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INTRODUCTION

Human modifications of landscapes are increasing
in extent and severity globally (Lotze et al. 2006,
Clausen & York 2008). In urban settings, common
ecological consequences of anthropogenic changes
include lower habitat quality (Cardinale et al. 2012,
Aronson et al. 2014), fewer species at lower abun-
dance (Chapin et al. 2000), lessened ecological func-
tions (such as predation; Barbier et al. 2011), and
alterations to the movement of organisms and energy

across system boundaries (Massol et al. 2011,
Qviström 2017). Whilst urbanisation is generally con-
sidered to be ecologically detrimental (McKinney
2002), some species are either not strongly impacted
or can even prosper in urban areas (Connell &
Glasby 1999, Beninde et al. 2015, Dafforn et al. 2015).
Furthermore, because organisms, matter, and energy
move among ecosystems, the effects of urbanisation
can have wide-reaching consequences that extend
across landscapes (Massol et al. 2011, Qviström
2017).
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ABSTRACT: Natural ecosystems in estuaries are modified by the effects of runoff from disturbed
watersheds and are frequently replaced by armoured estuarine shorelines. Whilst the effects of
these 2 stressors are widely recognised, they are typically studied in isolation, and it is not clear
how these contrasting types of urbanisation interact to shape faunal assemblages. In this study,
fish assemblages were surveyed with underwater videos arranged in a 200 m grid throughout the
lower reaches of 3 estuaries in eastern Australia (resulting in ≥63 sites per estuary and 277 sites in
total) which differed in their extent of shoreline and watershed urbanisation. Overall, the least
urbanised estuary supported more than twice the number of fish species and a significantly
greater abundance of fish. The spatial patterns of fish diversity and abundance within estuaries
were related to the proximity of urbanised shorelines, with most fish groups aggregating near
armoured shorelines. These effects of distance from urbanised shorelines were, however, modi-
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Urbanisation is largely a coastal phenomenon, and
more than half of the global human population now
lives at or near the seashore (Neumann et al. 2015).
Impacts of coastal urbanisation can be diverse,
including heavy fishing pressure near large coastal
cities (Jackson et al. 2001), inputs of sediments, nutri-
ents, and pollutants (Kennish 2002, Pan & Wang
2012, Liu et al. 2018), and the replacement of natural
habitats (e.g. mangroves, wetlands) with armoured
shorelines (i.e. shorelines modified by the placement
of hard engineering structures such as revetments,
concrete walls, rip raps, jetties, and piers) (Bulleri &
Chapman 2010, Munsch et al. 2017). Whilst our
understanding of the ecological effects of urbanisa-
tion is increasing (Elliott et al. 2014), the degree to
which these different stressors interact to modify
coastal ecosystems and faunal communities, and the
scales over which such changes occur, remain poorly
understood (Teichert et al. 2016, Heery et al. 2017).

Estuaries are habitat for many fish species that sup-
port commercial and recreational fisheries (Sheaves
et al. 2013, Nagelkerken et al. 2015). The replace-
ment of estuarine habitats with armoured shorelines
can, therefore, have significant social, cultural, eco-
nomic, and environmental consequences (Kennish
2002, Lotze et al. 2006, Berendse et al. 2015, Munsch
et al. 2017). Armoured shorelines create different
feeding and refuge conditions for fish (Barbier et al.
2011) and can therefore modify fish assemblages
over multiple spatial scales (Luck 2007, McKinney
2008, Bulleri & Chapman 2010, Layman et al. 2014,
Beninde et al. 2015). As a consequence, the abun-
dance of some fish groups or species might be higher
adjacent to armoured shorelines (Hindell 2007,
Werry et al. 2012, Rodemann & Brandl 2017). Alter-
natively, some fish groups might be particularly sen-
sitive to the re moval of natural habitats because their
food items are also closely associated with natural
habitats (Gittman et al. 2016, Munsch et al. 2016,
Kornis et al. 2018). For example, zooplanktivores are
most abundant in, or near, mangroves and salt-
marshes where their prey, fish and crustacean larvae,
are most abundant (Giarrizzo et al. 2011, Davis et al.
2014, Saintilan & Mazumder 2017). Because most fish
species use a number of different ecosystems as habi-
tat (Pittman et al. 2004, Boström et al. 2011, Pittman
et al. 2014), it is likely that the impacts of shoreline
armouring propagate across seascapes that are func-
tionally linked by fish movement (Sheaves 2009,
Rodemann & Brandl 2017).

Some fish school around structurally complex habi-
tats in coastal seascapes, whether they be natural or
artificial, for several key reasons. Structurally com-

plex habitats provide areas of calmer waters in their
lee, where fish aggregate to save energy (Breit burg
et al. 1995, Lenihan 1999), and can be positively re -
lated to fish biomass (Gratwicke & Speight 2005).
Structurally complex habitats in estuaries also pro-
vide alternate opportunities for feeding because they
often support a different assemblage of encrusting
and sessile invertebrates than soft coastal substrates.
Because of their high structural complexity, these
areas also provide small fish with protection from
larger predators (Orth et al. 1984, Micheli & Peterson
1999). For these reasons, fish diversity and abun-
dance are often centralised around structurally com-
plex estuarine habitats, with their assemblages de -
clining in diversity, abundance, and size in the
adjacent sandy matrix (Bradley et al. 2017).

Direct modifications to instream estuarine habitat
extent and quality, caused by the placement of infra-
structure and engineered shore stabilisation, are in
many cases supplemented by broader changes to
water quality and land use on the estuarine flood-
plain. In particular, urbanised watersheds can create
large loads of sediments, nutrients, and toxicants that
lower habitat quality for fish (Halpern et al. 2008),
causing local extirpation of species most sensitive to
water quality changes (Whitfield & Elliott 2002, Kor-
nis et al. 2017) and poorer health of fish in urban
estuaries (Schlacher et al. 2005, 2007).

Whilst the direct effects of habitat replacement by
armoured shorelines are documented at local scales
(Bulleri & Chapman 2010), and the broader effects of
environmental quality are described at watershed
scales (Elliott et al. 2014), it is not clear how these
contrasting stressors combine to affect the distribu-
tion of estuarine fish assemblages (but see Breitburg
& Riedel 2005, Bilkovic & Roggero 2008, Kornis et al.
2017). In this study, we examine how the extent of
shoreline armouring and area of remaining verge
vegetation (in this case, mangroves) in an estuary
interact with how tightly fish are associated with
the armoured shorelines. We hypothesised that we
would identify more fish and a greater number of fish
species at sites closer to armoured shorelines in estu-
aries with more extensive mangrove forests because
the less urbanized ecosystem would support a higher
abundance of more sensitive species and has an over-
all higher carrying capacity. Conversely, we  ex pect
fewer fish and lower diversity around armoured
shorelines in an estuary with more extensively
armoured shorelines and fewer mangroves because
of the combined negative impacts from poor habitat
quality and extent and reduced environmental
hetero geneity.
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MATERIALS AND METHODS

Study estuaries

We studied fish responses to urbanisation in 3 sub-
tropical estuaries located in southeast Queensland,
Australia (Fig. 1). These estuaries were chosen be -
cause they have broadly similar catchment geomor-
phologies and drain from the same mountain range
(Withnall & Cranfield 2013), have similar bathymetry
and river flow rates (see Gilby et al. 2017b), and a
similar range of habitats available to fish (see Gilby
et al. 2018). The key difference be tween them, how-
ever, is with respect to the area of mangroves and the
degree of shoreline armouring in the lower estuary
(i.e. areas modified by the placement of hard engi-
neering structures such as revetments, concrete
walls, rip raps, jetties, and piers), and the extent of

urbanisation across the watershed (Table 1) (Gilby et
al. 2017b). Consequently, we henceforth label the
Noosa River as ‘low urbanisation’, the Maroochy
River as ‘moderate urbanisation’, and the Mooloolah
River as ‘high urbanisation’ for the purpose of this
study (Fig. 1, Table 1). For further information on
and justification of these categories, see Text S1 and
Fig. S1 in the Supplement at www. int-res. com/
articles/ suppl/  m605 p195 _ supp. pdf.

Fish surveys

Because salinity is a principal determinant of the
distribution of fish in estuaries (Barletta et al. 2005),
the extent of surveys in each estuary were standard-
ised to encompass the estuarine reaches from the inlet
to the point upstream at which salinity averaged

27 psu over the previous 10 yr (HLWMP
2017). This ap proach has been used by
other studies to standardise the extent
of surveys in estuaries across the study
area (Gilby et al. 2017b).

Sampling sites were spread evenly
across this ex tent in each estuary in a
200 m grid, resulting in 100, 110 and
63 sites for the low, moderately and
highly urbanised estuaries, respec-
tively (Fig. 1). The grid was not an-
chored to any specific place in the es-
tuary and was randomly overlaid using
GIS. This design was chosen for 2 rea-
sons: (1) a 200 m spacing be tween sites
lowered the probability of non-inde-
pendence of observations as individual
fish are un likely to be encountered at
more than 1 site during our 30 min
sampling periods (Harvey et al. 2004,
Gilby et al. 2016), and (2) it maximised
the number of sites and therefore the
degree to which we could survey the
full extent of seascape heterogeneity in
the lower reaches of each estuary
(Gilby et al. 2017b).

Fish were sampled with remote
underwater video stations (RUVs).
RUVs consisted of a camera mounted
on a weight (2 kg concrete block),
which was raised above the seafloor
on a 10 cm high bracket to expand the
field of view. High definition videos
were recorded for 30 min with GoPro
Hero 4 cameras (1960 × 1080 pixels at
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Fig. 1. Location of the 3 study systems in Queensland, Australia, with insets
showing the location of fish camera sites within each estuary. (A) Noosa River
(N = 100) is characterised by low urbanisation levels and a high cover of rem-
nant mangroves. (B) Maroochy River (N = 110) has moderate urbanisation lev-
els and (C) Mooloolah River (N = 63) has high urbanisation levels, and very 

low remnant vegetation

http://www.int-res.com/articles/suppl/m605p195_supp.pdf
http://www.int-res.com/articles/suppl/m605p195_supp.pdf
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60 frames s−1). To maximise water depth and under-
water visibility, all RUV deployments were done
within 2 h either side of high tide. Sampling was
completed over 4 consecutive days in each estuary,
with all 3 estuaries being sampled during 2 wk in
May 2017 (late austral autumn) and between the
10:00 and 16:00 h to avoid any crepuscular effects.
RUVs were never placed directly in the highly struc-
turally complex ecosystems (i.e. amongst the prop
roots of the mangroves). Where they were placed

near mangroves or jetty pylons, etc., the video field of
view was directed along the edge of the habitat to
enable a clear view of fish around the habitat. All
sites within each estuary were completed over 3 con-
secutive days for a total of 9 d consecutive field time.
All estuaries are relatively shallow throughout the
sampled stretch (Gilby et al. 2018), so all deploy-
ments were made in water depths of less than 6 m.

MaxN, the maximum number of individuals of
each fish species visible in video frames at any one
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Table 1. List of included environmental variables, the ecological hypothesis associated with the variables, the method of data
acquisition, the source of data, and mean values for each estuary. ‘Estuary-scale measures’ refer to factors measured at the
scale of the watershed, or the entire sampled stretch of the estuary, whereas ‘site-scale measures’ are attributes of individual 

sites measured at small spatial scales (<500 m)

Variable Definition Data layer Urbanisation

source Low Moderate High

Estuary-scale measures
Extent of armoured
shorelines in the
lower estuary 

The percentage of the shoreline of the sampled
stretch of the estuary that is urbanised. Armoured
shorelines are defined as areas modified by the
placement of hard engineering structures such as
revetments, concrete walls, rip raps, jetties, piers, etc

Queensland
Government

(2014)

10% 10% 51%

Percentage of
watershed
 urbanisation

The percentage of the watershed that is urbanised
land. The watershed is defined as all land which
drains through each estuary. Urban areas included
all areas of residential (be they high, or low den-
sity), industrial, transport and communication
(including roads), waste treatment and disposal,
and other service land use. The extent of watershed
urbanization also correlates highly with the extent
of agricultural lands (R2 = 0.97) and remnant
vegetation (R2 = 0.86) in the catchment

Queensland
Government

(2014)

8% 41% 40%

Area of mangroves
in sampled stretch
(m2 m−1)

The area of mangroves in the sampled stretch of the
estuary, divided by the largest ‘Distance of site to
estuary mouth’ value (see below) for that estuary

Queensland
Government

(2015)

47.7 28.9 6.2

Site-scale measures
Urban land near
site (m2)

Area of urban land within 500 m of a site Queensland
Government

(2014)

206 964 187 599 367 649

Mangroves near
site (m2)

Area of mangroves within 500 m of a sit Queensland
Government

(2015)

106 030 138 803 36 160

Distance of site to
estuary mouth (m)

Distance from the site to the centre of the estuary
mouth

Measured in
QGIS (QGIS

Develop-
ment Team

2017)

3244 4593 3621

Distance of site to
armoured estuarine
shoreline (m)

Distance from the site to the nearest armoured
estuarine shoreline

Queensland
Government

(2014)

185 455 386

Distance of site to
mangroves (m)

Distance from the site to the nearest mangroves Queensland
Government

(2015)

332 213 1213
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time, was used to quantify fish assemblages at each
site (to at least genus level in all cases). MaxN is the
most widely accepted metric for quantifying fish
numbers from underwater footage as it provides a
conservative estimate of relative fish abundance
(Cappo et al. 2003, Dorman et al. 2012).

Quantification of habitat and 
environmental variables

We tested for effects of 3 classes of environmental
variables that are known to influence the distribution
and abundance of fish in estuaries: (1) the area of
natural and urban habitats around our sites (in 500 m
buffers) and in the watershed (Gilby et al. 2017a);
(2) the distance of sampling sites to mangroves,
armoured shorelines, and the estuary mouth (Con-
nolly & Hindell 2006); and (3) light penetration (sec-
chi disc) and salinity (refractometer) measured on the
day of survey at each site (Table 1). We found no sig-
nificant differences in light or salinity values be -
tween our 3 estuaries (p > 0.06), and there is little evi-
dence to suggest that these water quality metrics
reach levels that either vary too greatly or reach
extremes that influence the distribution of fish in the
region (Gilby et al. 2016, 2018, Olds et al. 2018), so
these were not included as variables in statistical
models. The areas of habitats, as well as distances be -
tween habitats, were calculated in QGIS (v.2.18.11;
QGIS Development Team 2017).

Statistical analyses

Correlations between the structure of fish assem-
blages at every RUVS site (i.e. the fish assemblage
dataset; a multivariate matrix of the type and number
of each species) and the suite of site-scale environ-
mental variables plus the broader categorical factor
‘estuary’ (i.e. the explanatory variables to which the
fish are responding directly) were examined with
distance-based linear models (DistLM) in PrimerE
(Anderson 2004). Estuary encompasses the multiple
differences in estuary-scale environmental measures
(especially with respect to the broader levels of
urbanisation and remaining mangroves, i.e. low,
moderate, and high urbanisation), the interactive
nature of these measures, and better reflects envi-
ronmental measures that fish are responding directly
to within coastal ecosystems. We acknowledge that
this analysis corresponds to only 1 estuary at each of
our ‘impact levels’ (i.e. n = 1). The level of intense

sampling used in this study precludes any meaning-
ful replication at each impact level. This shortfall is,
however, offset by our high level of replication within
individual estuaries (n ≥ 63). Models were calculated
on Modified Gower Log10 dissimilarity measures for
the fish assemblage (Anderson et al. 2006) and nor-
malised Euclidean distance for environmental vari-
ables. ‘Important’ environmental variables which are
used in subsequent univariate analyses were deter-
mined by the outcomes of the sequential tests (i.e. the
‘best fit’ model) of the DistLM analysis.

Generalised linear models were then used to test
for correlations between a suite of descriptive uni-
variate metrics of the fish assemblage and important
environmental variables that were identified in
 DistLM models. All GLMs were fitted with Poisson
distributions and conducted in R (R Core Team 2017).
We tested 3 types of fish metrics: (1) ‘diversity and
abundance’ (species richness, harvestable fish abun-
dance), which represented descriptors that are often
used by environmental managers and in monitoring
programs (Whitfield & Elliott 2002) (Table S1 in
the Supplement), (2) ‘habitat associations’ (mangrove-
or structure-associated), which represented typical
occurrence patterns of fish in regional estuaries as
determined by recent studies in estuaries of the
region (Olds et al. 2012, Henderson et al. 2017, Gilby
et al. 2018) (Table S1), and (3) ‘trophic groups’ (abun-
dance of piscivores and zooplanktivores) (per Elliott
et al. 2007), which represented the typical prey in -
take and feeding behaviour (Table S1). We selected
piscivores because they are more likely to be
affected by declines in water clarity (Lunt & Smee
2015) and are often tightly associated with structured
habitats in this region (Gilby et al. 2016, 2018). Con-
versely, zooplanktivores are often tightly associated
with mangroves because mangroves provide their
preferred zooplankton prey in great abundance.
Zooplanktivores are also particularly sensitive to
changes in water quality because these have imme-
diate consequences for planktonic food webs and
therefore zooplankton prey (Giarrizzo et al. 2011,
Davis et al. 2014, Saintilan & Mazumder 2017).

RESULTS

Differences in fish assemblages

Estuarine fish assemblages were shaped by the
combined effects of distance from armoured shore-
lines and the estuary in which the site was positioned
(explaining 4.3% of total variation; Table 2, Fig. S2 in
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the Supplement). A total of 62 fish species was re -
corded. Urbanisation was associated with sizeable
variation in species richness between estuaries. The
highly and moderately urbanised estuary each sup-
ported 19 species, whilst the least urbanised estuary
had 53 species. Species accumulation curves support
this large difference in fish diversity, with the moder-
ately and highly urbanised estuaries approaching an
asymptote, but the least urbanised estuary did not
reach an asymptote up to the 100 samples taken
(Fig. 2). Species assemblages differed significantly
be tween estuaries (Fig. S2). The most abundant spe-
cies in the highly-urbanised estuary were yellowfin
bream Acanthopagrus australis (an omnivore) and
yellowtail scad Trachurus novaezelandiae (a zoo-
planktivore), each comprising 29% of total fish abun-
dance (Table S1). In the moderately urbanised estu-
ary, the most abundant species were estuary perchlet

Ambassis marianus (a zooplanktivore) (30% of total
abundance), yellowfin bream (12%), and sea mullet
Mugil cephalus (a detritivore) (10%). Similarly, the
most abundant species in the least urbanised estuary
were also estuary perchlet (28%), yellowfin bream
(18%), and sea mullet (12%) (Table S1).

Effects of urbanisation on fish assemblages

The extent of catchment and estuarine shoreline ar-
mouring strongly modified the spatial response of es-
tuarine fish to armoured shorelines (Fig. 3, Table 3).
There were either no clear or very weak distance ef-
fects in the most urbanised estuary (Fig. 3). By con-
trast, we observed distinct clines for several metrics in
the 2 estuaries with low or moderate degrees of ur-
banisation, particularly in terms of species richness
and the abundance of harvestable fish species, which
generally declined with increasing distance from
 armoured shorelines (Fig. 3A,B). The strongest dis-
tance effects in relation to armoured shorelines were
observed for the abundance of piscivores and
 structure-associated fish: significantly more individu-
als occurred close to armoured shores and numbers
de clined sharply farther away (Fig. 3D,E). Similarly,
the abundance of mangrove-associated fish declined
with increasing distance from armoured shorelines,
but only in the moderately and highly urbanised estu-
aries (Fig. 3C). Zooplanktivores were most abundant
in the least urbanised estuary, where their numbers
were positively correlated with distance from ar-
moured shorelines (Fig. 3F). By contrast, the abun-
dance of zooplanktivores in moderately and highly
urbanised estuaries declined with increasing distance
from armoured shorelines (Fig. 3F).
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Test/variable                                                              AICc             SS         Pseudo-F         p         Variance     Cumulative 
                                                                                                                                                                  explained        variance 
                                                                                                                                                                                          explained

Marginal tests
Estuary                                                                       5.92           4.90           0.001         0.035
Distance of site to armoured estuarine shoreline         2.66           4.35           0.008         0.016
Distance of site to estuary mouth                                 2.03           3.30           0.028         0.012
Distance of site to mangroves                                      0.99           1.60           0.127         0.006
Mangroves near site                                                    0.98           1.59           0.164         0.006
Urban land near site                                                    0.37           0.60            0.68          0.002

Sequential tests
+Estuary                                                                   −136.84         5.9              4.9           0.001         0.035             0.035
+Distance of site to armoured estuarine shoreline     −137.31         1.5              2.5           0.046         0.009             0.043

Table 2. Distance-based linear model output showing associations between environmental metrics and variation in fish assem-
blage structure. For full descriptions and data sources of all factors, see Table 1. AICc: corrected Akaike’s information criterion; 

SS: sum of squares

Fig. 2. Species accumulation curves for fish species in 3 estu-
aries with varying degrees of urbanisation in Queensland, 

Australia
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DISCUSSION

The consequences of removing natural vegetation
from watersheds and the impacts of armouring of
estuarine shorelines on coastal fishes are widely
recognised, but these effects have typically been
studied in isolation (Bulleri & Chapman 2010,
Bishop et al. 2017, Heery et al. 2017; but see Breit-
burg & Riedel 2005, Bilkovic & Roggero 2008,
Kornis et al. 2017). Consequently, it is not clear
whether, and to what extent, these different effects
of urbanisation interact to shape fish assemblages
(Clynick et al. 2008, Bulleri & Chapman 2010,
Sheaves et al. 2010). In this study, fish diversity and
abundance typically decreased with increasing dis-
tance from armoured shorelines, irrespective of the
broader levels of shoreline armouring in the estuary.
In this sense, it is possible that armoured shorelines
provide some value for some species of fish in these
estuaries. On top of this, we found that the number
and type of fish that congregated near urban struc-
ture were higher in the least urbanised estuary and
scaled to the lowest values in the most urbanised
estuary. This finding suggests that whilst armoured
shorelines can provide some value for some species
of fish, the number of fish that congregate around
them is likely contingent on the broader urbaniza-
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Targets/source                       df            χ2                p

Management targets                                                     
Species richness                                                           

DA                                       1          13.86         <0.001
Es                                         2          54.02         <0.001
DA × Es                                2          6.23          0.04

Harvestable fish abundance                                         
DA                                       1          35.31         <0.001
Es                                         2          70.02         <0.001
DA × Es                                 2          13.33         <0.002

Habitat associations                                                    
Mangroves                                                                  

DA                                       1          16.89         <0.001
Es                                         2          79.41         <0.001
DA × Es                                2          17.86         <0.001

Structure                                                                     
DA                                       1         146.64        <0.001
Es                                         2         327.55        <0.001
DA × Es                                 2         69.22        <0.001

Functional groups                                                       
Piscivores                                                                     

DA                                       1          19.29         <0.001
Es                                         2          27.15         <0.001
DA × Es                                2          18.03         <0.001

Zooplanktivores                                                           
DA                                       1          2.22          0.14
Es                                         2          49.21         <0.001
DA × Es                                2          26.38         <0.001

Table 3. Summary of generalised linear models testing for
relationships between fish metrics (response) and 2 predic-
tors: distance of site to armoured estuarine shoreline (DA) 

and estuary (Es)

Fig. 3. Generalised linear models illustrating variation in the effects of proximity to armoured shorelines on fish assemblages
from estuaries that differ in their extent of urban modification for the abundance of (A,B) indicator groups: (A) species richness
and (B) harvested fish abundance; (C,D) habitat-association groups: (C) mangrove-associated fish and (D) structure-associated 

fish, and (E,F) functional groups: (E) piscivores and (F) zooplanktivores. Shaded areas are 95% confidence intervals
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tion context of the rest of the estuary (principally
mangrove extent, but also total shoreline armouring
and watershed urbanization). Alternatively, this find-
ing could suggest that the abundance of urban struc-
ture-associated fish might not be modified by land-
scape-scale urbanization; a hypothesis that would
support our finding of strong habitat associations in
even the lowest urbanized estuary. Any human
modification to estuarine ecosystems will be likely
to have negative consequences for some species
(e.g. there may have been species already lost from
our systems due to this level of urbanization). How-
ever, it might be possible to maintain the broader
values of the estuaries if natural vegetation is main-
tained. These findings have significant conse-
quences for the management of natural ecosystems
in urban estuaries because they suggest that main-
taining natural ecosystems, like mangroves, across
coastal seascapes is essential for maximising both
fish diversity in estuaries and the habitat values of
armoured shorelines for many fishes.

Coastal vegetation loss, especially of mangroves, is
one of the most significant impacts on coastal ecosys-
tems (Barbier et al. 2011, Gibbes et al. 2014, Sheaves
et al. 2015). In this study, the richness and abundance
of most components of the fish assemblage were
highest in the least urbanised estuary — the estuary
with the largest extent of mangroves. This result con-
curs with the hypothesis that estuaries with highly
urbanised abutting land and catchments contain
fewer fish and lower biodiversity overall (Browne &
Chapman 2014). These findings are likely a result of
2 key stressors on estuarine biota. Firstly, poorer
water quality in more urbanised estuaries due to
greater sediment (Sheaves et al. 2014), pollutant
(Waltham & Connolly 2007), and nutrient runoff (Bar-
bier et al. 2011) from altered catchments filters out
sensitive species that are vulnerable to fluctuations
in these physico-chemical attributes of estuarine
waters (Whitfield & Elliott 2002). Secondly, replace-
ment of natural habitat throughout estuaries with
armoured shorelines (as has occurred in our highly
urbanised estuary) reduces habitat heterogeneity
(Waltham & Connolly 2011), removes critical nursery
and spawning habitats (Nagelkerken et al. 2015),
and limits the abundance of fish groups that are par-
ticularly vulnerable to these sorts of impacts (in this
instance, zooplanktivores, for example; Sheaves et
al. 2015). Combined, the outcome is reduced biodi-
versity and fish abundance within highly urbanised
estuaries (Sheaves et al. 2010, Heery et al. 2017) and
a homogenisation of assemblages across seascapes
(McKinney & Lockwood 1999, McKinney 2006).

The movement of organisms, matter, and energy
across seascapes means that the effects of urbanisa-
tion are rarely confined to the armoured shorelines
themselves (Lee et al. 2006). In this study, we found
that fish abundance or richness was consistently
higher at sites nearer to armoured shorelines. Fish
abundance and richness metrics typically declined
with increasing distance from armoured shorelines,
irrespective of the level of watershed urbanisation.
Overall, the ecological effects of urbanisation in
highly urbanised estuaries resulted in the lowest fish
diversity and abundance, and these impacts did not
decline as with increasing distance from armoured
shorelines. The key exceptions include structure-
associated fish, which decline very rapidly with in -
creasing distance from armoured shorelines in the
least urbanised estuary. The structure-associated
species recorded in this study are mostly reef-associ-
ated species sensitive to poor water quality (such as
butterflyfishes and wrasses; see Table S1) and are
therefore usually absent from moderately and highly
urbanised estuaries (Gilby et al. 2017a). The remain-
ing fish fauna are a group of highly resilient, mostly
generalist species which roam across seascapes and
are less associated with structured habitats (i.e. biotic
homogenisation) (McKinney 2006, Gilby et al. 2016),
resulting in no clear spatial patterns in relation to
urban shorelines in the moderately and highly
urbanised estuaries.

Determining how key monitoring and biodiver -
sity targets respond to urbanisation is important in
optimising monitoring and modifying management
actions in the future (Beck et al. 2001). In this study,
species richness and harvestable fish abundance,
factors often targeted for monitoring and manage-
ment (Whitfield & Elliott 2002, Gilby et al. 2017a),
were higher in the least urbanised estuary and
higher closer to armoured shorelines in all estuaries
regardless of the level of urbanisation. Whilst strong
trends were found for structure-associated fish, the
opposite was true for mangrove-associated fish. The
abundance of mangrove-associated fish increased
with increasing distance from armoured shorelines in
the least urbanised estuary, which might reflect
the extensive area of remnant mangroves that pro-
vide valuable habitat for mangrove-associated fish
throughout this estuary (Peters et al. 2015, Whitfield
2017). By contrast, the abundance of mangrove-asso-
ciated fish declined with increasing distance from
armoured shorelines in both the moderately and
highly urbanised estuaries, which support only small
patches of mangroves. These findings suggest that
remnant mangroves might enhance the habitat value
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of armoured shorelines for fish and show how the loss
of mangroves from highly urbanised estuaries can
substantially alter estuarine fish assemblages (Peters
et al. 2015).

The abundance of fish functional groups can act as
indicators of environmental change and disturbance
in coastal ecosystems (Whitfield & Elliott 2002,
Sheaves et al. 2010). In this study, piscivorous fish
were positively associated with urbanisation at all
levels, with piscivore abundance also declining
sharply with distance from armoured shorelines in
the least urbanised estuary. Piscivores might use
armoured shorelines as refuges, taking shelter in
calmer waters in the lee of structures between forag-
ing excursions to other habitats or feeding areas
because they support an abundance of small fishes
from other functional groups. Armoured shorelines
might, therefore, partially replace the habitat roles
that some natural ecosystems provide for fish, pro-
vided that sufficient remnant vegetation remains to
maintain the ecological condition of the estuary.

Previous studies have demonstrated zooplankti-
vores to be highly sensitive to urbanisation at multi-
ple levels (Whitfield 1985). Firstly, the abundance of
zoo plank ti vores is reduced in urbanised estuaries
because they are closely associated with natural
spawning habitats (especially mangroves; Allen et al.
1995). Secondly, their preferred zooplankton prey
items in estuaries, principally crab and fish larvae,
are always in higher abundance in natural habitats,
especially mangroves and saltmarsh (Morgan 1990).
Zooplanktivores are also particularly sensitive to any
changes in hydrology and water quality, which modify
planktonic food webs, and therefore alter their food
resources (Kornis et al. 2017). Finally, zoo plank ti vores
are negatively associated with armoured shore lines,
butpiscivores, thekeypredatorsofsmallerzooplankti-
vores, are positively correlated with armoured shore-
lines, potentially reflecting predator-avoidance stra -
te gies (Whitfield & Blaber 1978). We suggest that
piscivores might, therefore, shelter among the com-
plex structures of armoured shorelines and make
feeding migrations to other natural habitats that sup-
port a higher abundance of zooplanktivores and
other prey items; this hypothesis requires further
testing.

This study demonstrates that estuaries with low
levels of urbanisation can support a high diversity
and abundance of estuarine fishes, which aggregate
near high relief habitats, encompassing both natural
and man-made structures. Paradoxically, the habitat
values of armoured shorelines for fishes appear to be
greatest in estuaries that also support mangroves,

which are more structurally complex. These findings
stress the importance of conserving a diverse sea-
scape where a mosaic of habitat types provides com-
plementary and alternative areas for a diversity of
fishes. Consequently, maximising the diversity and
abundance of fish in estuaries and optimising the
habitat values of armoured shorelines for many spe-
cies necessitates preservation of natural ecosystems,
especially mangroves, across estuarine seascapes.
Because fish move regularly between natural and
artificial habitats in urban estuaries, it will also be
necessary to conserve, and restore, critical spatial
linkages (e.g. movement corridors, hydraulic connec-
tions) between natural ecosystems and urban fish
habitats (Soulé et al. 2004, Olds et al. 2016).
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