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INTRODUCTION

Knowledge of the distribution and habitat require-
ments of wildlife is vital for conservation planning,
identifying threats and predicting the consequences
of environmental change (e.g. Roger et al. 2007,
Grech & Marsh 2008). However, ecological monitor-
ing is typically short term whereas distributional
shifts in response to environmental or biological

change may manifest over much longer timescales
(Sundby & Nakken 2008, Poloczanska et al. 2009).
Movement and habitat-use patterns can also vary
substantially within and between species, and over
space and time (McHugh et al. 2011, Phillips et al.
2017, Meager et al. 2018).

This variability is exemplified by the delphinids,
which includes species that range over a variety of
habitats and large areas, such as killer whales Orci-
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nus orca (Baird & Whitehead 2000, Olsen et al. 2018),
and species that can exhibit strong site fidelity (i.e.
the tendency to return to a previously occupied loca-
tion, Switzer 1993), such as coastal dolphins (re -
viewed by Gowans et al. 2007). Habitat use and site
fidelity also vary within delphinid species. For exam-
ple, common bottlenose dolphins Tursiops truncatus
form resident communities with strong multigenera-
tional site fidelity to areas where prey is abundant
(Urian et al. 2009, Wells 2009), but often have low site
fidelity and wide-ranging behaviour offshore (Wells
et al. 1999) or in coastal habitats with variable food
re sources (Ballance 1992, Defran & Weller 1999, De -
fran et al. 1999).

It is therefore thought that site fidelity and move-
ment patterns in delphinids are linked to the pre-
dictability and distribution of resources, as well as
predation risk (Ballance 1992, Gowans et al. 2007).
Fidelity to previously beneficial and familiar sites can
be a low risk strategy compared with searching for
new sites (Krebs & Inman 1992), whereas flexible
habitat use or wide-ranging movement patterns al -
low species to respond opportunistically to prey
patches (Heithaus et al. 2007, Sims et al. 2012).

Site fidelity can also arise from philopatry (Kokko &
Lopez-Sepulcre 2006), social transmission (Valenzuela
et al. 2009) or niche conservatism (i.e. the tendency of
a species to retain aspects of their fundamental niche
over time, Wiens & Graham 2005, Wiens et al. 2010).
Socioecological function also plays a role in shaping
spatiotemporal variation of site fidelity and habitat
use in delphinids. What constitutes an ideal resting or
socialising habitat may be a poor habitat for foraging
and vice versa (Keith et al. 2013). For example,
spinner dolphins Stenella longi rostris use inshore
habitats of large islands in Hawaii to rest and socialise
during the day, and forage in pelagic waters at night
(Norris & Dohl 1980, Benoit-Bird & Au 2009).

Among the delphinids, humpback dolphins Sousa
spp. are known for their restricted inshore distribu-
tion and narrow habitat selectivity (Koper et al. 2016,
Parra & Cagnazzi 2016, Karczmarski et al. 2017a),
which can expose them to a variety of threats includ-
ing pollution and fisheries bycatch (Ross et al. 2010,
Cagnazzi et al. 2013, Gui et al. 2017). The similarity
of habitat-use patterns between Sousa species sug-
gests niche conservatism, which implies that their
response to environmental change or anthropogenic
impacts may be limited by the spatial extent of suit-
able habitat (MacLeod 2009). As a consequence,
local populations in highly developed areas may be
susceptible to habitat loss (Lin et al. 2016, Karcz-
marski et al. 2017a).

The Australian humpback dolphin Sousa sahulen-
sis (hereafter humpback dolphin) is a threatened
tropical dolphin with a limited range and low densi-
ties in surveyed areas (Parra & Cagnazzi 2016), listed
as a Vulnerable species in the Australian state of
Queensland and by the International Union for Con-
servation of Nature (IUCN, Parra et al. 2017). In
Queensland and the Northern Territory, they are
mostly found in shallow inshore waters less than 15−
20 m deep and within 20 km of the nearest river
mouth (Parra et al. 2004, Palmer et al. 2014b, Parra &
Cagnazzi 2016). Research to date suggests that they
exhibit short-term and periodic fidelity at the fine
scale (Parra et al. 2006a, Palmer et al. 2014a, Hunt et
al. 2017) and longer-term residency to embayments
or coastlines at the broader scale (i.e. >1000 km2,
Cagnazzi 2011, 2013, Cagnazzi et al. 2011). Pub-
lished studies on habitat use and site fidelity of
humpback dolphins have been limited to 5 yr or less;
long-term patterns of habitat use and residency over
decadal timescales remain unknown.

Towards the southeastern limits of the species
range in Moreton Bay, Queensland, Australia, a
population of humpback dolphins resides in an
embayment ~1523 km2 in area (Corkeron et al.
1997), separated from the nearest resident popula-
tion to the north by ~150 km of ocean-exposed
coastline. Here, we compiled 25 yr of spatially ref-
erenced data from both systematic surveys and
opportunistic sightings to examine long-term trends
in habitat usage and ecological niches of humpback
dolphins in Moreton Bay. We also used a contem-
porary behavioural dataset to examine the potential
ecological function(s) driving habitat use by hump-
back dolphins. We hypothesise that niche conser-
vatism in humpback dolphin results in long-term
site fidelity to nearshore areas of Moreton Bay, but
that this fidelity is shaped by the socioecological
function of the habitat. More specifically, we pre-
dict that several key biophysical features, namely
distance to land, distance to river mouth and water
depth (Parra et al. 2006b), have acted to delineate
the ecological niche of humpback dolphins in
Moreton Bay over the time period, and that this
niche has been consistent over time. Our alterna-
tive hypothesis is that habitat usage, site fidelity
and ecological niches have changed over time in
response to the long-term decline of habitat
integrity on the western side of Moreton Bay
(Kirk man 1978, Pressland et al. 1998, Coates-Mar-
nane et al. 2016) and/or periodic environmental
perturbations (Stephenson et al. 1977, Meager &
Limpus 2014).
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MATERIALS AND METHODS

Study site

Moreton Bay is a large, shallow subtropical embay-
ment in Queensland, eastern Australia (Fig. 1, ap -
proximately 1523 km2 in area and <40 m depth, Den-
nison & Abal 1999). Significant changes in Moreton
Bay over the past 40 yr have included development
and major capital works in the western Bay, severe
flooding events and a large reduction in otter trawl-
ing associated with marine park rezoning and fish-
eries legislation (Table 1). Most urbanisation has
occurred on the western side of Moreton Bay, where
dolphins may be exposed to risks such as persistent
bioaccumulative contaminants (Hermanussen et al.
2004, Shaw et al. 2004, Hermanussen 2009) and a

high volume of vessel traffic (Queensland Transport
and Main Roads 2012). A long-term decline in habi-
tat integrity and water quality on the western side of
Moreton Bay has also been well documented (Kirk-
man 1978, Pressland et al. 1998, Coates-Marnane et
al. 2016 and other references herein) and these con-
ditions are exacerbated by periodic flooding
(Stephen son et al. 1977, Meager & Limpus 2014). On
the northeastern side of Moreton Bay, water quality
is high and protection is afforded by marine reserves
and vessel-speed reduction zones (Fig. 1). The mar-
ine park (reserve) now encompasses much of the
area, with the exception of the Port of Brisbane
(Fig. 1).

The humpback dolphin adult population size in
Moreton Bay was estimated to be between 119 and
163 in the period from 1984 to 1987 (95% CI: 81−251,
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Fig. 1. (a) Moreton Bay in Australia and (b) the current marine park (reserve) zoning and the location of inshore reefs. All
fishing is prohibited in the Marine National Park Zone and is limited in the Conservation Park Zone. Trawling is only permit-
ted in the General Use Zone and outside of the marine park (https:// qld. gov. au/ environment/ costs-waterways/ marine-parks/
zoning). Vessel speed restriction areas (‘Go Slow areas’) are indicated by cross hatching. (c) Bathymetric relief of the study 

site (no data are available for the white areas)
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Corkeron et al. 1997) and more recently between 128
and 139 from 2014 to 2016 (95% CI: 67−274, J. J.
Meager & E. R. Hawkins, unpubl. data).

Vessel surveys were conducted across 6 different
sectors inMoretonBayfrom2014to2016(Supplement1
at www. int-res. com/  articles/ suppl/ m603 p227 _ supp.   pdf),
with each sector taking 1 d to complete with a vessel
speed of 10−16 km h−1. Surveys were only under-
taken when sea surface conditions were suitable for
sighting dolphins (Beaufort sea state of ≤3) during
intensive sampling blocks that coincided with the
austral summer (2014) and winter−spring (2014−
2016), and involved 54 d of survey effort in 2014 (30 d
in winter and 24 d in summer), 46 d of effort in win-
ter−spring 2015 and 34 d of effort in winter−spring
2016. For each individual or group encountered, the
initial geographic location was re corded using a GPS
and the behavioural state (travelling, socialising,
resting or foraging; Table S2 in Supplement 3 at
www. int-res. com/  articles/ suppl/ m603 p227 _ supp.   pdf)

was determined while we subsequently followed the
individual or group. Behavioural state represented
the predominant behavioural pattern of the group
(i.e. >50% of the dolphins exhibited the behaviour),
which was defined as more than one dolphin within
an approximate 100 m radius that were mostly en -
gaged in the same behavioural state (Irvine et al.
1981). Groups were followed for up to 60 min but only
the initial location and behavioural state are ana-
lysed here.

Collation and spatial-temporal stratification of
sightings data

Spatially referenced sightings of humpback dol-
phins were sourced from scientific publications, re -
ports, PhD theses and Queensland Government
datasets (Table 1, Supplement 1). There are 2 poten-
tial sources of bias in comparing the spatial distribu-
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Table 1. Sources of georeferenced sightings data and significant events that occurred in the time period. Information on the tim-
ing and severity of floods was based on a timeline from the Australian Bureau of Meteorology (http:// bom. gov. au/ qld/ flood/
fld_history/brisbane_history.shtml). DES: Queensland Department of Environment and Science; WildNet: the Queensland 

Government wildlife database

Period Years Number of
positions

Approx. 
number of 
individuals

Survey
methods

Significant events within study period Sources

1 1992−1999 147 167 Vessel and
aerial surveys,
opportunistic

sightings

• Major floods in December
1991−March 1992, May 1996

• Marine Park zoning plan 1997
• Major Lyngbya majuscula bloom

late 1999−2000
• Progressive upgrades to waste-water

treatment plants in catchment
• Cessation of coral dredging at Mud

and St Helena Islands in 1995

WildNet, Lanyon &
Morrice 1997, 

Hale et al. 1998,
McPhee 2017

2 2003−2011 114 668 Vessel
surveys, 

opportunistic
sightings

• Upgrades to waste water treatment
programmes

• Large reduction of otter trawling
effort from 1999 to 2008 (fisheries
legislation and marine park rezon-
ing)

• Marine Parks (Moreton Bay) Zoning
Plan 2008, enacted 2009

• Construction of new bridges across
Bramble Bay (2008−2010) and the
Brisbane River (2007−2011)

• Expansion of the Port of Brisbane
(2008−2011)

• Severe flooding in January 2011

WildNet, 
Ansman 2011 surveys

3 2012−2016 234 740 Vessel
surveys,

opportunistic
sightings

• Major flood in January 2013 (short-
lived, pulse event)

• Extension of Brisbane Airport, sand
extraction from Middle Banks
2013−2014

Surveys described
herein, DES surveys
and patrols, WildNet

http://www.int-res.com/articles/suppl/m603p227_supp.pdf
http://www.int-res.com/articles/suppl/m603p227_supp.pdf
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tion of sightings between different studies and time
periods: (1) the spatial-temporal distribution of sam-
pling ef fort and (2) relative sampling intensity. Here,
we use the strategy of assigning data into time peri-
ods to obtain a trade-off of sampling intensity and
comparable spatial-temporal coverage, with each
stratum featuring a combination of systematic vessel
surveys and opportunistic sightings (Table 1). The
general rationale of this approach was to use the sys-
tematic surveys to balance spatial effort across time
periods, and opportunistic sightings to balance sam-
pling intensity across time periods. This resulted in 3
time periods that were considered to have compara-
ble spatial-temporal coverage: Period 1 (1992− 1999,
total number of sightings, n = 167), Period 2 (2003−
2011, n = 114) and Period 3 (2012− 2016, n = 234).
Details on how the sightings data were collated and a
comparison of the spatial coverage of each time
period are provided in Supplement 1. Because group
numbers were not provided for every sighting, each
sighting was given an equal weight in the analyses.

Comparisons of utilisation distributions 
between time periods

We examined whether the occurrence of hump-
back dolphins was consistent or variable over time
using population-level kernel density estimators.
Kernel density estimators have long been used to
delineate the home ranges of animals (Anderson
1982, Worton 1989), but have more recently been
used to characterise the distribution of species, in -
cluding delphinids across space (Martins et al. 2013,
Denoël & Ficetola 2015, Zanardo et al. 2017). We use
the term ‘utilisation distribution’ (UD) as it ap  plies to
the latter case, which represents the probability den-
sity function that takes the whole population into
consideration. The area enclosed by the 95% isoline
was selected to represent population habitat use, and
the 50% isoline was selected to represent the core
areas of habitat use (Worton 1989, Parra 2006).

A number of measures were undertaken to reduce
bias from relative sampling intensity because in the-
ory UD estimates reach an asymptote with sample
size (Börger et al. 2006), which means that smaller
UDs would be expected when there are fewer sight-
ings of dolphins. First, the bandwidth of the smooth-
ing parameter for the kernel density estimator was
set to be equal for all time periods (Kelsall & Diggle
1995). Global bandwidth (h) was estimated in the
‘adehabitatHR’ package (Calenge 2011) of R (R
Development Core Team 2017) using a fixed normal

kernel (h = σn–1/6), where the estimated variance in
the x and y coordinates was given by σ2 = 0.5[var(x) +
var(y)] and n was the number of locations. A rule-
based approach was then used to estimate had hoc (Kie
2013), which reduced under-smoothing by incremen-
tally reducing h until the 95% isoline fractured into 2
or more polygons.

Second, locations were spatially thinned (rarefied)
to take into account differences in sample sizes
between study periods (Aiello Lammens et al. 2015).
The UD for the period with the fewest locations
(Period 2, n = 114) was compared with what would
have been the case had sampling effort been the
same in each period. We used a custom R script (R
Development Core Team 2017) to (1) subsample 114
random locations from Periods 1 and 3, (2) estimate
the new UDs and (3) generate comparative metrics.
Steps (1) to (3) were repeated for 500 bootstrap sam-
ples, and global and local comparative metrics were
then averaged over the samples. Global similarity
was calculated by spatial correlation tests based on
1000 pixels selected at random; and by the I metric,
which ranges from 0 where there is no overlap be -
tween distributions to 1 when distributions are iden-
tical (Warren & Seifert 2011). Local dissimilarity was
analysed using the SigDiff function in the R package
‘SDMTools’ (VanDerWal et al. 2014), which com-
putes the significance of local pairwise differences
relative to the mean and variance of all differences
(Januchowski et al. 2010, Bateman et al. 2012). Spa-
tial surfaces were then reclassified following Bate-
man et al. (2012) to indicate (1) areas where the first
UD predicted higher densities of humpback dolphins
(SigDiff ≥ 0.975) and (2) areas where the second UD
predicted significantly higher densities of humpback
dolphins (SigDiff ≤ 0.025).

Ecological niche modelling

We also compared the distribution of humpback
dolphins between periods using maximum entropy
modelling (MaxEnt, v. 3.3.3, Phillips et al. 2006) to
build ecological niche models (ENMs, sensu Warren
2012). MaxEnt uses species occurrence data in con-
junction with environmental data to estimate the dis-
tribution of a species by finding the distribution that
has the maximum entropy (Elith et al. 2006, Phillips
et al. 2006), and is therefore based on the assumption
that there is a causal link between the distribution of
the species and the environment.

MaxEnt is robust above a threshold sample size of
~50; thus, no adjustments were made for sample
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size across time periods for this analysis (Wisz et al.
2008, Virgili et al. 2018). Sightings within each
period were treated as presence-only data. The
background extent for pseudo-absences included
marine and estuarine areas of Moreton Bay that
were surveyed, and 10 000 background locations
were selected at random (Supplement 1). The R
package ‘ENMeval’ (Musca rella et al. 2014) was
used to tune the models, based on minimising
Akaike’s lnformation criterion (with small sample
correction, AICc, Burnham & Anderson 2002) over a
candidate model set that included linear, quadratic,
hinge, product and threshold features, and regulari-
sation coefficients from 0.5 to 4.0 (in increments of
0.5). Information theoretic approaches were used
where there was no convincing evidence that a sin-
gle model was the best among the candidate set (i.e.
Akaike weight of evidence, wi < 0.95) (following
Burnham & Anderson 2002). Model fit was assessed
by k-folds cross-validation whereby for each of the
5 iterations the data were randomly assigned into a
training dataset containing 80% of the sightings
and a test dataset including 20% of the sightings
(Merow et al. 2013). Goodness of fit criteria included
mean AUC (area under the receiver operating char-
acteristics curve, Merow et al. 2013) and by visual
assessment of ob served sightings against the grid of
predicted distributions (in the default MaxEnt logis-
tic format) (Supplement 2 at www. int-res. com/
 articles/ suppl/ m603 p227  _ supp.   pdf). The relative con -
tribution of each predictor variable to final models
was evaluated by a permutation importance test,
which is based on the drop in AUC when values for
that variable are randomly permutated (converted
to normalised percentage, Phillips 2006). A boot-
strap procedure (100 samples) was then used to cal-
culate the mean and variance of the contribution of
each variable. To compare the area of suitable habi-
tat be tween periods, we then reclassified the grids
to calculate the total area where predicted probabil-
ities were ≥0.3. This threshold was based on max-
imising the sum of sensitivity and specificity (Liu et
al. 2013) using the bootstrapped averages (range:
0.34 in Period 3 to 0.38 in Period 1).

Environmental predictors of habitat use

Seven biophysical predictor variables were se -
lected because they were thought to influence the
distribution of humpback dolphins (Parra et al.
2006b, Parra & Cagnazzi 2016), and were screened
for collinearity (pairwise Pearson correlation coeffi-

cients < |0.5|). The focus was on selecting predictors
that were comparable across the study period, rather
than dynamic habitat attributes such as sediments
and seagrass distribution. Included variables were
depth, distance from the 10 m depth contour, seafloor
slope, distance from shore, distance from inshore
reef, distance from mangroves and distance from
river mouths. Depth was derived from high-resolu-
tion soundings from Maritime Safety Queensland
using the ‘ANUDEM’ algorithm of ArcGIS (v 10.4,
Esri), and was used to calculate seafloor slope and
distance from the 10 m contour. The water depth at
which humpback dolphins were sighted was also
estimated from the bathymetric map. Depths shal-
lower than 1 m were not included in the analysis as
they were considered too inaccurate because of a
tidal range of around 2 m. The distance from man-
groves and distance from inshore reefs (i.e. inshore
rocky and fringing subtropical coral reefs) was
derived from the ‘Moreton Bay broad-scale habitats
2008’ layer under a Creative Commons license from
the Queensland Government. All distances were
Euclidean.

Behavioural drivers of habitat use

Generalised additive models (GAMs) were used to
model spatial patterns in behaviour (Hastie & Tibshi-
rani 1986, Wood 2006), using only the Period 3 survey
data because comparable data were not available for
the earlier periods. Four behavioural states were con-
sidered for the analyses: ‘foraging’, ‘socialising’,
‘travelling’ and ‘resting’, and were tested separately
as binomial responses (e.g. foraging = 1 and not
 foraging = 0) (see Table S2 in Supplement 3 for de -
finitions of behavioural states). The location at the
commencement of the follow of the focal group/
individual and the corresponding behavioural state
observed at this time were used for this analysis.
GAMS were implemented in the ‘mgcv’ package of R
(Wood 2018) using a 2D tensor product spline to
model spatial effects (Wood 2006). The significance
of a model term was evaluated by bootstrapped log-
likelihood ratio tests against the null model (1000
runs). The final model was then checked for over -
dispersion. Models were predicted over the area
 de fined by the minimum convex polygon of the spa-
tially referenced behavioural data, and then interpo-
lated using the natural neighbours tool in ArcGIS.
Behaviour-specific UDs were estimated following the
same had hoc method used to estimate UDs for each
time period.
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RESULTS

Utilisation distribution: 
comparison between periods

Two core habitat areas (50% UD ‘nuclei’) were evi-
dent in Period 1, compared with 4 in Periods 2 and 3
(Fig. 2). Core habitat areas were only present in the
central western area of Moreton Bay in Period 1, but
were also present in the northern and southern areas
in Periods 2 and 3. The global I metric indicated an
overall similarity between time periods (I from 0.74

to 0.81), whereas the correlation coef-
ficient indicated that Period 2 and 3
UDs were the most similar (r = 0.58)
and Period 1 and 3 UDs were the most
different (r = 0.30) (Table 2). At the lo -
cal scale, significant differences were
evident between the time periods with
a shift away from Bramble Bay and the
Brisbane River estuary from Period 1
to 2 (Fig. 3a, refer to Fig. 1 for place
names). This corresponded to an in -
crease in humpback dolphin density in
the southeastern areas of Moreton Bay,
and to a lesser extent, increased densi-
ties of humpback dolphins in the West-
ern Banks area.

Significant distributional shifts were
also evident away from Deception Bay
and areas of southeastern Moreton
Bay from Period 2 to 3, corresponding
to an increased density at Bribie Island
and in central Moreton Bay (Fig. 3b).
The distributional shift away from
Bramble Bay and the Brisbane River
estuary persisted into Period 3 (Fig. 3c).
Core habitat overlap across all 3 peri-
ods was restricted to an area adjacent
to the Port of Brisbane (a total area of
25.5 km2; Fig. 2d).

Ecological niche modelling

The total area of suitable habitat
delineated by the ENMs (p > 0.5) was
670.4 km2 in Period 1, 625.2 km2 in
Period 2 and 496.2 km2 in Period 3.
The ENM prediction grids indicated
that a marked shift away from the

Fig. 2. Utilisation distributions for each period: (a) Period 1 (1992−1999); (b) Pe-
riod 2 (2003−2011); (c) Period 3 (2012−2016). The red shaded areas represent the
core habitat area (enclosed by the 50% isoline), the grey polygons represent the
95% isoline and the green points are the sightings. (d) Overlap between 50% 

core habitat areas (Periods 1, 2 and 3)

                     Period 1         Period 2                Period 3

Period 1    r        1        0.30 (0.25−0.35)   0.50 (0.41−0.58)
                  I         1        0.74 (0.71−0.76)   0.81 (0.78−0.85)

Period 2    r                              1                0.58 (0.49−0.64)
                  I                               1                0.82 (0.79−0.84)

Table 2. Coefficients of similarity (bootstrap mean with con-
fidence intervals) between utilisation distributions (UDs) for
each period, where 0 is no overlap and 1 is complete over-
lap (refer to Table 1 for details of each period). r: Pearson’s 

correlation coefficient; I : metric of similarity
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landward margins of northwestern Moreton Bay (i.e.
away from Bramble and Deception Bay) towards the
south and central areas of Moreton Bay (near Mud
Island) occurred from Period 1 to Period 2, and con-
tinued into Period 3 (Fig. 4). Habitat suitability was
more variable between time periods in the Western
Banks area of Moreton Bay (Fig. 4). In Period 3, habi-

tat suitability also increased on the southern shores
of Bribie Island.

Distance from rivers was the most important deter-
minant of habitat suitability in Period 1, whereas dis-
tance from inshore reef was the primary driver of
habitat suitability in Periods 2 and 3 (Table 3, Fig. 5).
Depth or measures associated with depth, such as the
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Fig. 3. Comparisons of utilisation distributions between periods. The red shading indicates areas where Australian humpback
dolphins are significantly more likely to occur in the first time period, and the blue shading where humpback dolphins are sig-
nificantly more likely to occur in the second period: (a) Period 1 (1992− 1999) versus Period 2 (2003−2011); (b) Period 2 (2003− 

2011) versus Period 3 (2012− 2016), and (c) Period 1 (1992− 1999) versus Period 3 (2012− 2016)

Fig. 4. Ecological niche models representing the areas in geographic space with high habitat suitability for Australian hump-
back dolphins: (a) Period 1 (1992−1999), (b) Period 2 (2003−2011) and (c) Period 3 (2012−2016). Warmer colours denote the most
suitable habitats and can also be interpreted as a higher probability of Australian humpback dolphin presence. Prediction sur-

faces are averaged over 100 bootstrap samples
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distance to the 10 m depth contour, were important in
all periods. The dome-shaped influence of depth on
habitat suitability was markedly similar across peri-
ods (Fig. 5a,c,e). The depth-only MaxEnt model pre-
dicted highest habitat suitability at 8.9, 8.4 and
10.5 m for Periods 1, 2 and 3, respectively. Humpback

dolphins were observed in areas from 1 to 32 m
(n = 488) deep with a mean depth of 8.7 m
(±SE = 5.2 m). Habitat suitability also de clined
with distance away from inshore reefs and
with distance from the shore in all periods,
although the relative predictive importance
of the variables differed between periods
(Table 3).

Behavioural drivers of habitat use

Overall, there were 213 spatially referenced
observations of group behavioural state be -
tween 2014 and 2016 (Fig. 6a). There was a
strong effect of location on the probability of
humpback dolphins foraging (deviance =
50.28, p < 0.001; smooth terms: X2 = 34.9, p <
0.001, n = 213), with high probabilities of for-
aging near Bribie Island, the Brisbane River
estuary−Port of Brisbane, Western Banks and
Amity on North Stradbroke Island (Fig. 6b).
The probability of a humpback dolphin travel-
ling also depended on location (devi ance =
45.42, p = 0.018; smooth terms: X2 = 30.19, p <
0.01, n = 213), with higher probabilities of
travelling in the northwestern and central
eastern sides of Moreton Bay (Fig. 6c). In gen-
eral, areas with a higher predicted probability
of travelling tended to occur between core
habitats (Fig. 2c), whereas areas with a higher
predicted probability of foraging tended to
overlap with core habitats. There was no sig-
nificant spatial effect on socialising (deviance =
0.54 p = 0.21, n = 213) or resting (deviance =
6.150, p = 0.173, n = 213).

DISCUSSION

The core habitat of humpback dolphins
around the mouth of the Brisbane River and in
the Port of Brisbane was markedly consistent
over the 25 yr time period, whereas habitat
use in peripheral areas to wards the northern
and southern limits of the study area was more
dynamic. On the Western Banks and in south-

ern areas of Moreton Bay, the location of core habitat
varied considerably between periods. Models of spa-
tial patterns of behaviour indicated that the area from
the Brisbane River estuary to the Port of Brisbane
(and adjacent) was a key foraging site, whereas trav-
elling was more prevalent between core habitats.
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Model fit and predictor variables    Period 1    Period 2    Period 3

Model mean AUC                               0.774         0.803         0.797
Regularisation parameter                      3              1.6             3.5
Features                                              LQHP          LQ          LQHP
Distance from rivers                              23             3.6              9
Depth                                                    21.3           16.5           15.4
Distance from inshore reef                  15.5           41.6           19.6
Distance from 10 m depth contour     13.3           15.3           18.5
Bathymetric slope                                 5.1             9.8             7.7
Distance from shore                               9             17.3           16.1
Distance from mangroves                   12.8            4.7            13.8

Table 3. Coefficients and goodness of fit for MaxEnt models. The
value given for each predictor variable is the mean permutation im-
portance (as a regularised percentage) over the 100 bootstrap sam-
ples, with bold text highlighting the most important variable. AUC: 

area under curve. L: linear; Q: quadratic; P: product; H: hinge
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Fig. 5. Influence of environmental variables on predicted habitat
suitability (y-axis, probability of presence), calculated from models
that included only the given variable. (a,c,e) Influence of depth
(bathymetry) for each period. (b,d,f) Most important environmental 

variable for each period (Table 3)
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Both ENMs and UDs indicated a pronounced shift
away from the landward margins of Bramble Bay be -
tween Period 1 (1992−1999) and Period 2 (2003−
2011), which was maintained throughout Period 3
(2012−  2016). Both the ENMs and UDs also indicated
a shift away from Deception Bay from Period 2 to
Period 3. The most plausible explanation for these
results was a localised decline in the availability of
food resources for humpback dolphins (predomi-
nantly fish, Parra & Jedensjö 2014) associated with
habitat degradation, high nutrient loads and sedi-
mentation that have been well documented in Bram-
ble Bay and Deception Bay (Kirkman 1978, Abal et

al. 1998, Pressland et al. 1998, O’Brien
et al. 2012, Adams et al. 2016). Long-
water residence times coupled with
historical degradation of the catch-
ments to Bramble and Deception Bay
(Pine and Caboolture Rivers) manifests
in pronounced and long-lasting effects
of periodic floods on the northwestern
side of Moreton Bay (Stephenson et al.
1977, O’Brien et al. 2012, Coates-
Marnane et al. 2016). Environmental
monitoring data are not available for
Period 1, but from 2000 to 2014, an Eco-
system Health Monitoring Program
(www. ehmp. org/) ranked Bramble Bay
as having severe to medium impacts,
and Deception Bay as poor to showing
signs of recovery in 2014 (Table S3
in Supplement 4 at www. int-res. com/
 articles/ suppl/ m603 p227 _ supp.   pdf).
Simi lar ly, a recent study has described
a major expansion of muddy sediments
in the areas adjacent to the Ca bool ture
River (Deception Bay) and Pine River
(Bramble Bay) relative to an earlier sur-
vey in 1970 (Lockington et al. 2017). No
long-term fish monitoring data in the
area are available, but the results of a
recent survey indicated that fish com-
munities were less abundant and less
diverse on the northwestern side of the
Bay compared with the central and
eastern sides of the Bay (Gilby et al.
2016).

Humpback dolphins are known to
associate with trawlers in Moreton
Bay to feed on trawler discards (Cork -
eron 1990), but in spite of a major
reduction in overall trawling effort
from 1999 to 2008 (Courtney et al.

2012) trawling remains widespread over the area
(e.g. Courtney et al. 2016). A change in the spatial
distribution of trawling effort is therefore unlikely to
have explained the shift in distribution of humpback
dolphins. However, it is possible that provisioning in
the form of illegal hand-feeding of humpback dol-
phins has influenced the fine-scale distribution of
dolphins at Amity Point, where it has occurred inter-
mittently since at least the early 2000s (McPhee 2017,
P. Corkeron, pers. comm.).

While the models detected a contraction of core
habitat out of the Brisbane River towards the Port of
Brisbane after Period 1, the lower estuary continued

Fig. 6. (a) Behaviour of Australian humpback dolphins sighted in the surveys
during Period 3 (2014−2016). (b) Modelled probability of foraging. (c) Modelled
probability of travelling. In (b) and (c), the red lines denote the 50% isolines of 

the utilisation distribution of each behavioural state

http://www.int-res.com/articles/suppl/m603p227_supp.pdf
http://www.int-res.com/articles/suppl/m603p227_supp.pdf
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to be used throughout the study period. This was
despite major flooding events in Periods 1 and 2, and
poor water quality since monitoring commenced in
2000 (Table S3 in Supplement 4). The Brisbane River
has the largest catchment in Moreton Bay and has
historically supported diverse and abundant marine
invertebrate and fish communities (Davie & Hooper
1998), in addition to local beam trawl and net fish-
eries. Thus, the continued use of the Port of Brisbane
and lower Brisbane River estuary by humpback dol-
phins across the 25 yr period indicates that this area
continues to produce predictable food resources in
spite of habitat change. However, there has been no
long-term monitoring of fish communities to assess
whether food availability in the area has changed
over the study period.

The extent to which long-term site fidelity to the
Port of Brisbane site may also be influenced by
philopatry or social dynamics is unclear, and would
require multigenerational longitudinal studies. How-
ever, there are indications from several studies that
Australian humpback dolphins exhibit strong site
fidelity (Parra et al. 2006a, Cagnazzi et al. 2011, Hunt
et al. 2017) and low migration rates (<10%, Brown et
al. 2014). Furthermore recent genetic studies along
the east coast of Queensland indicate that dispersal
in both male and female humpback dolphins is lim-
ited, and that Moreton Bay represents a putative
population with limited gene flow to the nearest pop-
ulation in the Great Sandy Strait (Parra et al. 2018).

Social structure may play a role in shaping habitat
use in Moreton Bay, as has been found in Moreton
Bay with Indo-Pacific bottlenose dolphins (Ansmann
et al. 2015). Recent results from photoidentification
surveys from 2014−2016 suggest 5 distinct social
communities of humpback dolphins (E. R. Hawkins et
al. unpubl. data). Two of these communities in partic-
ular had comparatively little spatial overlap with the
others, the first occurring mainly in northern More-
ton Bay near Bribie Island and the other near Amity
at North Stradbroke Island. Interestingly, the analy-
sis of UDs in our study area indicated an increased
presence of dolphins at Amity in Periods 2 and 3, and
at Bribie Island in Period 3 (Figs. 2 & 3). However, we
suspect that was the result of the earlier surveys
missing these dolphin groups, rather than dolphins
not using these particular areas, because dolphins
were known to use the Amity area regularly during
Period 1 (Van Parijs et al. 2002) and more search
effort occurred around Bribie Island in Period 3 than
in the earlier periods (Figs. S3 to S5 in Supplement 1).
Notably, this was not a shortcoming of the ENMs,
which indicated both areas had suitable habitat in all

periods (Fig. 4). This was perhaps unsurprising given
that ENMs are known for their ability to predict
cetacean habitat suitability in areas where there is
limited survey coverage (Breen et al. 2017, Gomez et
al. 2017).

Long-term changes in ecological niches?

In our study, the ecological niche modelling indi-
cated that the depth of the mouth of the Brisbane
River estuary was more suitable for humpback dol-
phins than the mouths of the other main estuaries in
Moreton Bay. Dredging has maintained the shipping
channel at the Port of Brisbane since 1862 (http://
portbris.com.au, accessed 21 March 2017), and may
have hence played a role in maintaining a habitat
preferred by humpback dolphins. Water depth and
the physical features associated with water depth
(such as distance to channels) are important habitat
attributes for Australian (Parra et al. 2006a), Indian
Ocean (Karczmarski et al. 2000, Koper et al. 2016)
and Indo-Pacific Sousa chinensis humpback dolphins
(Hung 2008, Ross et al. 2010, Dares et al. 2017).

Even though depth played an important role in
defining the ecological niche of dolphins across all
periods in our study, there was a notable shift in the
importance of predictor variables of dolphin distribu-
tion between Periods 1 and 2. Distance from rivers
had a much stronger influence on the ecological
niche in Period 1 than in the latter periods, correspon-
ding to the shift of core habitat away from the north-
western side of the bay (where the major river catch-
ments are) to the centre of the bay. Conversely,
distance from reefs became comparatively more im-
portant in Periods 2 and 3, which was largely be cause
the reefs around Mud Island and Peel Island (Fig. 1)
were used consistently across the 3 periods. Mud Is-
land, Peel Island and other inshore reefs in Moreton
Bay support diverse fish communities (Olds et al.
2012) and represent a stable and predictable food re-
source. The shift in the importance in some predictor
variables of ecological niches across time periods
suggests niche conservatism may not be as strong in
this population as we predicted. It also suggests a de-
gree of habitat flexibility that is probably not surpris-
ing given that the species is known to respond oppor-
tunistically to food sources such as trawler discards
(Corkeron 1990, Parra 2006, Cag nazzi 2011).

The focus of the ecological niche modelling in our
study was on biophysical habitat features that were
stable across the time period, but numerous other
habitat and environmental attributes are likely to
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play a role in defining the realised niche of hump-
back dolphins in Moreton Bay, such as water clarity,
prey availability, predators, temperature and compe-
tition with Indo-Pacific bottlenose dolphins (Cork -
eron 1990). Future ENMs from humpback dolphin
could be improved by accounting for dynamic habi-
tat features and interspecific interactions.

Potential implications for long-term population
persistence in Moreton Bay

The ENMs indicated a 23% decline in the area of
suitable habitat over the study period (640.4 km2 to
496.2 km2). Despite this decline, there was no strong
evidence to suggest a corresponding decrease in the
population given the relatively large confidence
intervals around each of the abundance estimates
available (1984−1987: 119−163 adults, 95% CI: 81−
251, Corkeron et al. 1997; 2014−2016: 128−139; 95%
CI: 67−274, J. J. Meager & E. R. Hawkins, unpubl.
data). Yet, the observed long-term site fidelity of
hump back dolphins to the Port of Brisbane could
have consequences for their health and survival in
this area. The Brisbane River and the central western
side of Moreton Bay is where the highest concentra-
tions of persistent bioaccumulative contaminants
occur, both in the environment (Hermanussen et al.
2004, Shaw et al. 2004, Hermanussen 2009) and in
marine fauna (Kayal & Connell 1995, Shaw et al.
2004, Hermanussen et al. 2006, Matthews et al.
2008). Although levels of contaminants in free-rang-
ing dolphins in the area remain unquantified, con-
centrations of PCBs and DDTs in blubber of hump-
back dolphins that stranded dead in the central
western areas of Moreton Bay were at levels near or
above toxicological thresholds associated with popu-
lation declines in other cetaceans (Weijs et al. 2016).
As a large urbanized port, interactions with vessels
and exposure to pathogens may also pose risks in the
area (Van Parijs & Corkeron 2001, Bowater et al.
2003, Parra & Cagnazzi 2016).

Long-term fidelity in an area with known risks
could suggest the potential for an ‘ecological trap’
(sensu Kokko & Sutherland 2001, Battin 2004)
whereby dolphins persist in using a site despite habi-
tat degradation. This is consistent with several studies
on a sibling species, the Indo-Pacific humpback dol-
phin, which continues to inhabit areas in spite of habi-
tat degradation or disturbance (Würsig et al. 2016,
Dares et al. 2017), and a contraction of the population
in the Pearl River Delta was associated with habitat
loss (Lin et al. 2016, Karczmarski et al. 2017b). How-

ever, we are not able to determine whether or not the
Port of Brisbane is functioning as an ecological trap
without further investigation, and in particular, longi-
tudinal studies of the health, site fidelity and repro-
ductive performance of individual dolphins.

CONCLUSIONS

Our results suggested that habitat use and site
fidelity over a 25 yr time series varied with habitat
function, and implied an interplay between site
fidelity and flexible responses to local resource vari-
ability. From the perspective of ecological niches, the
results also suggested a level of niche flexibility in
humpback dolphins. Although aspects of bathymetry
had markedly similar influences on ENMs across the
study period, the role of other predictors such as dis-
tance from rivers or distance from inshore reefs was
more variable between periods.

These results have consequences for conservation
management of humpback dolphins and for prioritis-
ing resources. The presence of localised core habitat
areas that are used consistently over long time peri-
ods suggests that they are obvious candidates for
focused conservation management. However, pro-
tecting habitat integrity across the broader area de -
lineated by the ecological niche of the species may
be an effective way to safeguard against future envi-
ronmental change. The optimal allocation of conser-
vation resources to support the long-term persistence
of humpback dolphin populations would therefore
have elements of both strategies. More generally, our
results illustrate how historical changes in dolphin
distribution can inform contemporary conservation
management and underscore the need for a long-
term approach to dolphin research.
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