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ABSTRACT: Over the previous 35 yr, Caribbean coral reefs have experienced decreases in coral
cover and increases in algal cover, leading to calls for increased protection of reef herbivores such
as parrotfish. Previous studies have classified parrotfish into functional foraging groups based on
beak morphology, gut content analyses, isotopic composition, and direct observations of foraging
behaviors. However, few studies have examined how parrotfish foraging behaviors change with
ontogenetic phase, substrate composition, and parrotfish biomass. In this study, we determined
the foraging preferences of 10 parrotfish species and examined how these preferences varied with
ontogeny, algal composition, and parrotfish biomass. We observed foraging behaviors of 3 phases
(juvenile, intermediate, terminal) of 10 parrotfish species on 34 reefs in the middle Florida Keys
(USA) that varied in coral and algal composition. Cluster analysis of Manly's alpha electivity
indices revealed 3 functional feeding groups that differed in their selectivity of turf, calcareous,
and fleshy algal communities as preferred foraging habitats. Juvenile parrotfishes of different for-
aging groups had similar foraging preferences that diverged with maturation. Preferences for turf
algal communities increased with increasing turf algal cover but were not influenced by parrotfish
biomass. In contrast, preferences for fleshy algal communities decreased with increasing parrot-
fish biomass. These results suggest that parrotfish species have different foraging preferences,
which may vary with ontogeny, algal abundance, and parrotfish biomass. Thus, efforts to increase
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parrotfish biomass may not always lead to a predictable decrease in algal abundance.
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INTRODUCTION

Herbivory is an important ecosystem function that
can structure marine communities such as kelp forests
(Estes et al. 1978), seagrass flats (Mortimer 1981), and
coral reefs (Carpenter 1986). Reef herbivores play a
crucial role in promoting healthy coral ecosystems by
limiting the abundance of algae that compete with
coral (Ogden & Lobel 1978, Mumby & Steneck 2008).
Parrotfishes are morphologically specialized herbi-
vores that scrape or browse on a variety of surfaces
(Lewis & Wainwright 1985, Williams & Polunin 2001,
Bonaldo et al. 2014). Despite fishing impacts, they are
among the most abundant piscine herbivores left in
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Caribbean coral reef communities (Smith 2015, Pin-
heiro et al. 2016, Shulzitski et al. 2018). Throughout
the Caribbean, macroalgae have replaced coral cover
in the past several decades (Gardner et al. 2003,
Pandolfi et al. 2003, Schutte et al. 2010). Numerous
algae compete with coral for settlement space, and di-
rectly impair corals through shading, the producion of
allelochemicals that suppress coral growth, and dis-
ease transmission (Lirman 2001, Nugues et al. 2004,
Nugues & Bak 2006, Box & Mumby 2007, Rasher &
Hay 2010; but see also Vu et al. 2009, McClanahan et
al. 2011a). This increased competition between coral
and algal species may have been intensified by one
or more of an increase in nutrients (Burkepile et al.
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2013), mass mortality of herbivorous long-spined sea
urchins Diadema antillarum (Carpenter 1988), or over-
fishing of parrotfishes (Newman et al. 2006). How-
ever, protected reefs may not have cascading positive
effects on parrotfish abundance, nor alter the compo-
sition of the benthos (McClanahan et al. 2011b, Cox
et al. 2017, Tewfik et al. 2017); as a result, the role of
parrotfish herbivory in coral reef communities has
been debated (e.g. Russ et al. 2015).

Ecologists have attempted to classify parrotfish into
functional foraging groups based on their jaw mor-
phology, gut contents, isotopic composition, and feed-
ing observations (Choat et al. 2004, Cardoso et al.
2009, Bonaldo et al. 2014, Jouffray et al. 2015). These
functional groups have been described as excavators,
browsers, scrapers, and grazers based primarily on
the type of algae grazed and the degree to which sub-
strate is removed in the process (Bellwood & Choat
1990, Streelman et al. 2002). However, parrotfish of-
ten display a high degree of variation in their dietary
preferences, and forage on a wide range of macro-
algal, sponge, and coral species, blurring the distinc-
tion between these functional groups (Bruggemann
et al. 1994a, Price et al. 2010, Burkepile 2012, Pawlik
et al. 2013). A recent study suggests that parrotfish
may not be herbivores at all, but instead target spe-
cific species or substrates for their protein-rich epi-
phyte and endophyte microorganisms, which may
explain some of the previously observed variation in
parrotfish grazing behaviors (Clements et al. 2016).
Others have suggested that ecological factors, such
as herbivore diversity (Burkepile & Hay 2008, Hamil-
ton et al. 2014), interspecific competitive interactions
(Munoz et al. 2000, Catano et al. 2014), predator pres-
ence (Catano et al. 2016), reef structure (Brandl et al.
2015, Catano et al. 2015), substrate type (Brandl &
Bellwood 2014, Adam et al. 2015b), and ontogenetic
phase (Robertson & Warner 1978, Feitosa & Ferreira
2015) influence parrotfish foraging preferences. For
example, parrotfish may respond to increased com-
petition by either varying their diet or their habitat as-
sociations (Bruggemann et al. 1994b, Burkepile &
Hay 2011, Bonaldo et al. 2014, Adam et al. 2015b).
Thus, inconsistency in dietary preferences across en-
vironmental gradients complicate traditional methods
of assigning species to functional foraging groups
and quantifying redundancy in trophic guilds (Adam
et al. 2015a, Dromard et al. 2015).

The Florida Keys, like elsewhere in the Caribbean,
have experienced a rapid decline in live coral cover
and a corresponding increase in macroalgae (Alevi-
zon & Porter 2015). However, unlike other regions of
the Caribbean, parrotfishes in the Florida Keys are

protected from fishing and have higher than average
biomass (10-45 g m~2 in the middle Florida Keys;
Smith 2015). Consequently, the variation in algal
cover, parrotfish biomass, and species richness al-
lows for estimation of parrotfish foraging preferences
across a broad range of ecological conditions without
strong fishing impacts (Kramer & Heck 2007, Adam
et al. 2015a, Kenkel et al. 2015, Manzello et al. 2015,
Smith 2015). Changes in dietary preferences of par-
rotfishes across ontogeny and environmental condi-
tions could improve our understanding of parrotfish—
algae interactions.

The goals of this study were to evaluate the forag-
ing preferences of parrotfish species in the middle
Florida Keys National Marine Sanctuary (FKNMS)
and to determine how feeding preferences change
with ontogenetic phases, substrate cover, and parrot-
fish biomass. First, we examined the foraging prefer-
ences of individual parrotfishes and compared them
to the local availability of relative substrate cover.
Second, we analyzed by species which substrates
were preferred and avoided. Third, we used a cluster
analysis to determine similarities among species in
their foraging preferences, to assign them to distinct
functional foraging groups. Finally, we evaluated
how the substrate electivity of each functional group
varied with ontogenetic phase (juvenile, adult, termi-
nal), reef type (nearshore vs. offshore), algal abun-
dance, and parrotfish biomass. We hypothesized that
(1) species will differ in their foraging preferences,
(2) juveniles will share more similarities between
species than adults, (3) electivity will be proportional
to the abundance of the preferred algal substrates,
and (4) parrotfish biomass will influence electivity for
preferred algal substrates.

MATERIALS AND METHODS
Study sites

The reef tract of the middle Florida Keys stretches
along the Atlantic Ocean from Islamorada to Mara-
thon, parallel to the island chain. These reefs are
located inside the FKNMS, and include shallow (2-
5 m), highly complex reefs close to shore (<5 km from
shore) and deeper (4-8 m), low relief reefs on the
outer edges of the shallow limestone shelf (>5 km
from shore). Ten species of parrotfish from 2 genera
(Scarus and Sparisoma) are commonly found on the
reefs of the Florida Keys, and are protected from
spearfishing. We established 17 study locations span-
ning the middle Florida Keys reef tract near Layton,
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FL, USA (Fig. 1). Each location consisted of 2 reefs of
continuous hard substrate (minimum size: 50 m long
by 20 m wide) that were separated by sand/seagrass
substrate (minimum distance apart: 150 m). Data
were collected from June 2013 to June 2015.

Estimating substrate composition

To estimate the percent cover of each substrate cat-
egory, we haphazardly placed a 50 m transect paral-
lel with the long axis of the reef. Divers took paired
(left and right side of the transect) photo quadrants
(0.25 m?) of the substrate every 10 m along the tran-
sect. Photographs were taken from a distance of
0.75 m with a Canon PowerShot A710IS. These pho-
tographs were analyzed for percent cover using
Coral Point Count V4.1 (Kohler & Gill 2006). Twenty-
five points were randomly placed on each photo and
classified into 7 general substrate categories includ-
ing live hard coral, turf algae, fleshy algae, calcare-
ous algae, gorgonians, sponges, and other (for more
details about substrate type classification, see the
Supplement at www.int-res.com/articles/suppl/m603
p175_supp.pdf). Points that were placed over tempo-
rary objects (camera frame, transect tape, etc.) were
excluded. Substrate cover for the site was calculated
by averaging the percent cover estimated from pho-
tographs taken along the entire transect (300 points

site”!). Substrate surveys were conducted for each
of the time periods mentioned above. Average values
of substrate composition (% cover of each algal type)
by reef location can be found in Table S2 in the
Supplement.

Estimating parrotfish density and biomass

Parrotfish density was estimated using diver visual
surveys (50 x 10 m) along the same transect where
the substrate cover was measured. Two divers swam
along either side of the transect simultaneously while
counting the number of all parrotfish species ob-
served within 5 m of the transect tape (Kramer &
Heck 2007). Parrotfish species were further classified
based on their ontogenetic phase (juvenile, inter-
mediate, terminal) using size, coloration, and morpho-
logy (Schultz 1969). For parrotfish species with no
change in color between juvenile and intermediate
phases, individuals <50% of the terminal phase
length were classified as juveniles and individuals
>50% of the terminal phase length were classified as
intermediate phase. Terminal phases were distin-
guished from intermediate phases either by distinc-
tive color pattern or morphological traits such as an
enlarged forehead and extensions of the first and last
caudal fin rays. Parrotfish biomass on each site was
then estimated by multiplication of the species/
phase-specific counts by previously
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published length-weight relation-
ships of the average-sized phase for
each species (Bohnsack et al. 1988).
Total parrotfish biomass (g m™2) was
estimated for each reef and census
period.

Estimating parrotiish foraging
preferences

We observed the foraging behavior
of 2009 individual parrotfish across
the 10 species. The feeding behavior
of individual parrotfish were esti-
mated by focal animal continuous
sampling. Each diver haphazardly
selected a parrotfish, noted its species
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and developmental phase, and fol-

Fig. 1. Study sites (n = 17) located in the middle Florida Keys, USA. Our 34

reefs (2 reefs site™!) are located inside the Florida Keys National Marine Sanc-

tuary in the Atlantic Ocean. Sites were sampled from June 2012 to June 2015.
Light gray depth contours are at 2 m depth intervals

lowed the fish for 3 to 5 min (mean =
3.1 min) at a distance of 5 m. All obser-
vations were made between 10:00 and
15:00 h. Although the parrotfish did
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notice the presence of the divers, their behaviors did
not seem to be strongly impacted by diver presence,
and their foraging rates were similar to those re-
corded by fixed-station video cameras (K. Smith pers.
obs.). While following the fish, the diver would note
the number of bites each individual fish took on each
of the 7 substrate types. To minimize the potential of
observing the same individual twice, divers would
only watch 1 individual of a specific species/phase
per reef. Only observations where parrotfish took at
least 5 bites on the substrate during the observation
period were used, to exclude individuals that might
have been disturbed by the presence of a diver and
to obtain the highest resolution for an individual's
preferences (as a result, n = 1801). The median bite
number for our focal animal observations was 17
bites (first quartile = 11, third quartile = 27). Sample
sizes of parrotfish foraging observations by species
and ontogenetic phase including average electivity
indices are available in Table S1.

Statistical analyses

In order to distinguish the foraging preferences
of the parrotfish, we used 2 different metrics: (1)
Strauss' linear resource selection index (L) and (2)
Manly's alpha electivity index (o, referred to as the
electivity index). Strauss' linear resource index (re-
ferred to as the selectivity index) allows for assessment
of individual items in the diet, and whether they are
significantly preferred or avoided based on their fre-
quency. This index is calculated using the formula:

L=r;-p; (1)

where iis the focal substrate type, r; is the proportion
of the number of bites taken on that substrate type
and p; is the proportion of the substrate type in the
environment (Strauss 1979). Significant selectivity
indices (positive or negative) were indicated by an
average selection index (L) whose 95% confidence
interval did not overlap 0. We used this selectivity
index to examine which substrate communities were
preferred (positive) or avoided (negative) for each
fish. These indices were then averaged for each of
the 10 species of parrotfish.

Strauss' linear resource selection index is ideal for
identifying feeding preferences of individual dietary
items or substrate communities. However, because
they are compared to local abundances of only 1 sub-
strate category, they are not influenced by changes
in the abundance of the other substrate categories.
Therefore, we chose the electivity index to represent

a proportional foraging preference given the entire
diet. oo was calculated using the formula:

I; 1
o =—=—~ 2
0 3 (/m) .
where o, is Manly's alpha for substrate type i, ris the
proportion of prey type i bitten, and n is the propor-
tion of substrate type i on the reef (Manly et al. 1972,
Chesson 1978, 1983, Brooker et al. 2013). Manly's
alpha for each substrate type was calculated in refer-
ence to the summation of the proportion of all sub-
strate types (i — j) in the diet to the proportion of all
substrate types (i — j) in the environment. This for-
mula for o assumes that food resources are not being
depleted during the time of observation and empha-
sizes the most abundant substrate types.

To classify the 10 species of parrotfishes into func-
tional feeding groups, we performed a cluster analy-
sis using the species-specific averages of the 7 sub-
strate electivity indices and the average body mass.
We included average body mass as proxy for jaw
size, which strongly influences the amount of sub-
strate removed by each bite. We used a K-means
method of identifying the optimal number of clusters.
Our cluster analysis identified 3 functional feeding
groups that differed primarily by the number of pre-
ferred algal substrates, i.e. either 1, 2, or 3. All subse-
quent analyses of factors that potentially influence
foraging preferences were analyzed for each forag-
ing group separately.

To examine how foraging preferences change with
ontogenetic phase, substrate composition, and par-
rotfish biomass, we also used Manly's alpha electivity
index because it better meets the assumptions of
normality and homogeneity of variances. We used
general linear models (GLMs) with a binomial distri-
bution to determine the effects of reef habitat and on-
togenetic phase on the electivity indices for each of
the 3 functional groups and each of the 3 algal com-
munities. We also used GLMs to examine how % sub-
strate cover and biomass (log total parrotfish biomass)
impact electivity indices for each of the 3 functional
groups and each of the 3 algal types. All statistical
tests were performed using JMP 13.0 (SAS Institute).

RESULTS
Dietary selectivity by species
Strauss' linear resource indices indicated that all

parrotfishes, of both genera Scarus and Sparisoma,
showed foraging preferences towards 1 or more of the
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Fig. 2. Strauss' selectivity indices for individual parrotfish species on the 6 sub-
strate categories. Parrotfish are divided by genus (blue: Scarus; red: Spari-
soma). Confidence intervals (95 %) above (below) the horizontal axis indicate a
dietary preference (avoidance). Confidence intervals that cross the horizontal
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bites on sponges, hard corals, and soft corals (Fig. 2).

Large-bodied Scarus species (S. coeruleus, S. coelesti-
nus, S. guacamaia) preferred to forage in turf and cal-
careous algal communities, whereas small-bodied
Scarus species (S. vetula, S. taeniopterus, S. iserti) pre-
ferred only turf algal communities. Sparisoma species
showed more variation, with 2 species preferring turf,
calcareous, and fleshy algal communities (S. aurofre-

natum, S. rubripinne), 1 species prefer-
ring turf and calcareous algal communi-
ties (S. chrysopterum), and 1 species
preferring only turf algal communities
(S. viride).

Functional foraging groups

Using the species-specific average
values of the electivity index for 7 sub-
strates and biomass, we found that par-
rotfish clustered into 3 distinct foraging
functional groups based on the number
of algal communities preferred (Fig. 3).
The dietary preferences of these func-
tional groups were significantly differ-
ent (Wilks' A = 0.873, Fjg,3410 = 23.901,
p < 0.0001), and post hoc comparisons
revealed significant differences be-
tween each of the groups. Functional
group I preferred turf algal communities
and included the 3 small-bodied Scarus
species (S. vetula, S. taeniopterus, and
S. iserti) and 1 Sparisoma species (S.
viride). Functional group Il included the
3 larger-bodied Scarus parrotfishes (S.
coeruleus, S. coelestinus, and S. guaca-
maia) and showed preferences for both
turf and calcareous algal communities.
The exception to this pattern was S.
coeruleus, which neither preferred nor
avoided calcareous algal communities
but instead took many bites in open
sand (other). Functional group III fol-
lowed a generalist feeding behavior by
grazing on all 3 algal communities and
included the remaining Sparisoma spe-
cies (S. aurofrenatum, S. chrysopterum,
and S. rubripinne). The average electiv-
ity index for each species and develop-
mental phase is given in Table S1.

Ontogenetic phase and foraging preferences

We found that ontogenetic phases influenced
dietary behaviors with preferences for turf algae
being highest for group I, intermediate for group II,
and lowest for group III (Fig. 4A), while preference for
fleshy algae showed the reverse pattern (Fig. 4C).
Ontogenetic phases significantly influenced electivity
for turf algal community for both group I (x? = 6.303,
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Fig. 3. Electivity indices showing the dietary preferences of
the 10 species of parrotfish towards the 7 substrate categories.
Species dendrogram was created using the species average
electivity indices and biomass. Cluster analysis of these fac-
tors identified 3 functional groups (FGs). FG I feeds on turf al-
gal communities, FG II feeds on turf and calcareous algal
communities, and FG III feeds on communities associated
with turf, calcareous, and fleshy algae. Species abbreviations
refer to common names presented in Fig. 2

p =0.043) and group II (x® = 6.119, p = 0.047), but was
not significant for group III (x? = 5.575, p = 0.068)
(Table 1). Parrotfishes in groups I and Il increased the
proportion of turf in their diet as adults, while parrot-
fishes in group III decreased the proportion of turf in
their diet as adults (Fig. 4A). Ontogenetic phases did
not affect electivity indices towards either calcareous
(Fig. 4B) or fleshy algae communities (Fig. 4C).

Reef habitat and foraging preferences

Reefs nearshore (<5 km from shore) and offshore
(>5 km from shore) in the middle Florida Keys dif-
fered in number of important features. First, near-
shore reefs were shallower (4.1 vs. 5.7 m) and more
structurally complex than offshore reefs due to
more dead mound corals. Second, nearshore reefs
had more live hard corals (13.0 vs. 5.8%), fewer
soft corals (10.5 vs. 18.6 %), and fewer sponges (4.5
vs. 5.9%) than offshore reefs. Third, nearshore
reefs had more calcareous algae (Halimedia spp.)
(9.1 vs. 3.7%) and fewer fleshy algae (primarily
Dictyota spp) (10.9 vs. 17.3%) than offshore reefs
(Table S2). We found no significant effect of reef
habitat on electivity indices for either turf (Fig. 5A)
or fleshy algae communities (Fig. 5C) with the
exception of a significant increase in turf algae
electivity for group II parrotfishes on offshore reefs
(x* = 6.271, p = 0.012) (Table 1). However, foraging
preferences on calcareous algal communities for
group II (3% = 4.476, p = 0.034) and group III parrot-
fishes (32 = 5.958, p = 0.015) were significantly
lower offshore (Fig. 5B) and lower (but not signifi-
cantly) for group I parrotfishes (x> = 2.877, p =
0.090) (Table 1).
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Fig. 4. Electivity indices for the 3 developmental phases of parrotfish for (A) turf, (B) calcareous, and (C) fleshy algae (mean + SE).
The 3 functional foraging groups (FG I-III) are groups of parrotfish species as defined in Fig. 3. Unshared letters on different bars
indicate significant pairwise differences among ontogenetic phases
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Table 1. Generalized linear model of electivity indices (Manly's Algal cover and foraging preferences
alpha) for 3 substrate communities and 3 parrotfish functional
feeding groups (FGs) as a function of reef habitat (nearshore vs.
offshore) and ontogenetic phase (juvenile, intermediate, adult).
Parrotfish FG composition is based on substrate preferences (I =

Our expectation was that foraging prefer-
ences for the preferred algal community would

turf, I = turf + calcareous, III = turf + calcareous + fleshy algae) increase in proportion to its abundance and
from Flg 3. Values in bold indicate significance (p <0.05) thus show no Signiﬁcant increases or de-
creases in relation to cover. Instead, we found
Substrate  FG Phase — Reef habitat— that for certain functional groups, foraging
af o p af -y p preferences did significantly change with
Turt I 2 6.303 0.0428 1 0378 05385 c.hanges. in the .proportlon of algal communi-
Turf 1 2 6.119 0.0469 1 6.271 0.0123 ties available (Fig. 6). Preferences for turf algal
Turf 11 2 5392 0.0675 1 0.080 0.7761 communities increased significantly with in-
Calcareous I 2 1.046 0.5926 1 2.877 0.0898 creases in % turf algae (Fig. 6A) for group I
Calcareous 1II 2 0.216 0.8972 1 4.476 0.0344 (x* = 16.64, p = 0.001) and group II (2 = 7.504,
Calcareous III 2 1.575 0.4549 1 5.958 0.0146 p = 0.006), but not for group III (Xz =0.334,p =
Fleshy I 2 0271 0.8732 10.005 0.9418 0.569) (Table 2). Preferences for fleshy algal
Fleshy I 2 3.699 0.1573 1 0.230 0.6314 communities decreased siqnificantl ith in-
Fleshy M 2 3.879 01438 1 2122 0.1452 unit tghiicantly with 1
creases in % fleshy algae (Fig. 6C) for group I
o
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Fig. 5. Electivity indices of parrotfish observed on nearshore and offshore reefs for (A) turf, (B) calcareous, and (C) fleshy algae
(mean + SE). The 3 functional foraging groups (FG I-III) are groups of parrotfish species as defined in Fig. 3
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Fig. 6. Electivity indices for each algal type change with varying abundance of that algal type for each functional group on
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vals. The 3 functional foraging groups (FG I-III) are groups of parrotfish species as defined in Fig. 3. See Table 2 for general
linear model results
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Table 2. Generalized linear model of electivity indices (Manly's
alpha) for 3 substrate communities and 3 parrotfish functional
feeding groups (FGs) as a function of % substrate cover (turf, cal-
careous, or fleshy algae) and total parrotfish biomass (log g m).
Parrotfish FG composition is based on significant preferences for
substrates (I = turf, II = turf + calcareous, III = turf + calcareous +
fleshy algae) from Fig. 3. Values in bold and italic indicate signif-
icant positive and negative relationships (p < 0.05), respectively

mass while increasing foraging in calcareous
algal communities (Fig. 7). Group I parrot-
fishes maintained a significantly positive
relationship between foraging preference and
parrotfish biomass (x* = 4.330, p = 0.03%
Table 2), while group II and group III showed
no such relationship (Fig. 7A). All 3 functional

Substrate FG  —— Algal cover— Parrotfish biomass
af -y p df - x* p
Turf I 1 5.921 0.0150 1 4.330 0.0374
Turt I 1 7.504 0.0062 1 0.044 0.8333
Turf I 1 0.324 0.5687 1 0.353 0.5519
Calcareous I 1 0.005 0.9419 1 4.877 0.0272
Calcareous 1II 1 0.378 0.5382 1 2429 0.1191
Calcareous III 1 2.848 0.0915 1 6.109 0.0134
Fleshy I 1 4.203 0.0403 1 4.581 0.0323
Fleshy I 1 1.975 0.1599 1 6.942 0.0084
Fleshy I 1 1.604 0.2053 1 2.082 0.1490

groups showed an increase in foraging pref-
erences for calcareous algal communities
with increasing parrotfish biomass (Fig. 7B),
including statistically significant increases for
group I (x% = 4.877, p = 0.027) and group III
(x? = 6.109, p = 0.013) (Table 2). However, for
fleshy algal communities (Fig. 7C), group I
(x* = 4.581, p = 0.032) and group I (x°
6.942, p = 0.008) showed decreasing feeding
preferences with increasing biomass while
group III (x? = 2.082, p = 0.149) showed no

(x* = 4.203, p = 0.040) and showed non-significant
decreases for group II (x% = 1.975, p = 0.160) and
group III (x% = 1.604, p = 0.205) (Table 2). Foraging
preferences showed little change in response to
changes in calcareous algae cover (Fig. 6B).

Parrotfish biomass and foraging preferences

Tests for whether foraging preferences for pre-
ferred algal communities decrease with increasing
parrotfish competition (biomass) found that most
parrotfishes decreased foraging in turf and fleshy
algae communities as a function of parrotfish bio-

relationship (Table 2).

DISCUSSION

Our study corroborates the findings of previous
studies that Caribbean parrotfishes forage primarily
on algal communities, with all parrotfish species
showing preferences towards substrates with one or
more algal types (Cardoso et al. 2009, Adam et al.
2015b, Dromard et al. 2015). We found a continuum
of foraging preferences that ranged from Scarus
vetula, which fed preferentially on turf algal commu-
nities while actively avoiding calcareous and fleshy
algal species, to Sparisoma aurofrenatum, which pre-
ferred all 3 algal communities with the strongest
preference for substrates covered in fleshy algae.
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Fig. 7. Electivity indices for each algal type change with increasing biomass of total parrotfish for each functional group on

nearshore and offshore sites. (A) Turf, (B) calcareous, and (C) fleshy algae. Shaded regions indicate 95 % confidence intervals.

The 3 functional foraging groups (FG I-III) are groups of parrotfish species as defined in Fig. 3. See Table 2 for general linear
model results
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Our cluster analysis of species-specific foraging
preferences identified 3 distinct functional feeding
groups and corroborate the findings of Adam et al.
(2015b), who identified the same algal generalist
Sparisoma species (macroalgal browsers), and the
turf-grazing scrapers including all Scarus species
and Sparisoma viride. The differences in our func-
tional group designations were likely due to our
inclusion of juvenile phases and inshore reefs with
high calcareous algae cover allowing us to further
subdivide the turf-grazing scrapers into 2 distinct
functional groups based primarily on whether they
preferentially foraged in calcareous algal communi-
ties or not.

This study and those that came before suggest that
parrotfish do not strictly follow genus-specific diets
predicted by specializations in their jaw morphology
(Streelman et al. 2002, Burkepile & Hay 2008, Car-
doso et al. 2009). Stoplight parrotfish Sparisoma
viride have a diet more similar to the Scarus species
that focus grazing on turf algal communities than to
the Sparisoma species that graze in all 3 algal com-
munities (Adam et al. 2015b). This is consistent with
previous macroevolutionary models which suggested
that diet variation is higher in the Sparisoma clade
than in the Hipposcarus—Scarus—Chlorurus clade
(Price et al. 2010, Brandl et al. 2015). Furthermore, a
recent study by Clements et al. (2016) suggested that
parrotfish are not targeting the algae, but are instead
selectively grazing on the epiphytes and endophytes
associated with different algal, seagrass, and inverte-
brate communities. While our observations do not
allow us to identify the specific dietary items con-
sumed by our parrotfishes, we can identify which
substrate communities were visited and which were
not. For example, our results showed that none of the
parrotfish species in the middle Florida Keys prefer-
entially fed on hard corals, gorgonians, or sponges. In
fact, all species took far fewer bites of these sub-
strates than expected given their proportional abun-
dance on the substrate. Since the abundance of reef-
building corals has declined drastically over the past
35 yr (Alevizon & Porter 2015), it not surprising that
corallivory was observed less frequently than previ-
ously reported (Rotjan & Lewis 2006, Burkepile
2012). The abundance of coral species with the high-
est rates of predation in these studies (Montastrea
spp. and Porites porites) have low abundances on the
reefs of the middle Florida Keys. Furthermore, obser-
vations of coral biting by parrotfish may serve an
alternative function such as territorial marking
(Bruggemann et al. 1994a, van Rooij et al. 1995) or
may be incidental while grazing on turf algal com-

munities (Carlson et al. 2017). Our results also indi-
cate a clear hierarchy of preference for algal commu-
nities with turf > calcareous > fleshy. This is evident
by preference for turf algal communities in all 3 func-
tional groups, preference for calcareous algal com-
munities in 2 of 3 functional groups, and preference
for fleshy algal communities in 1 of 3 functional
groups. Further evidence for this hierarchical rank-
ing comes from the strength of preference, inferred
from the slope of the electivity index versus the %
cover of algal substrate, which is mostly positive for
turf algae, neutral for calcareous algae, and negative
for fleshy algae.

Reef fishes often undergo ontogenetic changes in
behavior, including shifts in habitat use (Dahlgren &
Eggleston 2000), predator evasion (Fuiman & Magur-
ran 1994), and foraging strategies (Schmitt & Hol-
brook 1984). To our knowledge, ontogenetic shifts in
foraging preferences have never been previously
described in Caribbean parrotfishes. We found that
the foraging preferences of all 3 functional groups
were more similar for juveniles and more dissimilar
for adults. Feeding on turf communities increased
from juvenile to intermediate phase in Scarus spp.
and Sparisoma viride (functional groups I and 1II), but
decreased in Sparisoma spp. (functional group III).
Ontogenetic shifts in diet have long been thought to
be a mechanism to reduce intraspecific competition
for resources, and may also explain why the foraging
preferences of adult parrotfishes have diverged. The
complex social structure of parrotfish and the be-
haviors associated with these ontogenetic phases
offer explanations for these dietary shifts with age
(Bruggemann et al. 1994a). Juvenile parrotfish spend
much of their time in schools composed of individuals
from all 3 functional groups and graze together as a
group (Overholtzer & Motta 2000). When they reach
maturity, some species undergo a color transition and
school more often with conspecifics (Robertson &
Warner 1978). In these species, terminal-phase males
defend harems of females, potentially restricting the
entry of other parrotfish to their foraging areas
(Munoz et al. 2000, Mumby & Wabnitz 2002, Catano
et al. 2015). Territorial behaviors have the potential
to change algal community structure and resource
availability at local scales (Catano et al. 2014) and
suggest that the composition of parrotfishes inhabit-
ing particular areas of the reef can have intense local
effects on algal communities.

Variation in the species composition and abun-
dance of algal types between different locations
make it difficult to generalize about the foraging
preferences of parrotfishes (Adam et al. 2015a). For
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example, higher abundances of calcareous algae
(Halimeda spp.) occurred on nearshore reefs com-
pared to reefs located offshore (Smith 2015). Our
results suggest that the decreased foraging in cal-
careous algal communities from inshore to offshore
reefs is proportional to the decreased abundance of
calcareous algae. However, there is a different pat-
tern for fleshy algae, which were more abundant on
offshore reefs but taken less often as their abundance
increased. There is little doubt that the availability of
food sources can alter the foraging behavior and
location of organisms, including parrotfish (Carlson
et al. 2017). When resources are more scarce, grazing
areas become larger as the search for food continues.
As fleshy algae became more abundant, foraging
preferences decreased, suggesting that parrotfish
are shifting preferences towards turf algal communi-
ties, which are abundant in all habitats. Other studies
that have reduced the abundance of macroalgae
observed increases in herbivorous fish abundance
and grazing pressure, potentially due to changes in
algal succession favoring turf algae (McClanahan et
al. 2000, 2001). These changes in substrate composi-
tion can also increase the aggressiveness of inter-
actions with other reef fish, such as damselfishes, ad-
ding a further deterrent for grazing parrotfish (Jones
1992). These grazing patterns across sites with vary-
ing algal composition can have major implications on
algal abundances and coral recruitment (Arnold et
al. 2010), suggesting that the density of fish belong-
ing to each functional group can greatly alter the tra-
jectory of coral reef recovery (Jouffray et al. 2015).
Intense resource competition and the availability of
potential mates both increase with increasing conspe-
cific density, making some locations more valuable
than others (McAfee & Morgan 1996). In previous
studies, food partitioning was not enough evidence to
explain the coexistence of multiple parrotfishes be-
longing to the same functional foraging group (van
Rooij et al. 1996). However, if parrotfish shift their for-
aging preferences to other algal communities, their
coexistence is plausible. We found evidence of den-
sity-dependent shifts in foraging preferences that dif-
fered between our functional groups. Small-bodied
Scarus spp. (functional group I) significantly increased
their use of turf algal communities with increasing
biomass, while large-bodied Scarus spp. (functional
group II) and Sparisoma spp. (functional groups II and
IIT) foraged more in calcareous algal communities. In-
terestingly, all parrotfishes (functional groups I, II, III)
decreased foraging preferences in fleshy algal com-
munities with increasing biomass. This density-
dependent shift in diet can have important conse-

quences for the Florida Keys and may potentially ex-
plain why the marine protected areas of the Keys see
increased adult parrotfish biomass, but not necessarily
reduction in macroalgal abundance (Kramer & Heck
2007). While previous studies have found that fleshy
algae do increase when herbivorous fishes are ex-
cluded at a localized scale (Lirman 2001), compensa-
tory shifts in diet due to inter- and intraspecific com-
petition likely prevent a strong negative association of
herbivore biomass and fleshy algal cover (Burkepile &
Hay 2008, Adam et al. 2015b). Damselfishes are abun-
dant in the Florida Keys, and their farming behavior
increases their site fidelity and territoriality (Ceccarelli
et al. 2011). During this study, damselfish chases of fo-
cal parrotfish were commonly observed and could
contribute to the avoidance of fleshy algal communi-
ties (K. Smith pers. obs.) Furthermore, the positive ef-
fects of increased local nutrients from high herbivore
biomass may increase the abundance of fleshy algae,
offsetting the regulatory effects due to herbivory
(Burkepile et al. 2013). In addition to food, resource
competition may also be driven by the need for
shelter. While macroalgae can provide some degree
of physical complexity, the refuge provided by algae
may favor predators instead of herbivores (Hoey &
Bellwood 2011). Strong competitive interactions on
coral reefs may influence both the amount and type of
algae remaining on reefs, as well as the potential for
future reef recovery (Sandin & McNamara 2012).

In the Caribbean, there is some evidence that her-
bivores, such as parrotfish, regulate the abundance
of macroalgae and may be a key to the recovery of
degraded coral reefs (Newman et al. 2006, Jackson et
al. 2014). However, recent studies have found that
increases in macroalgal cover in Florida, Mexico, and
Belize are unrelated to herbivore biomass in regions
protected from overfishing (McClanahan et al. 2011b,
Suchley et al. 2016, Cox et al. 2017). This may be due
to parrotfish preferentially foraging in turf algal com-
munities and minimizing foraging in fleshy algal
communities, and calls into question the generality of
top-down control of macroalgae in reef ecosystems
(McClanahan et al. 2011b, Russ et al. 2015). Perhaps
a better understanding of how parrotfish foraging
preferences change in response to algal cover and
parrotfish abundance are the keys to unlocking the
true relationship between these important reef fishes
and the coral reefs they occupy.
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