.97	13.33	8.43	
	38.880	76.330	22.66	13.34	8.14	
	38.901	76.258	22.22	13.23	8.28	
	38.912	76.258	23.63	12.94	7.70	
Western Shore ^f	38.941	76.257	23.65	12.54	7.75	
	38.867	76.518	22.49	11.73	7.06	
	38.868	76.510	21.68	11.21	7.01	
	38.882	76.481	22.04	12.33	6.96	
	38.899	76.435	26.80	13.20	8.60	
	38.909	76.457	21.71	11.84	7.11	
	38.937	76.439	24.01	11.76	6.50	
	38.988	76.414	22.78	12.95	7.94	
	38.981	76.446	22.95	13.05	7.77	
	39.011	76.396	22.82	12.65	7.58	
^a Sampled on 11/9/ ^b Sampled on 11/3/ ^c Sampled on 10/25 ^d Sampled on 10/18	11, 4/20/12 11, 4/19/12, 5/11, 4/20/1	, 7/30/12, 10/ , 7/10/12, 9/13 2, 7/26/12, 10	17/12, 4/3 3/12, 4/2 0/23/12, 6	30/13, and 4/13, and 7 5/11/13, an	7/15/13 7/10/13 d 9/18/13	

^eSampled on 10/18/11, 5/31/12, 7/31/12, 6/18/13, and 9/20/13

At each sampling site in the lower Bay, 3 replicate samples were collected in each season from shallow water of 1.5–2 m depth mean high water using a suction sampling device that collects samples of 0.11 m² area and 40 cm depth. Replicate sample locations in each site were selected by throwing the suction cylinder from the boat, and samples were sieved through 3 mm mesh. All samples were assigned a habitat category (mud, sand, gravel, shell, or seagrass) based on observations made in the field and the lab during sample processing. In the upper Bay, due to the low

density of clams and a lack of seagrass in clam habitat, samples were collected using a commercial hydraulic escalator dredge targeting areas fished for M. arenaria. This method of collection was not used in the lower Bay to prevent unnecessary destruction of existing seagrass beds, and because clams were consistently captured using less destructive methods such as suction sampling. Habitats were categorized by the presence/absence of oyster shell hash retained on the escalator dredge, and by diver surveys conducted in 2012. All M. arenaria and T. plebeius were counted, and clam densities at each site were determined by sample area (in the lower Bay) or dredge distance (in the upper Bay). All clams were measured to the nearest 1 mm for shell length. Bottom (e.g. <1 m from the sediment surface) dissolved oxygen, salinity, and temperature were also recorded at each site using a YSI probe (Model 85, Yellow Springs Instruments).

Between spring 2012 and summer 2013, blue crab abundance was quantified at each lower Bay site within a few days of bivalve suction sampling using 6 replicate 20 m tows of a modified commercial crab scrape (usually used for harvesting soft-shell peeler crabs in seagrass in lower Chesapeake Bay; 6 mm mesh, 1 m width; Seitz et al. 2008) because it is effective sampling mobile fauna in seagrass. In the upper Bay, seagrass was not a concern, so 2 replicate 4.9 m wide otter trawl tows were conducted at each site in the spring, summer, and fall of 2012 for 7 min each (~500 m). Gear efficiencies of both methods are similar: 24-34% for cap-

ture of juvenile crabs with the crab scrape (Ralph 2014) and ~22% for capture of most predators, including fish and crabs, with the otter trawl (Homer et al. 1980). Any fish caught in tows were counted and released. A fish species list and numbers caught can be found in Table S1 in Supplement 1 at www.intres.com/articles/suppl/m603p117_supp.pdf. Approximately 10% of bivalve sampling events were paired with trawls that occurred approximately a month before or after bivalve sampling, due to logistical constraints. In this case, an average of crab or fish abun-

^fSampled on 11/1/11, 4/20/12, 8/2/12, 10/24/12, 7/11/13, and 9/25/13

dance before and after the bivalve sampling was used in analyses. At each bivalve sampling site and for each season, the number of ray pits within 1 m to either side of a 50 m transect were counted, and are treated as a proxy of cownose ray density (Hines et al. 1997). Ray pits were about 0.3 m in diameter and 10 cm deep, and could be easily seen in good visibility, or detected by sweeping the sediment with hands in poor visibility. Horseshoe crabs were not quantified because they were not abundant enough in any of our samples. Fish and crab abundances per tow and ray pit counts were converted to density per m² for analyses. Due to logistical constraints, certain data, such as environmental data and predator abundance, were missing from the survey dataset, especially for fall 2011, so models that included these missing variables were fit to data from spring 2012 through fall 2013. Environmental data from the Chesapeake Bay Interpretive Buoy System (CBIBS) monitoring buoy at 38.963° N, -76.448° W were used for Maryland western shore samples from summer and fall 2013.

We conducted a gear comparison of bivalve sampling methods by using suction samples collected in the same areas as hydraulic dredging in spring 2012. Site-average densities from suction samples were regressed against site-average densities from hydraulic dredging for both M. arenaria and T. plebeius. M. arenaria densities calculated using suction sampling were 3.58 times higher than those calculated from hydraulic dredge samples ($R^2 = 0.95$; Fig. S1a in Supplement 1); thus, suction sample densities for M. arenaria were reduced by a factor of 3.58 to allow both data sets to be analyzed together. Densities calculated for T. plebeius using both methods were in close agreement (slope = 1.10, $R^2 = 0.90$; Fig. S1b in Supplement 1), so the raw data sets were combined for analyses. Suction samples appeared to collect more small and large M. arenaria (mean \pm SD: 42.33 \pm 13.73 mm; Fig. S2a in Supplement 1) than dredge sampling (mean \pm SD: 40.23 ± 5.42 mm; Fig. S2b in Supplement 1), indicating that the discrepancy in densities was not an artifact of hydraulic dredge mesh size. Biomass of both M. arenaria and T. plebeius from the lower Bay was determined as ash-free dry weight of bivalves dried in a drying oven for 24 h, and ashed in a muffle furnace at 550°C for 5 h; bivalves in the upper Bay were not processed for biomass.

The long-term trend of *M. arenaria* recruitment in Maryland was evaluated using data from surveys conducted by the Smithsonian Environmental Research Center in the Rhode River, MD. Benthic core samples were collected approximately quarterly (typically March/April, June, October, December) at 2

sandy subtidal sites from 1981 to 2016. These sites were located at 38.886° N, -76.542° W and 38.868° N, -76.518° W. Cores were 10.2 cm in diameter and 35 cm long. Seven core samples were taken per site on each sample date, and animals retained on a 500 µm sieve were preserved in 10% buffered formalin and stained with rose bengal. All *M. arenaria* were measured for shell length, and individuals <10 mm shell length were considered recruits. The total number of recruits in each year was calculated by site and then averaged across the 2 sites to provide an index of annual recruitment.

Disease

Whenever possible, 30 clams from each upper Bay site were held for 24–96 h in flow-through systems of ambient Rhode River or Tred Avon River waters before they were examined for *Perkinsus* sp. infections. Clams were dissected to secure labial palp tissues that were inoculated into tubes containing 3 ml of Ray's fluid thioglycollate medium (RFTM; Ray 1966), and then incubated in the dark at 28°C for 4–7 d. After incubation in RFTM, individual clam tissues were macerated in pools of 25 % Lugol's iodine before microscopic examinations at 40× magnification. *Perkinsus* sp. hypnospores were quantified in the most heavily infected palps of individual clams, and infections were assigned ordinal intensity ranks of 0–5.

Perkinsus sp. prevalence and intensity data for 2011–2013 were analyzed together with similar data collected in 2000–2009. Only data from clams collected at the same geographic locations by both investigations were used for the time series. For samples collected during our 2011–2013 survey, infection intensity categories included the rank of 0.5 for infections of very low intensities (Ray 1954). In accordance with the suggested method for cross-calibrating such data (Dungan & Bushek 2015), infection intensity data for 2011–2013 were cross-calibrated to those of 2000–2009 by pooling infection intensities of the lowest ranks (0.5, 1.0) (Dungan et al. 2002, Reece et al. 2008, Homer et al. 2011). Prevalences were estimated as the proportion of infected clams.

Clams tested for *Perkinsus* sp. infections were predominantly collected from upper Bay sites, where hydraulic dredging was used to reliably collect adequate numbers of adult clams. Although hydraulic escalator dredges were not used in the lower Bay, 30 juvenile *M. arenaria* were collected by hand from Indian Field Creek, York River, VA, in April 2013, held in flow-through tanks for several months until

they were 20–30 mm in shell length, and were assayed for *Perkinsus* sp. infections in July 2013.

Statistical analyses

Both M. arenaria and T. plebeius exhibited many instances of zero catch, so 2 models were used to analyze the data: presence/absence was modeled with a binomial generalized additive model (GAM, logit link), and non-zero densities were modeled with a Gaussian GAM (identity link) on log-transformed data. GAMs for *T. plebeius* used the following as parametric predictors: temperature (°C), salinity, dissolved oxygen (mg l⁻¹), ray pit density (m⁻²), crab density (m⁻²), fish density (m⁻²), and habitat (5 categories: gravel, mud, sand, shell, and seagrass). M. arenaria were rarer and data contained many more zeroes than T. plebeius; to allow for model convergence, avoid over-smoothing, and ensure homoscedasticity of residuals, the presence/absence model for M. arenaria was run only on spring/ summer data for 2012. In addition, habitat was reduced to 2 categories (simple, i.e. mud, sand, and gravel; and complex, i.e. seagrass and shell) in both presence/absence and non-zero density models. Seagrass and shell were selected as complex habitat because literature suggests these habitats provide refuge for bivalves (Skilleter 1994, Irlandi 1997). Although previous studies have found clams may achieve refuge from predation in gravel substrate (Sponaugle & Lawton 1990), the gravel in the present study was largely composed of relatively small (<10 mm diameter) and uniform material that was more similar to sand substrate than to either shell or seagrass.

Perkinsus sp. infection intensity rank-score was modeled as a log-transformed continuous variable using a Gaussian GAM (identity link). Disease GAMs for M. arenaria and T. plebeius used the following predictors: temperature (°C), salinity, dissolved oxygen (mg l⁻¹), bivalve length (mm), and bivalve density (m⁻²). To account for trends in data across space, a 2-dimensional spline (trend-surface) was fit on latitude and longitude for all GAMs (Cressie 1993). To account for trends in time, sampling day was fit in each model using a spline with a kernel smoothing function (Kohn et al. 2002). The number of knots (k) in each model was chosen automatically using the generalized cross-validation (GCV) optimizer in the R package 'mgcv' (Wood 2017), except for the presence/absence model for M. arenaria, which was fit with a spline of order k = 2 because only 2 seasons were modeled and the GCV optimizer produced a model with skewed residuals.

All variables were examined for multicollinearity with scatter plots and Pearson correlation coefficients before inclusion in the model. There was no evidence of multicollinearity; all variable combinations had Pearson correlation coefficients ≤0.64 (Berry & Feldman 1985; our Fig. S3 in Supplement 1). For all GAMs, appropriateness of the smoothing parameter was assessed using the k-index method and the smoothing parameter chosen was deemed adequate if the simulated p-value was >0.05 (Wood 2017). Homoscedasticity of residuals was assessed visually using residual and quantile-quantile plots. All models had appropriate smoothing and met the assumption of homogeneity of variance.

Time series (infection intensity, infection prevalence, and M. arenaria recruitment) were analyzed using automatic time series forecasting autoregressive integrated moving average (ARIMA) models (Hyndman & Khandakar 2008), and disease models included spring/summer temperature (April-August) obtained from the Chesapeake Bay Program Water Quality Database (www.chesapeakebay.net/data) for all tidal mainstem Chesapeake Bay stations, and annually averaged Susquehanna River discharge obtained from the United States Geological Survey (USGS) water quality monitoring station at Harrisburg, PA (National Water Information System at https://waterdata.usgs.gov/usa/nwis). No autocorrelation or non-stationarity was detected in ARIMA models of Perkinsus sp. infection intensities or prevalences ([p,d,q] = [0,0,0]), so analysis proceeded using linear models. For multiple comparisons, significant difference was determined using non-parametric bootstrap hypothesis testing with 10000 simulations and $\alpha = 0.05$ (Efron & Tibshirani 1993), and Cohen's d was calculated as a measure of effect size for all 2group comparisons. All analyses were completed in R version 3.2.5 (R Core Team 2017) using the following packages: mgcv (Wood 2011), ggplot2 (Wickham 2009), forecast (Hyndman & Khandakar 2008), rgdal (Bivand et al. 2017), raster (Hijmans 2016), lattice (Sarkar 2008), and car (Fox & Weisberg 2011). Code and data files are available from the Knowledge Network for Biocomplexity (Glaspie 2017).

RESULTS

Survey

Temperature over the course of the survey (fall 2011 to summer 2013) ranged from 12.6 to 33.3°C. Temperatures exceeding 28°C and 30°C were ob-

served for 23.7% and 6.5% of all samples collected, respectively. Salinity ranged from 5.3 PSU in the upper York River site to 25.7 PSU in the Lynnhaven Bay sites. The minimum dissolved oxygen was 3.3 mg l⁻¹ in Mobjack Bay, though the site means ranged 6.5 to 9.4 mg l⁻¹ (Table 1).

Densities of Mya arenaria were 2.8 times higher at sites in the lower Bay than at sites in the upper Bay (p = 0.02, d = 0.01; Fig. 2a). The maximum density of M. arenaria was 53 m⁻² near the mouth of the York River, VA, in spring 2012. Out of all samples collected, 54.7% of upper Bay and 89.8% of lower Bay samples did not contain M. arenaria. Despite repeated sampling, samples from 4 sites in Virginia contained no M. arenaria (2 in Mobjack Bay and 2 in Lynnhaven). Throughout all samples, densities of Tagelus plebeius were 13.1 times higher than M. arenaria densities (p < 0.001, d = 0.02; Fig. 2b). Densities of T. plebeius were 8.4 times higher at

sites in the lower Bay than at sites in the upper Bay (p < 0.001, d = 0.04). The maximum density observed for T. plebeius was 218 m $^{-2}$ in the lower Bay in Lynnhaven (Linkhorn Bay) in summer 2013. T. plebeius were found at every lower Bay site, but were not found at 2 sites in the Eastern Bay of Maryland throughout the study period. Trends in biomass of both M. arenaria and T. plebeius in the lower Bay closely matched trends in densities (Fig. S4 in Supplement 1).

Average shell length of M. arenaria was 1.4 times greater at sites in the upper Bay than at sites in the lower Bay (p < 0.001, d = 0.07; Fig. 3a). Similarly, T. plebeius at sites in the upper Bay were 2.1 times larger than those at sites in the lower Bay (p < 0.001, d = 0.04; Fig. 3b). Only 5.6 % of M. arenaria collected in the lower Bay were greater than 50 mm in shell length, while 29.7 % of upper Bay M. arenaria were 50 mm or larger.

The highest densities of *M. arenaria* each year occurred in the spring, with declining density through the fall (Fig. 4a). *T. plebeius* densities did not show consistent seasonal trends over the study period. In the lower Bay, *T. plebeius* densities were the lowest in spring 2012, increased through the summer and fall, and then remained high (generally 15–20 m⁻²) and stable through 2013 (Fig. 4b). In contrast, in the

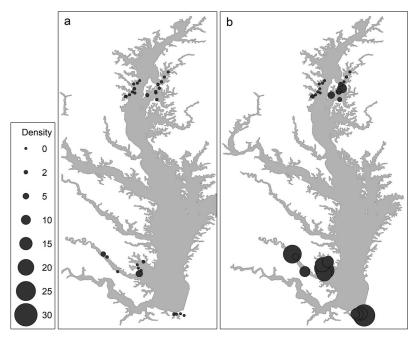


Fig. 2. Mean density (m^{-2}) of (a) Mya arenaria and (b) Tagelus plebeius captured in suction and hydraulic dredge samples between fall 2011 and summer 2013 in Chesapeake Bay, USA. Point size is a linear function of mean density at each site: Radius = $(0.25 \times Density) + 1$

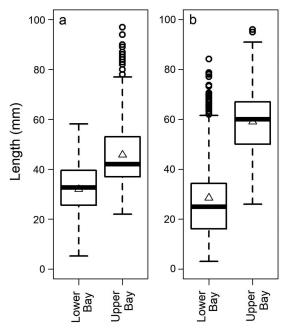


Fig. 3. Average shell length in lower and upper Chesapeake Bay for (a) *Mya arenaria* and (b) *Tagelus plebeius*, with boxes from the first to third quartile, a horizontal line at the median, and a triangle at the mean. Whiskers extend from the lowest data point that is still within 1.5 inter-quartile range (IQR) of the lower quartile, to the highest data point still within 1.5 IQR of the upper quartile, and data outside this range (outliers) are shown as circles

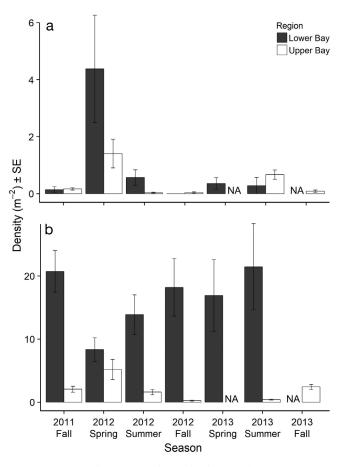


Fig. 4. Mean densities and standard errors for (a) *Mya arenaria* and (b) *Tagelus plebeius* in fall 2011 and spring, summer, and fall of 2012 and 2013 for lower and upper Chesapeake Bay. NA = not available (not sampled). For the lower Bay, sample size N = 36 for all seasons. For the upper Bay, N = 62, 51, 67, 59, NA, 43, and 67 for fall 2001 to fall 2013, respectively. Note differences in *y*-axis ranges

upper Bay, the clearest seasonal trend involved a pulse of T. plebeius in spring 2012 (\sim 5 m $^{-2}$) that disappeared through the summer and fall (Fig. 4b).

Density of *M. arenaria* was higher in complex habitat (seagrass and shell) than in less complex habitat (mud, sand, and gravel) (Fig. 5a). The odds of finding *M. arenaria* in seagrass or shell were 392 times greater than in less complex habitats such as mud, sand, and gravel. When *M. arenaria* were present, densities in seagrass or shell were 2 times greater than in less complex habitats such as mud, sand, and gravel. The odds of finding *M. arenaria* decreased as temperature increased, and when they were present, *M. arenaria* density was negatively correlated with dissolved oxygen (Table 2). There was no significant relationship between *M. arenaria* density and predator density (Table 2).

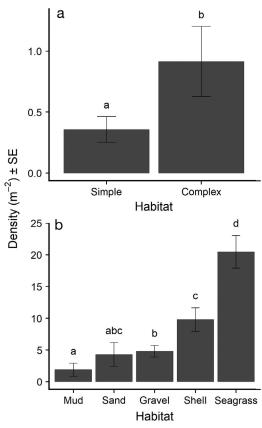


Fig. 5. Trends in density for (a) *Mya arenaria* and (b) *Tagelus plebeius* in different habitats. For *M. arenaria*, simple habitats are mud, sand, and gravel, and complex habitats include seagrass and shell. Error bars denote standard error. Different letters above bars denote significant differences at $\alpha = 0.05$. For *M. arenaria*, sample sizes N = 273 and 253 for simple and complex habitat, respectively. For *T. plebeius*, N = 59, 34, 184, 189, and 66 for mud, sand, gravel, shell, and seagrass, respectively. Note differences in *y*-axis ranges

T. plebeius density in seagrass was higher than in less complex habitats (shell, gravel, sand, and mud) (Fig. 5b). The odds of finding *T. plebeius* in seagrass were 12 times greater than in mud (z = 1.48, p = 0.10), 4 times greater than in sand (z = 0.81, p = 0.09), and 11 times greater than in shell (z = 0.69, p = 0.0005). When T. plebeius were present, densities in sand were 5 times greater than in gravel, 5 times greater than in seagrass, and 5 times greater than in shell. High densities in sand were only observed in the spring (Fig. 5b). High densities of T. plebeius were also observed in shell, though this was not significant in the models (Table 2). When they were present, T. plebeius density increased with salinity (Table 2). There was no significant relationship between T. plebeius density and temperature, dissolved oxygen, or predator density (Table 2).

Table 2. Generalized additive model (GAM) coefficients and standard deviations (in parentheses) for bivalve presence/absence (P/A), bivalve density, *Perkinsus* sp. infection intensity (average ordinal intensity rank of infected individuals, scale: 0–5), and prevalence of infection (proportion of individuals infected) models for *Mya arenaria* and *Tagelus plebeius*. Transformations (either log or logit) are indicated next to the variable name and coefficients are not back-transformed. Parametric predictor variables were temperature (Temp., °C), salinity (PSU), dissolved oxygen (DO, mg l⁻¹), ray pit density (rays m⁻²), crab density (crabs m⁻²), fish density (fish m⁻²), and habitat. For *M. arenaria* models, the habitat coefficient relates complex habitat (seagrass and shell; included in the intercept) to simple habitat (mud, sand, and gravel), and a negative coefficient means the response in simple habitat was less than that of complex habitat. For *T. plebeius* models, the habitat coefficient relates seagrass habitat (included in the intercept) to gravel (GR), mud (MU), sand (SA), and shell (SH), and a negative coefficient means the response in the habitat listed was less than that of seagrass. Disease GAMs also included bivalve length (mm), and bivalve density (m⁻²). Coefficients significant at $\alpha = 0.05$ are in **bold**. N = number of observations used to fit each model. NA = not applicable

	M. arenaria—				T. plebeius			
	logit(bivalve P/A)	log(bivalve density)	log(infection intensity)	Disease prevalence	logit(bivalve P/A)	log(bivalve density)	log(infection intensity)	Disease prevalence
Intercept	147.01 (62.41)	6.11 (7.09)	-21.90 (2.09)	-23.01 (2.10)	12.14 (5.45)	-4.56 (4.22)	-4.23 (1.73)	-3.18 (1.70)
Temp.	-4.79 (2.34)	-0.27(0.29)	0.44 (0.12)	0.60 (0.07)	-0.28(0.16)	0.01 (0.11)	0.19(0.07)	0.14 (0.07)
Salinity	-1.27(0.75)	0.17 (0.17)	0.27 (0.13)	0.48(0.04)	-0.29(0.16)	0.31 (0.14)	-0.18(0.06)	0.06 (0.05)
DO	-0.55(0.78)	-0.32 (0.16)	0.54(0.06)	0.19 (0.03)	0.22 (0.17)	-0.04(0.1)	-0.03(0.03)	0.10 (0.03)
Rays	-7.94 (15.51)	0.09 (1.76)	NA	NA	1.45 (2.89)	0.63 (1.25)	NA	NA
Crabs	0.34 (0.77)	-0.04(0.37)	NA	NA	-0.09(0.18)	-0.01(0.15)	NA	NA
Fish	-0.37(0.65)	0.10 (0.17)	NA	NA	-0.12(0.15)	-0.15(0.12)	NA	NA
Habitat	Simple:	Simple:	NA	NA	GR: -0.46 (1.32)	GR: 0.15 (0.97)	NA	NA
	-5.97 (2.82)	-0.77 (0.38)			MU: -2.46 (1.48)	MU: 1.27 (0.96)	NA	NA
					SA: -1.37 (0.81)	SA: 1.68 (0.65)	NA	NA
					SH: -2.42 (0.69)	SH: 0.13 (0.59)	NA	NA
Bivalve	NA	NA	0.06 (0.01)	2.89×10^{-2}	NA	NA	0.04 (0.01)	-0.02(0.01)
length				(4.01×10^{-3})				
Bivalve	NA	NA	8.13×10^{-5}	4.11×10^{-4}	NA	NA	1.78×10^{-3}	1.04×10^{-3}
density			(2.26×10^{-3})	(1.62×10^{-3})			(3.52×10^{-3})	(2.92×10^{-3})
N	150	62	102	88	310	179	154	128

M. arenaria recruitment in the Rhode River declined from a mean of over 2 million clams ha⁻¹ in 1982 to <0.1 million clams ha⁻¹ in 2005. After 2005, no recruits of M. arenaria were observed in any of the

core samples (Fig. 6). Recruitment was characterized by an ARIMA[0, 1, 0], with a loss (drift) of 0.01 million clams $ha^{-1} yr^{-1}$ (Fig. 6).

Disease

Mean *Perkinsus* sp. infection intensities for *M. arenaria* were relatively low at upper Bay sites, with a mean of 0.5 on a 5-point scale (Fig. 7a). Infection intensity in *M. arenaria* increased by a factor of 0.6 for each degree increase in temperature, and increased by a factor of 0.1 for each mm in shell length (back-transformed from Table 2). *M. arenaria* infection intensity was positively correlated with temperature, salinity, and dissolved

oxygen (Table 2). The mean infection intensity for T. plebeius was low to moderate and was 2 times greater than that for M. arenaria (p < 0.001, d = 0.03; Fig. 7b). Mean infection intensity for T. plebeius

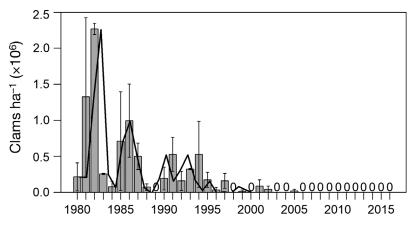


Fig. 6. Mean annual Mya arenaria recruitment from fishery-independent core sampling in Rhode River, MD (1980–2016). Recruitment data include only clams \leq 10 mm shell length. Shown are means of 2 sampling sites (bars), standard error (error bars), and fit from autoregressive integrated moving average (ARIMA) model (solid black line). Years where sampling occurred but no M. arenaria were captured are denoted by a '0'; no clams were captured in samples after 2005

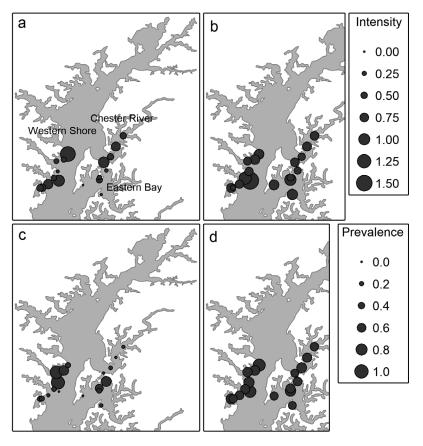


Fig. 7. Average *Perkinsus* sp. infection intensity (average ordinal intensity rank of individuals, scale: 0–5) for (a) *Mya arenaria* and (b) *Tagelus plebeius*, and prevalence of infection (proportion of individuals infected) for (c) *M. arenaria* and (d) *T. plebeius* for upper Chesapeake Bay from hydraulic dredge samples collected between fall 2011 and fall 2013. Point size is a linear function of mean disease intensity (Radius = $[2.0 \times \text{Intensity}] + 0.5$) or mean disease prevalence (Radius = $[2.5 \times \text{Prevalence}] + 0.5$) at each site

decreased by a factor of 0.2 with each unit increase in salinity, and increased by a factor of 0.2 with each unit increase in temperature (back-transformed from Table 2). Infection intensity increased with *T. plebeius* size, but did not increase with bivalve density for either *M. arenaria* or *T. plebeius* (Table 2).

Perkinsus sp. infection prevalence was relatively low for M. arenaria, averaging 29.2% over the course of the survey (2011–2013). Perkinsus sp. infection prevalence during the survey (2011–2013) was 2 times higher in T. plebeius (Fig. 7d) than in M. arenaria (Fig. 7c; p < 0.001, d = 0.06). Mean infection prevalence for both bivalve species increased with temperature and dissolved oxygen, and prevalence also increased with salinity for M. arenaria (Table 2). Infection prevalence increased with bivalve size for M. arenaria, but not for T. plebeius (Table 2). Infection prevalence and intensity were not related to M. arenaria or T. plebeius densities (Table 2). In the

lower Bay, where 30 juvenile *M. are-naria* were assayed, hypnospores were present in 2 individuals at very low infection intensities (ordinal rank: 0.05).

Prevalence of infection was moderate to high between 2000 and 2013, with mean infection rates of 68.5% for M. arenaria and 81.9% for T. plebeius. Across all years in the time series, average prevalence of infection was similar between species (d = 0.25, p = 0.16), and average infection intensities were light and similar between M. arenaria and T. plebeius (d = 0.04, p = 0.18) (Fig. 8a,b). Infection prevalence and intensity were negatively correlated with annual Susquehanna River discharge for *M. arenaria* (prevalence: coef. = -1.3×10^{-5} , $t_9 = -3.40$, p = 0.01; intensity: coef. = -2.3×10^{-5} , $t_9 = -2.31$, p = 0.05) but not for *T. plebeius* (prevalence: coef. = -7.0×10^{-6} , $t_8 = -1.60$, p = 0.15; intensity: coef. = -1.2×10^{-5} , $t_8 = -1.28$, p = 0.24; Fig. 8c). Infection prevalence and intensity were not correlated with spring/summer temperature for M. arenaria (prevalence: coef. $= 3.0 \times 10^{-2}$, $t_9 = -0.56$, p = 0.59; intensity: coef. = 6.2×10^{-2} , $t_9 = 0.44$, p = 0.67) or for T. plebeius (prevalence: coef. = -2.5×10^{-2} , $t_8 = -0.40$, p = 0.70; intensity: coef. = -10.0×10^{-2} , t₈ = -0.76, p = 0.47).

DISCUSSION

As we hypothesized, the distributions of thin-shelled commercial clam species *Mya arenaria* and *Tagelus plebeius* were positively associated with complex habitat. Densities of both *M. arenaria* and *T. plebeius* were associated with habitats with a high degree of complexity (seagrass and shell) as compared to some less complex habitats (mud, sand, and gravel). Complex habitats may be more favorable for these species because they increase rates of larval settlement by baffling water currents (Heiss et al. 2000), provide increased food resources for both suspension and facultative deposit-feeding species (Peterson et al. 1984), and provide refuge from predators (Orth et al. 1984). However, this also implies that habitat loss may be an important factor in the

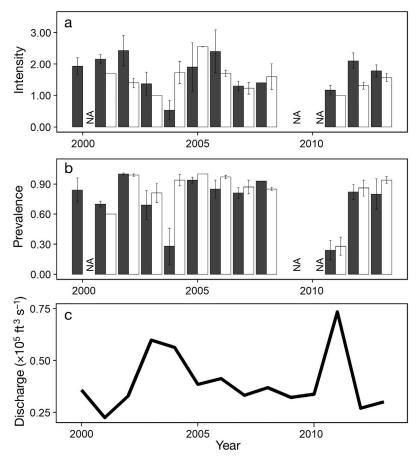


Fig. 8. Time series of *Perkinsus* sp. (a) mean annual infection intensity (average ordinal intensity rank, scale: 0–5) and (b) mean annual prevalence (proportion of individuals infected) for *Mya arenaria* (black) and *Tagelus plebeius* (white) from 2000 to 2013. Error bars indicate standard error. (c) Average annual Susquehanna River discharge as a proxy for salinity (from the United States Geological Survey National Water Information System). Discharge of 0.5×10^5 ft 3 s $^{-1}$ is ≈ 1415 m 3 s $^{-1}$. NA = not available (not sampled). See Supplement 2 at www.int-res.com/articles/suppl/m603p117_supp2.zip for sample sizes

decline of *M. arenaria* and *T. plebeius*, as both seagrass and oyster reef habitats have declined in Chesapeake Bay (Orth et al. 1984, 2006, Rothschild et al. 1994, Beck et al. 2011, Lefcheck et al. 2017).

In agreement with our hypotheses, densities of *M. arenaria* were negatively associated with increasing temperature. *M. arenaria* is a cold-water species that is distributed from the subarctic regions to North Carolina along the Atlantic coasts of North America (Abraham & Dillon 1986, Maximovich & Guerassimova 2003, Zhang et al. 2018). Typically, *M. arenaria* survives well in temperatures from 2 to 28°C (Cohen 2005), with mortality usually occurring above 30°C (Kennedy & Mihursky 1971). It is expected that with global climate change, Chesapeake Bay may become inhospitable for this species (Najjar et al. 2000). The

upper temperature tolerance for *M. arenaria* is frequently surpassed during summer in Chesapeake Bay, especially in shallow waters where this sampling effort took place. High summer temperatures are likely a factor in the decline of *M. arenaria* in lower Chesapeake Bay.

In contrast to our hypothesis, bivalve presence/absence and density were not negatively associated with ray, blue crab, or fish densities for either clam species, and horseshoe crabs were not abundant enough to determine their relative contribution to bivalve mortality. However, the snapshot in time provided by our predator and bivalve sampling may not reflect the legacy of predator-prey interactions experienced by local clam populations (Thrush et al. 1997, Seitz & Lipcius 2001, Lovall et al. 2017). Our seasonal time series for M. arenaria abundance in particular may indicate that predation is an important factor in determining density. In both the upper and lower Bay, densities of M. arenaria decline throughout the summer months when predation peaks (Hines et al. 1990). Observed temporal trends also correspond with M. arenaria reproductive behavior in Chesapeake Bay, where the fall spawn is more successful than the spring spawn, due to decreased predation pressure in the winter months (Blundon & Kennedy 1982a, Baker & Mann

1991). Individuals spawned in the fall are able to settle and grow throughout the winter, when risk of predation is minimal, and this new generation manifests as a springtime spike in density. Even the clams that survive until the spring are almost completely consumed by predators each year, essentially resulting in an 'annual crop' rather than a stable population with a sustainable age distribution. However, the declines in M. arenaria in summer may also be associated with increasing temperature, harvests, or disease, and we have insufficient evidence from our snapshot in time to distinguish between effects of these factors on clam distribution. Concurrent comparative experiments in predatorexclusion plots versus control plots conducted in the York River determined that blue crabs were responsible for 76% mortality over 5 d in juvenile *M. arenaria* (Glaspie 2018). Mesocosm experiments involving blue crabs and *M. arenaria* interacting in different habitats, including sand, shell, and seagrass, indicated that seagrass and shell habitats serve as a refuge from predation for clams (Glaspie 2018). The evidence from the current survey combined with other manipulative experiments suggests that predators may be major drivers of observed trends in *M. arenaria* density (Glaspie 2018).

Despite occupying a similar habitat niche in Chesapeake Bay, M. arenaria and T. plebeius exhibited different seasonal trends in densities. T. plebeius spawns in the spring (Holland & Dean 1977, da Silva et al. 2015), and while a spring high-density event was noted in the upper Bay in 2012, the lower Bay had relatively steady densities that did not show a clear recruitment signal or summer crash. T. plebeius in the lower Bay likely do not exhibit the same seasonal crashes in abundance observed for M. arenaria because a robust adult T. plebeius population remains in lower Chesapeake Bay throughout the seasons. This population allows for high densities of many different size classes to exist at any given time. However, in the upper Bay, where densities are much lower, seasonal spring recruitment was evident in time series, indicating very different population dynamics in these 2 regions of Chesapeake Bay. T. plebeius in the upper Bay seem to exhibit annual population fluctuations more similar to those of M. arenaria. This may reflect density-dependent mortality sources specific to the upper Bay, including high fishing pressure and disease, which work to keep upper Bay T. plebeius at lower densities that are sensitive to variations in annual recruitment, predation, and harvest.

Predators and limited reproductive efforts by relatively small breeding populations likely drive patterns in recruitment of M. arenaria in Chesapeake Bay, which is currently characterized by very low mean recruitment with local pockets of high recruitment; studies examining recruitment in more locations would, however, be necessary to identify factors contributing to low recruitment. Although there are some cases of locally high recruitment of M. arenaria in Virginia (Seitz et al. 2005), and modest recent recruitments have also supported productive local harvests in several Maryland tributaries, recruitment in many tributaries has declined drastically since the 1980s to approach zero currently in some locations. Predation has been identified as the most important limiting factor in recruitment of *M. arenaria* in other regions (Beal et al. 2001, Hunt & Mullineaux 2002, Beal 2006), and likely plays an important role in Chesapeake Bay as well. In addition, low adult densities and small body sizes may limit recruitment, as fecundity increases exponentially with clam size (Brousseau 1978, Brousseau & Baglivo 1988).

In agreement with our hypothesis, Perkinsus sp. infection intensity and prevalence in both species were positively associated with high temperatures that were considered stressful for M. arenaria in particular. Impacts of dissolved oxygen on Perkinsus sp. infection were less clear, though dissolved oxygen was generally within the tolerable range for M. arenaria and T. plebeius (>1.5 mg l^{-1} ; Rosenberg et al. 1991, Taylor & Eggleston 2000), and may not have been extreme enough to induce a stress response during the course of the survey. Disease intensity and prevalence in M. arenaria were positively correlated with salinity, and long-term intensities and prevalences of *Perkinsus* sp. infections in *M. arenaria* were negatively associated with Susquehanna River discharge, a proxy of salinity. Salinity preference of Perkinsus sp. may explain the long-term correlation between infection intensities/prevalences and river discharge/salinity. Perkinsus sp. survives and proliferates best at moderate to high salinities, depending on the species. At 28°C, P. chesapeaki survival and proliferation is optimal at moderate salinities of 15-25 PSU (La Peyre et al. 2006) or 14 PSU (McLaughlin et al. 2000). In oysters, infection intensity and prevalence of a similar protist, P. marinus, were both greater in higher-salinity waters (Burreson & Calvo 1996). Thus, it may be expected that Perkinsus sp. infection in M. arenaria would be greatest in high-salinity (low flow) years and locations.

It is possible that disease dynamics do not drive trends in M. arenaria and T. plebeius density in space and time, as intensities of infections were generally low for both species. In addition, infection intensity was associated with clam size (proxy of age), but not with clam densities. Previous studies have also failed to find an association between P. chesapeaki infection and mortality (Bushek et al. 2008). However, *Perkinsus* sp. infections of projected lethal intensities are reported for individuals of both clam species in Chesapeake Bay (Dungan et al. 2002), and frequently occur at elevated prevalences and mean intensities that suggest negative impacts on local populations (Reece et al. 2008, Homer et al. 2011). The current investigation was not designed to resolve impacts of disease on mortality (which would manifest as a negative relationship between bivalve density and disease) from density-dependent disease dynamics (which would manifest as a positive relationship between bivalve density and disease). To our knowledge, this study documents the most complete record of *Perkinsus* sp. infections in *M. arenaria* and *T. plebeius* to date, but impacts of disease mortalities on depleted clam populations of Chesapeake Bay remain to be carefully evaluated by rigorous experimental investigations of disease pathogenesis and outcomes.

Several major storms occurred during the study period, including Hurricane Sandy, which made landfall in New Jersey on October 29, 2012, and caused major flooding throughout Chesapeake Bay (Kunz et al. 2013), and Hurricane Lee in 2011, which was a major inflow event (Hirsch 2012). In contrast to Tropical Storm Agnes (1972), these storms produced no noticeable mortality in our survey of M. arenaria and T. plebeius in Chesapeake Bay. Although some of these storms caused extensive loss of human life and damage to infrastructure (Smith & Katz 2013), benthic ecosystems may be more resistant to such disturbances. However, extreme storms have caused mass mortality of bivalves (Lochead et al. 2012, Freeman et al. 2013), and it is possible that recent storms did not yield environmental conditions severe enough to produce a response in the bivalves surveyed as part of the present study.

The lack of information on *T. plebeius* long-term abundances is an impediment to understanding the decline of this species and the consequences of this decline. Without landings records or fisheriesindependent indices of T. plebeius abundance, it is difficult to assess the health of the population. In addition, basic population biology information for T. plebeius populations in the coastal US is often lacking. Investigations of some populations of *T. plebeius* in Argentina (Lomovasky et al. 2018) and Brazil (da Silva et al. 2015) have established valuable baselines for the species. The ecological and commercial importance of this species, as well as its role harboring Perkinsus sp., warrant future studies on growth, reproduction, tolerance to environmental conditions, disease-related mortality, and distribution within US waters.

CONCLUSIONS

It is likely that habitat loss, low recruitment, and predators are major factors keeping *Mya arenaria* and *Tagelus plebeius* at low densities in Chesapeake Bay, though continued harvest, which was not addressed in this study, may play a role as well. We found no evidence suggesting that densities of

M. arenaria or T. plebeius are negatively impacted by Perkinsus sp. infection prevalence or intensity, though the direct effect of *Perkinsus* sp. infection on bivalve mortality remains to be addressed. Extremely low densities of M. arenaria, decimated after Tropical Storm Agnes in 1972 (Cory & Redding 1976, Haven et al. 1976), and a susceptibility of this thin-shelled species to predation by blue crabs Callinectes sapidus, likely fuel a feedback loop that leads to high per-capita rates of predation, which works to keep M. arenaria populations at low levels. In recent years, similar dynamics may have been at work in the upper Chesapeake Bay, where populations of T. plebeius have reached low densities. Since M. arenaria and T. plebeius are preferred prey for major predators such as C. sapidus and Rhinoptera bonasus (Blundon & Kennedy 1982b, Fisher 2010), it is unlikely that predator switching will provide much relief. However, both species appear able to take advantage of refuge provided by complex habitats. Habitats such as seagrass and shell hash allow both bivalve species to persist at a low-density refuge, which may be stable. Further work should focus on predator-prey interactions, elucidating the existence and stability of low-density refuge habitats, the effect of population declines on ecosystem services such as filtration, and the likelihood that thin-shelled bivalve species may persist, recover, and sustain commercial fisheries in Chesapeake Bay if ample reproductive broodstocks and their habitats are adequately conserved among remnant populations.

Acknowledgements. We gratefully acknowledge the assistance given by the students and staff of the Community Ecology and Marine Conservation Biology labs at the Virginia Institute of Marine Science, many Maryland Department of Natural Resources staff members who collected and analyzed clams for abundances and diseases during 2000-2009, and the Fish and Invertebrate Ecology Lab at the Smithsonian Environmental Research Center funded in part from a Rapid Response Grant from Maryland Sea Grant for a post-storm survey of upper Chesapeake Bay clam populations. This material is based upon work supported by the National Oceanic and Atmospheric Administration grant numbers NA11NMF4570218 and NA07NMF4570326. C.N.G. was supported by an Environmental Protection Agency (EPA) Science to Achieve Results (STAR) fellowship, grant number FP91767501; and the National Science Foundation Administration GK-12 program, grant number DGE-0840804. M.B.O. was supported by a postdoctoral fellowship awarded by the Smithsonian Environmental Research Center. This work is partially based on the PhD dissertation of C.N.G., supervised by R.D.S. This paper is contribution number 3762 from the Virginia Institute of Marine Science, College of William & Mary.

LITERATURE CITED

- Abraham BJ, Dillon PL (1986) Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (mid-Atlantic). Softshell clam. US Fish Wildl Serv Biol Rep 82(11.68)
- Abrahao JR, Cardoso RS, Yokoyama LQ, Amaral ACZ (2010) Population biology and secondary production of the stout razor clam *Tagelus plebeius* (Bivalvia, Solecurtidae) on a sandflat in southeastern Brazil. Zoologia 27:54-64
 - Baker PK, Mann R (1991) Soft shell clam. In: Funderburk S, Mihursky JA, Jordan SJ, Riley D (eds) Habitat requirements for Chesapeake Bay living resources. US Fish and Wildlife Service, Annapolis, MD, p 4.1–4.18
- Beal BF (2006) Relative importance of predation and intraspecific competition in regulating growth and survival of juveniles of the soft-shell clam, *Mya arenaria* L., at several spatial scales. J Exp Mar Biol Ecol 336:1–17
- Beal BF, Parker MR, Vencile KW (2001) Seasonal effects of intraspecific density and predator exclusion along a shore-level gradient on survival and growth of juveniles of the soft-shell clam, *Mya arenaria* L., in Maine, USA. J Exp Mar Biol Ecol 264:133–169
- Beck MW, Brumbaugh RD, Airoldi L, Carranza A and others (2011) Oyster reefs at risk and recommendations for conservation, restoration, and management. Bioscience 61: 107–116
 - Berry WD, Feldman S (1985) Multiple regression in practice (quantitative applications in the social sciences). Sage, London
- Beukema JJ, Dekker R (2005) Decline of recruitment success in cockles and other bivalves in the Wadden Sea: possible role of climate change, predation on postlarvae and fisheries. Mar Ecol Prog Ser 287:149–167
 - Bivand R, Keitt T, Rowlingson B (2017) rgdal: bindings for the Geospatial Data Abstraction Library. R package version 1.2-8. https://cran.r-project.org/web/packages/rgdal/ index.html
- Blaylock RA (1993) Distribution and abundance of the cownose ray, *Rhinoptera bonasus*, in lower Chesapeake Bay. Estuaries 16:255–263
- Blundon JA, Kennedy VS (1982a) Refuges for infaunal bivalves from blue crab, *Callinectes sapidus* (Rathbun), predation in Chesapeake Bay. J Exp Mar Biol Ecol 65: 67–81
- Blundon JA, Kennedy VS (1982b) Mechanical and behavioral aspects of blue crab, *Callinectes sapidus* (Rathbun), predation on Chesapeake Bay bivalves. J Exp Mar Biol Ecol 65:47–65
- Botton ML (1984) The importance of predation by horseshoe crabs, *Limulus polyphemus*, to an intertidal sand flat community. J Mar Res 42:139–161
- Bowen JE, Hunt HL (2009) Settlement and recruitment patterns of the soft-shell clam, *Mya arenaria*, on the northern shore of the Bay of Fundy, Canada. Estuar Coasts 32: 758–772
- Brousseau DJ (1978) Population dynamics of the soft-shell clam *Mya arenaria*. Mar Biol 50:63–71
 - Brousseau DJ (2005) Effects of natural mortality and harvesting on inshore bivalve population trends. In: Buchsbaum R, Pederson J, Robinson WE (eds) The decline of fisheries resources in New England: evaluating the impact of overfishing, contamination, and habitat degradation. MIT Sea Grant, Cambridge, MA, p 97–118
 - Brousseau DJ, Baglivo JA (1988) Life tables for two field populations of soft-shell clam, *Mya arenaria*, (Mollusca:

- Pelecypoda) from Long Island Sound. Fish Bull 86:567-580
- Burreson EM, Calvo LMR (1996) Epizootiology of *Perkinsus* marinus disease of oysters in Chesapeake Bay, with emphasis on data since 1985. J Shellfish Res 15:17–34
- Bushek D, Landau B, Scarpa E (2008) Perkinsus chesapeaki in stout razor clams Tagelus plebeius from Delaware Bay. Dis Aquat Org 78:243–247
 - Cohen AN (2005) Guide to the exotic species of San Francisco Bay. San Francisco Estuary Institute, Oakland, CA
 - Cory RL, Redding MJ (1976) Mortalities caused by Tropical Storm Agnes to clams and oysters in the Rhode River area of Chesapeake Bay. In: The effects of Tropical Storm Agnes on the Chesapeake Bay estuarine system. Johns Hopkins University Press, Baltimore, MD, p 478–487
 - Cressie NAC (1993) Statistics for spatial data. Wiley, New York, NY
- da Silva CF, Corte GN, Yokoyama LQ, Abrahão JR, Amaral ACZ (2015) Growth, mortality, and reproduction of *Tagelus plebeius* (Bivalvia: Solecurtidae) in Southeast Brazil. Helgol Mar Res 69:1–12
- de Goeij P, Luttikhuizen PC, van der Meer J, Piersma T (2001) Facilitation on an intertidal mudflat: the effect of siphon nipping by flatfish on burying depth of the bivalve *Macoma balthica*. Oecologia 126:500–506
- Dungan CF, Bushek D (2015) Development and applications of Ray's fluid thioglycollate media for detection and manipulation of *Perkinsus* spp. pathogens of marine molluscs. J Invertebr Pathol 131:68–82
- Dungan CF, Hamilton RM, Hudson KL, McCollough CB, Reece KS (2002) Two epizootic diseases in Chesapeake Bay commercial clams, Mya arenaria and Tagelus plebeius. Dis Aquat Orq 50:67-78
 - Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall, New York, NY
- Eggleston DB, Lipcius RN, Hines AH (1992) Density-dependent predation by blue crabs upon infaunal clam species with contrasting distribution and abundance patterns.

 Mar Ecol Prog Ser 85:55–68
- Encomio VG, Stickler SM, Allen SK, Chu FL (2005) Performance of 'natural dermo-resistant' oyster stocks—survival, disease, growth, condition and energy reserves.

 J Shellfish Res 24:143–155
- Farley CA, Plutschak DL, Scott RF (1991) Epizootiology and distribution of transmissible sarcoma in Maryland softshell clams, *Mya arenaria*, 1984-1988. Environ Health Perspect 90:35–41
 - Fisher RA (2010) Life history, trophic ecology, and prey handling by cownose ray, *Rhinoptera bonasus*, from Chesapeake Bay. Virginia Institute of Marine Science Marine Resource Report No. MRR-10-10. Virginia Sea Grant, Gloucester Point, VA
- Fisher RA, Call GC, Grubs RD (2011) Cownose ray (*Rhinoptera bonasus*) predation relative to bivalve ontogeny.

 J Shellfish Res 30:187–196
- Forster S, Zettler ML (2004) The capacity of the filter-feeding bivalve *Mya arenaria* L. to affect water transport in sandy beds. Mar Biol 144:1183–1189
 - Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage, Thousand Oaks, CA
- Freeman RL, Dattilo BF, Morse A, Blair M, Felton S, Pojeta J (2013) The 'Curse of *Rafinesquina*:' negative taphonomic feedback exerted by strophomenid shells on stormburied lingulids in the Cincinnatian Series. Palaios 28: 359–372
- Gedan KB, Kellogg L, Breitburg DL (2014) Accounting for multiple foundation species in oyster reef restoration

- benefits. Restor Ecol 22:517-524
- Glaspie CN (2017) *Mya arenaria* population and disease survey. Knowl Netw Biocomplexity, doi:10.5063/F1N29V34
- Glaspie CN (2018) Mya arenaria and Mercenaria mercenaria predator-prey dynamics. Knowl Netw Biocomplexity, doi:10.5063/F1C24TNH
 - Haven DS (1970) A study of the hard and soft clam resources of Virginia: annual contract report for the period 1 July 1969 through 30 June 1970. Virginia Institute of Marine Science, Gloucester Point, VA
 - Haven DS, Hargis WJ, Loesch JG, Whitcomb JP (1976) The effect of Tropical Storm Agnes on oysters, hard clams, soft clams, and oyster drills in Virginia. In: The effects of Tropical Storm Agnes on the Chesapeake Bay estuarine system. Johns Hopkins University Press, Baltimore, MD, p 488–508
- Heiss WM, Smith AM, Probert PK (2000) Influence of the small intertidal seagrass *Zostera novazelandica* on linear water flow and sediment texture. N Z J Mar Freshw Res 34:689–694
 - Hijmans RJ (2016) raster: geographic data analysis and modeling. R package version 2.5-8. https://cran.r-project.org/web/packages/raster/index.html
- Hines A, Haddon A, Wiechert L (1990) Guild structure and foraging impact of blue crabs and epibenthic fish in a sub-estuary of Chesapeake Bay. Mar Ecol Prog Ser 67: 105–126
- Hines AH, Whitlatch RB, Thrush SF, Hewitt JE, Cummings VJ, Dayton PK, Legendre P (1997) Nonlinear foraging response of a large marine predator to benthic prey: eagle ray pits and bivalves in a New Zealand sandflat. J Exp Mar Biol Ecol 216:191–210
 - Hirsch RM (2012) Flux of nitrogen, phosphorus, and suspended sediment from the Susquehanna River Basin to the Chesapeake Bay during Tropical Storm Lee, September 2011, as an indicator of the effects of reservoir sedimentation on water quality. US Geological Survey Scientific Investigations Report 2012–5185
- Holland AF, Dean JM (1977) The biology of the stout razor clam *Tagelus plebeius*: II. Some aspects of the population dynamics. Chesap Sci 18:188–196
- *Holland AF, Shaughnessy AT, Hiegel MH (1987) Long-term variation in mesohaline Chesapeake Bay macrobenthos: spatial and temporal patterns. Estuaries 10:227–245
 - Homer M, Mihursky JA, Jones P (1980) Quantitative approaches towards characterizing estuarine fish populations and communities. Am Fish Soc Potomac Chapter Proc Fourth Annu Meet:39–99. US Department of the Interior, Fish and Wildlife Service, Washington, DC
 - Homer ML, Dungan CF, Tarnowski ML (2011) Assessment of Chesapeake Bay commercial softshell clams *Mya arenaria* and *Tagelus plebeius*. Report to NOAA Chesapeake Bay Fisheries Science Program, Award NA07NMF 4570326. https://dnr.maryland.gov/fisheries/Documents/NOAA_Final_report_softshell_clam.pdf
- Hunt HL, Mullineaux LS (2002) The roles of predation and postlarval transport in recruitment of the soft shell clam (Mya arenaria). Limnol Oceanogr 47:151–164
 - Hyer PV, Ruzecki EP (1976) Changes in salinity structure of the James, York and Rappahannock estuaries resulting from the effects of Tropical Storm Agnes. In: The effects of Tropical Storm Agnes on the Chesapeake Bay estuarine system. Johns Hopkins University Press, Baltimore, MD, p 66–80
 - Hyndman RJ, Khandakar Y (2008) Automatic time series forecasting: the forecast package for R. J Stat Softw 26: 1–22

- ズ Irlandi EA (1997) Seagrass patch size and survivorship of an infaunal bivalve. Oikos 78:511−518
- Kemp WM, Batleson R, Bergstrom P, Carter V and others (2004) Habitat requirements for submerged aquatic vegetation in Chesapeake Bay: water quality, light regime, and physical-chemical factors. Estuaries 27:363–377
- Kemp WM, Boynton WR, Adolf JE, Boesch DF and others (2005) Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Mar Ecol Prog Ser 303:1-29
- Kennedy VS, Mihursky JA (1971) Upper temperature tolerances of some estuarine bivalves. Chesap Sci 12:193–204
 - Kohn R, Schimek MG, Smith M (2002) Spline and kernel regression for dependent data. In: Schimekk MG (ed) Smoothing and regression: approaches, computation and application. John Wiley & Sons New York, NY, p 135–158
- Kunz M, Mühr B, Kunz-Plapp T, Daniell JE and others (2013) Investigation of superstorm Sandy 2012 in a multi-disciplinary approach. Nat Hazards Earth Syst Sci 13: 2579–2598
- La Peyre M, Casas S, La Peyre J (2006) Salinity effects on viability, metabolic activity and proliferation of three *Perkinsus* species. Dis Aquat Org 71:59–74
 - Lee WJ (2010) Intensive use of an intertidal mudflat by foraging adult American horseshoe crabs *Limulus polyphemus* in the Great Bay estuary, New Hampshire. Curr Zool 56:611–617
- Lefcheck JS, Wilcox DJ, Murphy RR, Marion SR, Orth RJ (2017) Multiple stressors threaten the imperiled coastal foundation species eelgrass (*Zostera marina*) in Chesapeake Bay, USA. Glob Change Biol 23:3474–3483
- Lefcheck JS, Orth RJ, Dennison WC, Wilcox DJ and others (2018) Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. Proc Natl Acad Sci 115(14):3659–3662
- Lochead J, Gillespie D, Hand C (2012) Storm-induced anastrophic burial of the Pacific geoduck (*Panopea generosa*) on the west coast of Vancouver Island. J Shellfish Res 31: 959–967
- Lomovasky BJ, Brey T, Klügel A, Iribarne O (2018) Distribution pattern, density and growth of the stout razor clam *Tagelus plebeius* in a south-west Atlantic estuarine system. J Mar Biol Assoc UK 98:485–494
- Lovall CD, Seitz RD, Knick KE (2017) Direct and indirect impacts of shoreline development on shallow-water benthic communities in a depauperate estuarine system. Bull Mar Sci 93:715–741
- Mann R, Powell EN (2007) Why oyster restoration goals in the Chesapeake Bay are not and probably cannot be achieved. J Shellfish Res 26:905–917
- Maximovich NV, Guerassimova AV (2003) Life history characteristics of the clam *Mya arenaria* in the White Sea. Helgol Mar Res 57:91–99
- McLaughlin SM, Elsayed EE, Faisal M (2000) Analysis of extracellular proteins of two *Perkinsus* spp. isolated from the softshell clam *Mya arenaria* in vitro. Comp Biochem Physiol B 126:587–598
- Moore KA, Jarvis JC (2008) Eelgrass diebacks in the lower Chesapeake Bay: implications for long-term persistence. J Coast Res Spec Issue 55:135–147
- Najjar RG, Walker HA, Anderson PJ, Barron EJ and others (2000) The potential impacts of climate change on the mid-Atlantic coastal region. Clim Res 14:219–233
 - National Marine Fisheries Service (NMFS) (2017) Fisheries of the United States 2016. US Department of Commerce, NOAA Current Fishery Statistics No. 2016. https://www.st.nmfs.noaa.gov/commercial-fisheries/fus/fus16/index

- Newell CL (1982) The effects of sediment type on growth rate and shell allometry in the soft shelled clam *Mya arenaria* L. J Exp Mar Biol Ecol 65:285–295
- Olafsson EB, Peterson CH, Ambrose WG (1994) Does recruitment limitation structure populations and communities of macro-invertebrates in marine soft sediments: the relative significance of pre- and post-settlement processes. Oceanogr Mar Biol Annu Rev 32:65–109
- Orth RJ, McGlathery KJ (2012) Eelgrass recovery in the coastal bays of the Virginia Coast Reserve, USA. Mar Ecol Prog Ser 448:173–176
- Orth RJ, Heck KL Jr, van Montfrans J (1984) Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator-prey relatorships. Estuaries 7:339–350
- Orth RJ, Carruthers TJB, Dennison WC, Duarte CM and others (2006) A global crisis for seagrass ecosystems. Bioscience 56:987–996
- *Orth RJ, Marion SR, Moore KA, Wilcox DJ (2010) Eelgrass (*Zostera marina* L.) in the Chesapeake Bay region of mid-Atlantic coast of the USA: challenges in conservation and restoration. Estuar Coasts 33:139–150
- Peterson CH, Summerson HC, Duncan PB (1984) The influence of seagrass cover on population structure and individual growth rate of a suspension-feeding bivalve, Mercenaria mercenaria. J Mar Res 42:123–138
 - R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. www.R-project.org
 - Ralph GM (2014) Quantification of nursery habitats for blue crabs in Chesapeake Bay. PhD dissertation, Virginia Institute of Marine Science, College of William and Mary, Williamsburg, VA
 - Ray SM (1954) Biological studies of *Dermocystidium marinus*, a fungus parasite of oysters. PhD dissertation, Rice University, Houston, TX
 - Ray SM (1966) A review of the culture method for detecting Dermocystidium marinum, with suggested modifications and precautions. Proc Natl Shellfish Assoc 54:55–69
- Reece KS, Dungan CF, Burreson EM (2008) Molecular epizootiology of *Perkinsus marinus* and *P. chesapeaki* infections among wild oysters and clams in Chesapeake Bay, USA. Dis Aquat Org 82:237–248
- Rosenberg R, Hellman B, Johansson B (1991) Hypoxia tolerance of marine benthic fauna. Mar Ecol Prog Ser 79: 127–131
- Rothschild BJ, Ault JS, Goulletquer P, Héral M (1994)
 Decline of the Chesapeake Bay oyster population: a century of habitat destruction and overfishing. Mar Ecol Prog Ser 111:29–39
- Sanford LP (1990) Covariability of dissolved oxygen with physical processes in the summertime Chesapeake Bay. J Mar Res 48:567–590
 - Sarkar D (2008) Multivariate data visualization with R. Springer, New York, NY
 - Schubel JR (1976) Effects of Agnes on the suspended sediment of the Chesapeake Bay and contiguous shelf waters. In: The effects of Tropical Storm Agnes on the Chesapeake Bay estuarine system. Johns Hopkins University Press, Baltimore, MD, p 179–200
 - Schubel JR, Carter HH, Cronin WB (1976) Effects of Agnes on the distribution of salinity along the main axis of the Bay and in contiguous shelf waters. In: The effects of Tropical Storm Agnes on the Chesapeake Bay estuarine system. Johns Hopkins University Press, Baltimore, MD, p 33–65

- Seitz R, Lipcius R (2001) Variation in top-down and bottomup control of marine bivalves at differing spatial scales. ICES J Mar Sci 58:689–699
- Seitz RD, Lipcius RN, Hines AH, Eggleston DB (2001)

 Density-dependent predation, habitat variation, and the persistence of marine bivalve prey. Ecology 82:2435–2451
- Seitz RD, Lipcius RN, Seebo MS (2005) Food availability and growth of the blue crab in seagrass and unvegetated nurseries of Chesapeake Bay. J Exp Mar Biol Ecol 319: 57–68
- Seitz RD, Lipcius RN, Knick KE, Seebo MS, Long WC, Brylawski BJ, Smith A (2008) Stock enhancement and carrying capacity of blue crab nursery habitats in Chesapeake Bay. Rev Fish Sci 16:329–337
- Skilleter GA (1994) Refuges from predation and the persistence of estuarine clam populations. Mar Ecol Prog Ser 109:29–42
- Smith AB, Katz RW (2013) US billion-dollar weather and climate disasters: data sources, trends, accuracy and biases. Nat Hazards 67:387–410
- Smith GF, Roach EB, Bruce DG (2003) The location, composition, and origin of oyster bars in mesohaline Chesapeake Bay. Estuar Coast Shelf Sci 56:391–409
- Sponaugle S, Lawton P (1990) Portunid crab predation on juvenile hard clams: effects of substrate type and prey density. Mar Ecol Prog Ser 67:43–53
- Taylor DL, Eggleston DB (2000) Effects of hypoxia on an estuarine predator-prey interaction: foraging behavior and mutual interference in the blue crab *Callinectes sapidus* and the infaunal clam prey *Mya arenaria*. Mar Ecol Prog Ser 196:221–237
- Tettelbach ST, Peterson BJ, Carroll JM, Furman BT and others (2015) Aspiring to an altered stable state: rebuilding of bay scallop populations and fisheries following intensive restoration. Mar Ecol Prog Ser 529:121–136
- Thiet RK, Smith SM, Rubino V, Clark R, Lee K, Oset J (2014) Soft shell clams (*Mya arenaria*) contribute to macroalgal blooms in a partially-restored Gulf of Maine back-barrier lagoon. Ecol Restor 32:46–58
- Thrush SF, Cummings VJ, Dayton PK, Ford R and others (1997) Matching the outcome of small-scale density manipulation experiments with larger scale patterns: an example of bivalve adult/juvenile interactions. J Exp Mar Biol Ecol 216:153–169
 - Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York, NY
- Wilberg MJ, Livings ME, Barkman JS, Morris BT, Robinson JM (2011) Overfishing, disease, habitat loss, and potential extirpation of oysters in upper Chesapeake Bay. Mar Ecol Prog Ser 436:131–144
- Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Stat Soc 73:3–36
 - Wood SN (2017) Generalized additive models: an introduction with R, 2nd edn. Chapman & Hall, London
- Wright LD, Prior DB, Hobbs CH, Byrne RJ, Boon JD, Schaffner LC, Green MO (1987) Spatial variability of bottom types in the lower Chesapeake Bay and adjoining estuaries and inner shelf. Estuar Coast Shelf Sci 24: 765–784
- Zhang J, Yurchenko OV, Lutaenko KA, Kalachev AV and others (2018) A tale of two soft-shell clams: an integrative taxonomic analysis confirms *Mya japonica* as a valid species distinct from *Mya arenaria* (Bivalvia: Myidae). Zool J Linn Soc, doi:10.1093/zoolinnean/zlx107