
















and the return date to the home ground was be -
tween 24 and 30 May 2014 (Table 1). The inter-
 center distance be tween the home ranges in the 2
periods ranged from 1.8 to 23.4 m and the average
was 8.1 ± 2.2 m (mean ± SE) (Table 4).
Most individuals (8 individuals: ID 2, 4,
5, 11, 12, 14, 16, 17) showed an inter-
center distance of less than 10 m. For
these 8 individuals, daytime VPS detec-
tions during the period after spawning
were on the same patchy substrates that
were used during the period before
spawning (Fig. 5). For 6 out of the 8
individuals (ID 2, 4, 5, 12, 14, 16), night-
time VPS detections during the period
after spawning were also in the same
areas that were used during the period
before spawning.

DISCUSSION

Diel difference in home range size at
home ground

The present study is the first to clarify
home range size and its diel difference
for Epinephelus ongus. The results show
that all of the E. ongus individuals had a
greater home range size in the night-

time than in the daytime, and at
dawn and dusk. Since the main prey
items of E. ongus are crustaceans
including crabs and shrimps (Kawa-
bata et al. 2014) and crustaceans are
more active in the nighttime (Ma suda
et al. 2012, Ory et al. 2014), this sug-
gests that the larger home range in
the nighttime is an adaptation for
nocturnal foraging.

Some previous studies have shown
clear diel activity for groupers. Red-
spotted grouper E. akaara is more
active at night (Masuda et al. 2012). In
contrast, Carter et al. (1994) have
shown that Nassau grouper E. striatus
is most active at dawn and dusk (just
after sunrise and just prior to sunset).
Gibran (2007) has also observed feed-
ing activity of dusky grouper E. mar-
ginatus at twilight. Zeller (1997) has
shown that coral trout Plectropomus
leopardus is more active in the day-

time than in the nighttime. Thus, the results of the
present study differ from these previous studies,
 suggesting that diel activity is species-specific for
groupers.
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ID Daytime Nighttime Inter-
Latitude Longitude Latitude Longitude center 

(°N) (°E) (°N) (°E) distance
(m)

1 24.305673 123.992300 24.305700 123.992294 3.0 
2 24.305104 123.992070 24.305266 123.992146 19.5 
3 24.305088 123.992069 24.305143 123.992103 7.0 
4 24.304634 123.992195 24.304652 123.992090 10.8 
5 24.303982 123.991756 24.304001 123.991802 5.1 
6 24.304393 123.991425 24.304350 123.991429 4.8 
7 24.304522 123.991415 24.304673 123.991386 17.0 
8 24.304702 123.991433 24.304899 123.991294 26.0 
9 24.304978 123.992906 24.304995 123.993091 18.9 
10 24.304687 123.992659 24.304343 123.992106 67.9 
11 24.304770 123.992951 24.304753 123.993073 12.5 
12 24.304648 123.993386 24.304466 123.993529 24.9 
13 24.304653 123.993412 24.304637 123.993910 50.6 
14 24.304696 123.993325 24.304563 123.993007 35.5 
15 24.305162 123.993803 24.305083 123.993710 12.9 
16 24.304845 123.993269 24.305046 123.992997 35.5 
17 24.305241 123.993867 24.305492 123.994008 31.2 

Mean ± SE 22.5 ± 4.2

Table 3. Center of Epinephelus ongus home ranges at daytime and night-
time, and inter-center distance between daytime and nighttime home
ranges. For defi nition of ‘center’, ‘inter-center distance’, ‘daytime’ and 

‘nighttime’, see ‘Materials and methods’
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Fig. 3. Relationship between Epinephelus ongus total length and home range
size, for both core home range (50% KUDs, d) and overall home range (95%
KUDs, ds), for (a) dawn, (b) day, (c) dusk, and (d) night. The black line in (b)
indicates the significant relationship for overall home range determined by
GLM. Note that the scaling of the vertical axis in (d) differs from that in (a,b,c)
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Day−night home range shift

Inter-center distance between the daytime and
nighttime home ranges varied individually. This sug-
gests that the resting site in the daytime and foraging
site in the nighttime were different for those individu-
als that had a greater inter-center distance. Total
length was not the main factor responsible for the size
of the day−night home range shift. Although the pre-
cise causes remain unknown, spatial variations in
food resources (i.e. prey items) might play a role. If in-

dividuals inhabit corals that support only a low
density of potential prey items, these individuals
would hunt around their resting site for prey. As a re-
sult, the core home range would change spatially be-
tween the daytime and nighttime. This might be the
reason why no significant relationship between total
length and home range size was found in the night-
time. Since the study area was covered by a sandy sea
bottom with patchily distributed coral colo nies, food
resources would not be uniformly distributed but
would be aggregated patchily. Thus, ex panding
home range size would not necessarily guarantee in-
creased food resources. Therefore, de spite ex pan ding
its home range, an individual would not acquire suffi-
cient food resources if few coral colonies with rich
prey items were included in the expanded home
range. In contrast, if an individual could inhabit a
coral colony with rich prey items, it would acquire suf-
ficient food resources on the coral colony without sub-
stantially expanding its home range.

Although it is difficult to estimate the
spatial variation in prey item abundance
in the wild, experimental studies might
be useful for testing the relationship be -
tween prey item abundance and the day−
night home range shift. The results of the
present study suggest that the appropri-
ate size and location of an MPA for E.
ongus should be determined based on the
day−night home range shift at their home
ground.

Returning ability after 
spawning migration

The inter-center distances between
the home ranges for the periods before
and after spawning were all under 25 m.
In fact, it was less than 10 m for most
indi viduals. This suggests that E. ongus
are able to return with high precision

after the spawning migration.
Some species use olfaction and vision for homing

(Mitamura et al. 2005) and others use topographical
characteristics (Mazeroll & Montgomery 1995, 1998,
Kaunda-Arara & Rose 2004). Kaunda-Arara & Rose
(2004) conducted an artificial displacement experi-
ment for 1 grouper species (E. tauvina). In this ex -
periment, tagged E. tauvina individuals were re -
leased 0.5 to 2.6 km away from the capture site. As
a result, 8 out of 12 individuals returned to their ini-
tial capture sites. In contrast, the present study

128

ID Before spawning After spawning Inter-
Latitude Longitude Latitude Longitude center 

(°N) (°E) (°N) (°E) distance
(m)

2 24.305220 123.992109 24.305280 123.992106 6.6
4 24.304642 123.992087 24.304628 123.992169 8.4
5 24.304014 123.991828 24.303976 123.991836 4.3
8 24.304773 123.991305 24.304776 123.991550 16.6
9 24.305011 123.993014 24.304916 123.993220 23.4
11 24.304765 123.992938 24.304774 123.992953 1.8
12 24.304602 123.993439 24.304559 123.993466 5.5
14 24.304636 123.993164 24.304619 123.993171 2
16 24.304942 123.993129 24.304886 123.993189 8.7
17 24.305262 123.993871 24.305240 123.993849 3.4

Mean ± SE 8.1 ± 2.2

Table 4. Center of Epinephelus ongus home ranges before and after
spawning, and inter-center distance between home ranges during the 2
periods. For definition of ‘center’ and ‘inter-center distance’, see ‘Materials 

and methods’
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Fig. 4. Relationship between Epinephelus ongus total length
and inter-center distances between daytime and nighttime
home ranges (for definition of ‘inter-center distance’, see
‘Materials and methods’). The GLM revealed no significant 

relationship
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Fig. 5. Locations of VPS detections for 10
Epinephelus ongus individuals in the
daytime (s) and nighttime (ds). These in-
dividuals were confirmed to undertake
their spawning migration around the last
quarter of the moon in May (21 May 2014,
Nanami et al. 2017). The locations for the
2 study periods (before spawning [21
April−20 May] and after spawning [22
May−20 June]) were plotted on an aerial
photograph of the study site. The dark
and light areas in the aerial photographs
show hard substrates (coral colonies,
dead corals and rocks) and sandy sea bot-
tom, respectively. Dotted lines (light
green, violet and light blue) show the
hard substrates that were considered to
be used by individuals. See also Fig. S1 in
Supplement 1 for detailed location of
each home range. Aerial photographs
were provided by the International Coral
Reef Research and Monitoring Center
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revealed precise returning ability after the spawn-
ing migration even though the distance between the
home ground and the spawning ground was ap -
proximately 6 km. Although the exact mechanisms
of the returning ability of E. ongus remain unknown,
the present study is the first to clearly show the abil-
ity of grouper to return to their home ground pre-
cisely after the spawning migration under natural
conditions (i.e. E. ongus was not artificially released
into an area outside of their home ground in the
present study).

Implications of establishing MPAs using 
behavioral characteristics

Since the site fidelity of E. ongus was high in the
daytime, the habitat that is used in the daytime
should be included in the MPA. Some individuals
showed day−night habitat shifts of several tens of
meters. Furthermore, the returning precision after
the spawning migration was high. Since E. ongus
are captured during both the daytime and night-
time, both daytime and nighttime home ranges
should be included in the MPA. Thus, the estab-
lishment of an appropriate MPA for E. ongus in
their home ground would involve the following: (1)
the daytime core home range (i.e. substrates in
which E. ongus individuals are found in the day-
time) could be designated as the center of the
MPA; (2) an area with a radius of several tens of
meters from the daytime core home range would
be an appropriate size for the MPA during the non-
spawning period.

Since some coral reef fish species change their
home ground during the non-spawning period
(Chateau & Wantiez 2008), long-term monitoring of
the site fidelity of E. ongus should be conducted. The
maximum age and age at maturity of E. ongus are 20
and 4 yr, respectively (Ohta & Ebisawa 2015, 2016).
Thus, E. ongus undergo spawning migrations multi-
ple times during their lifetime (maximum can be 16
times). If long-term site fidelity of E. ongus is ob -
served, i.e. if the location of their home ground
remains almost the same throughout their adult life-
time due to their precise returning ability after the
spawning migration, then the selection of an appro-
priate location for an MPA will ensure the long-term
protection of individuals at their home ground. Since
clear microhabitat association has been found for E.
ongus (Nanami et al. 2013b), further research will be
useful. Namely, in order to determine the appropri-
ate MPA location, the density and spatial distribution

of the E. ongus population, as well as the extent of
suitable habitat should be investigated before MPA
establishment.
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