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ity at settlement is strongly influenced by PLD, in
which case OA may indirectly affect settlement
 patterns.

Larval transport

Whether it is passive transport due to water move-
ment or active transport associated with larval swim-
ming behaviour, larval flux is a key process de -
termining larval supply for settlement. As already
re ported, climate change-driven altered ocean cur-
rents and ocean warming are presently influencing
larval distributions (Richardson 2008) and thereby
settlement patterns on larger spatial scales. In addi-
tion, smaller-scale changes in larval transport and
movement may be important, especially associated
with active larval swimming behaviour. This is seen
in swimming fish larvae that show important changes
in their behaviour under elevated pCO2 and which
can affect their horizontal movement and settlement.
Examples include the work by Munday et al. (2009),
who found that tropical clownfish Amphiprion per-
cula larvae under elevated pCO2 have impaired
olfactory ability to detect homing signals important
for swimming to suitable settlement sites. In addition,
laboratory exposure of dolphinfish Coryphaena hip-
purus larvae to elevated pCO2 (~1600 µatm CO2)
caused a reduction in swimming duration and orien-
tation that may have implications for dispersal suc-
cess and recruitment (Pimentel et al. 2014). OA may
not have the same direct effects on invertebrate lar-
vae; however, there may be more subtle effects that
alter horizontal transport. For example, larval stages
often alter vertical distributions through swimming in
order to influence their larger-scale horizontal trans-
port, such as cross-shelf transport (Morgan et al.
2014). Of relevance here are the observations that
reduced seawater pH can alter larval shape (Byrne et
al. 2013, Kamya et al. 2014) and thereby alter larval
swimming ability and behaviour, such as shown for
echinoderms (Chan et al. 2016). This has implications
for the capacity of larvae to maintain their position in
the water column or to reach their preferred settle-
ment sites. For example, Chan et al. (2016) found that
horizontal swimming speeds in brittle star Amphiura
filiformis larvae were slower in reduced seawater
pH at levels commensurate with near-future pro-
jected OA, with morphological changes thought to
be the cause (i.e. reduced arm lengths involved in
pro pulsion).

Interestingly, however, not all taxa show a loss of
swimming capacity. Chan et al. (2011) found no dif-

ferences in swimming speeds of sand dollar Den-
draster excentricus larvae in response to elevated
pCO2 (1000 µatm, pHNBS ~7.75), despite changes in
morphology, while Chan et al. (2016) found either no
effect or positive effects of reduced pH (7.7) on the
swimming speeds of larval sea urchins Strongylocen-
trotus purpuratus. Larvae of the bryozoan Bugula
neritina also showed enhanced swimming (32%
faster) and swam for longer periods at pHT 7.6 com-
pared with larvae reared in control pHT 7.9, with the
larvae growing to a larger size at low pH (Pecquet et
al. 2017). A direct effect of increased H+ concentra-
tions in lower pH was proposed to alter action poten-
tials and ciliary beating that stimulated swimming,
while longer swimming durations may reflect a loss
of settlement cues. To quantify the potential effects of
behavioural changes on settlement and recruitment
among marine invertebrate taxa, it is important to
understand the interaction of changes in swimming
ability and larval duration with water movement.
This will require physical transport modelling of dis-
persal that incorporates OA-induced changes in lar-
val behaviour and physiology (Chan et al. 2018).

Settlement processes

Settlement rates in elevated pCO2

A number of laboratory studies have reported
the effects of OA on settlement rates and patterns
(Table S2). For tropical corals, Doropoulos et al. (2012)
noted significant reductions in settlement of Acropora
mille pora larvae under elevated pCO2 (800 and
1300 µatm, pHT 7.79 and 7.60, respectively), Webster
et al. (2013b) reported reduced metamorphosis suc-
cess in A. millepora and A. tenuis under OA con -
ditions (pHT 7.51, 1638 µatm CO2), and Albright et al.
(2010) noted a linear decline in A. pal mata settlement
rate across a 491 to 876 µatm pCO2 range (pHT ~7.96
to 7.75), with a reduction of 69% between the lowest
and highest pCO2 tested. Metamorphosis in A. digi-
tifera declined from 98 to 83% in larvae exposed for
2 h to ambient pHT of 8.05 (~331 µatm CO2) and re-
duced pHT of 7.33 (~2100 µatm CO2), respectively
(Naka mura et al. 2011). In the same experiments,
when the larvae were exposed to reduced pH for 7 d,
a similar trend in metamorphosis rate was observed,
and metamorphosis levels were much lower (i.e.
<25%). Yuan et al. (2018) found reduced settlement in
A. gemmifera larvae when exposed to reduced pHNBS

(7.8 and 7.5) at the time of settlement. In echinoderms,
Dupont et al. (2013) noted delayed settlement in
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S. droebachiensis, while in the sea urchin Paracentro-
tus lividus, García et al. (2015) observed delayed set-
tlement by 8 d in pHNBS 7.7 compared to pHNBS 8.1,
and no settlement at pHNBS 7.4. For Arbacia lixula and
Heliocidaris erythrogramma, however, there was no
delay in settlement at pHT 7.69 and pHNBS 7.8 and 7.6,
respectively (Byrne et al. 2011a, Wangensteen et al.
2013). For the crown-of-thorns sea star (CoTS) Acan-
thaster cf. solaris, the settlement rate on pH-condi-
tioned substrates declined with decreasing seawater
pH and was significantly lower at pHNBS 8.04 and 7.95
(~609 and 783 µatm CO2) compared with ambient and
pre-industrial seawater pHNBS (8.14 and 8.25, respec-
tively) (Uthicke et al. 2013).

Less is known about the effects of settlement and
metamorphosis for other invertebrate taxa. Settle-
ment in the bivalve Macoma balthica was examined
in OA mesocosm experiments across a range of pCO2

levels (319−1347 µatm CO2, pH 7.94−7.43), with peak
settlement being delayed (857−1347 µatm CO2, pHT

7.59−7.43) and lower (1072 µatm CO2, pHT 7.51) at
elevated pCO2 (Jansson et al. 2016). Guo et al. (2015)
found reduced survival and metamorphosis in larval
abalone (Haliotis diversicolor and H. discus hannai)
that had been reared under control CO2 conditions
(447 µatm, pHNBS ~8.15) when exposed to high pCO2

concentrations (1500, 2000 and 3000 µatm, pHNBS

~7.7, 7.6 and 7.4, respectively). Dooley & Pires (2015)
tested the effects of pH on the settlement and meta-
morphosis of the gastropod Crepidula fornicata and
interestingly found significantly higher settlement
and metamorphosis at pHT 7.51 and 7.71 than at 7.96.

Some studies on aquaculture species have demon-
strated a correlation between OA (reduced pH) and
spat settlement in natural environments. For exam-
ple, Barton et al. (2012) showed a decrease in Pacific
oyster Magallana gigas (formerly Crassostrea gigas)
larval recruitment if spawning coincided with natu-
rally occurring low-pH upwelling events along the
coast of Oregon, USA. Similarly, Kripa et al. (2014)
found a strong correlation between low pH values in
a tropical estuary along the southwest coast of India
and poor spat density (low settlement) of Indian
backwater oysters Crassostrea madrasensis. For the
Sydney rock oyster Saccostrea commercialis, these
problems may be obviated by the attraction of these
larvae to concrete settlement substrata where the
surface pHNBS of 9.24 may provide a buffering effect
(Anderson 1996).

The influence of pH on settlement is likely to be
species-specific, with some studies reporting no dif-
ferences in settlement rate among pH levels. In
corals, for example, Foster et al. (2015) observed

that Acropora spicifera settlement was not signifi-
cantly different in treatments that included elevated
pCO2 (872−976 µatm, pHT 7.77−7.75), and in A. ten -
uis, settlement of larvae reared in 1000 µatm CO2

(nominal pH treatment: 7.6) was unaffected (Kuri-
hara 2008). Chua et al. (2013) also found no effects
of elevated pCO2 (700 µatm) on metamorphosis in
A. millepora and A. tenuis. Similarly, Albright et al.
(2008) found that the settlement of Porites astreoides
was not significantly different across a range of
pCO2 levels (380 to 720 µatm CO2, pHT 7.95 to
7.80), while Olsen et al. (2015) found no difference
in settlement at ambient (nominal pH 8.1) and
reduced seawater pH (nominal pH 7.6). Campbell et
al. (2017) found no effect of reduced pH (pHNBS

7.85) on the settlement of the same species of coral.
Anlauf et al. (2011) observed no effect of reduced
seawater pH (pHNBS 7.85) on the settlement of P.
panamensis larvae. Echinoderm settlement also
exhibits a range of responses to OA. Both Dupont et
al. (2013) and Wangensteen et al. (2013) reported no
change in settlement of the sea urchins Strongylo-
centrotus droebachiensis and Ar bacia lixula respec-
tively, at pHT 7.69. The presence of smaller A. lixula
did not translate to a longer PLD, as settlers ap -
peared at the same time as in controls (Wangen-
steen et al. 2013), although the settling A. lixula lar-
vae were smaller than the juveniles generated in
control conditions. For Heliocidaris erythrogramma,
those larvae that completed development in OA
 conditions (pHNBS 7.6 and 7.8) settled at the same
time as controls and responded normally to the
coralline algal settlement cue and metamorphosed
into juveniles, although there was a decrease in the
percentage of normal juveniles (Byrne et al. 2011a).
Settlement and metamorphosis of the polychaete
tube worm Hydroides elegans larvae was not differ-
ent when reared under control (8.17) and reduced
(7.56) pHNBS conditions (Lane et al. 2013).

Barnacle larvae appear to be relatively unaffected
by reduced pH during settlement and metamorpho-
sis. For example, McDonald et al. (2009) followed the
percentage of settlement in Amphibalanus amphi -
trite at ambient pHNBS (8.2) and reduced pHNBS (7.4)
over a 46 h period, during which time there was no
significant difference in the cumulative increase in
settlers between pH treatments. Similarly, the per-
centage of settlement in Balanus amphitrite in the
presence of a conspecific settlement cue did not de -
cline under a reduced pHNBS of 7.61 compared with
pHNBS 8.20 (Campanati 2016), although settlement
was lower in reduced pH in the absence of the spe-
cific cue.
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Substrate perception and selectivity

Of the species studied, the majority have shown a
decrease in settlement under elevated pCO2/ re duced
pH (Fig. 3B; Tables S2 & S3). As settlement in marine
invertebrate larvae typically involves a series of spe-
cific steps (exploration, attachment, metamorphosis),
altered settlement under changing ocean conditions
could be influenced by a range of processes, both di-
rect and indirect (Fig. 1). Larvae detect the proximity
of, search for and explore suitable substrates using a
range of senses including water-borne chemicals
(Hadfield & Paul 2001, Gerlach et al. 2007, Swanson
et al. 2012). A reduction in settlement could therefore
be due to a direct loss of sensory capacity from altered
seawater pH. Larvae of the tropical fish Amphirion
percula show a reduction in homing behaviour under
reduced pH as a result of the loss of olfactory capacity,
attributed to impaired neurotransmission (Munday et
al. 2009). Devine et al. (2012) found that elevated
pCO2 caused impairment of olfactory discrimination
of settlement cues in larval damselfish Pomacentrus
amboinensis; however, the larvae showed an ability to
compensate by means of alternative senses (i.e. visual
cues). For larvae of barramundi Lates calcarifer
reared under end-of- century levels of elevated CO2

(~1675 µatm), elevated pCO2 negatively influenced
the auditory preference at the time of settlement
(Rossi et al. 2015). In the same species, Pistevos et al.
(2017) ob served that the attraction of larvae towards
physicochemical cues such as salinity or temperature
was altered when pre-settlement larvae were exposed
to extreme levels of OA (~1400 µatm CO2), possibly
affecting future recruitment of this species. Painted
goby Pomatoschistus pictus larvae that were reared in
similarly high pCO2 conditions (1503 µatm, pHNBS

7.66) presented altered auditory responses important
for the settlement of this species to the preferred
costal reef habitat (Castro et al. 2017). In the presence
of elevated pCO2 water (700 and 1100 ppm CO2), lar-
val blue-green damselfish Chromis viridis and crus-
taceans (banded coral shrimp Stenopus hispidus) both
presented altered ability to chemically recognize con-
specific cues (Lecchini et al. 2017). These observations
are noteworthy, as the chemical information associ-
ated with offspring is important for habitat selection at
settlement in these species.

For invertebrate larvae, studies that specifically
examined the direct effects of seawater pH on larval
settlement reported contrasting effects on sensory
perception under reduced pH. Doropoulos & Diaz-
Pulido (2013) found a significant decline in settle-
ment in the coral Acropora selago on CCA when lar-

vae were settled under elevated pCO2 levels (447,
705 and 1214 µatm CO2; pHT 7.98, 7.81, 7.60). Simi-
larly, settlement rates significantly declined in Pocil-
lopora damicornis larvae settled in reduced seawater
pH (7.9 and 7.6), compared with rates of settlement in
controls (pH 8.1) (Viyakarn et al. 2015). For a non-
feeding (lecithotropic) bryozoan larva (Bugula ner-
itina), settlement was affected by pH, but in a time-
dependent manner (Pecquet et al. 2017). In this
re spect, settlement in B. neritina was delayed but not
inhibited by reduced pH. Specifically, settlement of
larvae decreased linearly (from ~90 to ~0%) across a
pHT range (8.17−6.46) after 1 and 2 h, but over time,
differences in settlement rate among pH levels less-
ened so that by 6 h, settlement was <75% across all
pH levels. Pecquet et al. (2017) speculated that the
longer larval duration and the shorter-term decrease
in settlement rate of bryozoan larvae was potentially
the result of elevated pCO2 blocking specific sig-
nalling pathways (i.e. Wnt signalling) associated with
bryozoan settlement, inhibiting the ability of the lar-
vae to perceive settlement cues.

There were no differences in settlement rates of
bar nacles (Balanus amphitrite) among pH treatments
(pHNBS 8.20 and 7.61), both when conspecific settle-
ment cues were present or absent (Campanati 2016),
indicating that reduced pH did not alter the sensory
capacity of the competent cyprids. For CoTS larvae
(Acanthaster cf. solaris), Uthicke et al. (2013) showed
no significant difference in settlement on CCA in lar-
vae settled under 4 seawater pHNBS levels, ranging
from 8.25 to 7.95. The authors concluded that the sea-
water pH did not directly influence the ability of the
larvae to respond to settlement cues. Webster et al.
(2013b) drew the same conclusion for Acropora mille -
 pora larvae using the same technique, where larvae
settled on the same CCA extracts under 4 seawater
pHT treatments (7.57 to 8.09) showed no difference in
 settlement.

Changes in settlement substrates

Indirect effects of reduced pH on larval settlement
would include the modification of settlement sub-
strates that alter settlement clues (Figs. 1 & 3B). This is
important, as OA can change the nature of substrates
that larvae are able to perceive, which can lead to al-
tered settlement patterns (e.g. Webster et al. 2013b).
Amongst the best known settlement substrates are
CCA and marine biofilms, the latter comprised of het-
erotrophic bacteria, cyanobacteria, protozoa, fungi
and benthic diatoms in a matrix of extracellular poly-
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mers (Harder et al. 2002, Lam et al. 2003, Sneed et al.
2015). While it is well established that CCA and their
associated microbes play a significant role in the in-
duction of larval settlement (Negri et al. 2001, Har-
rington et al. 2004, Webster et al. 2004), microbial bio-
films alone can also induce larval settlement (Webster
et al. 2004, Whalan & Webster 2014).

Acidification could affect marine biofilms in 2
ways: by changing the species composition and/or by
inducing differences in the chemical cues emitted by
biofilms (Russell et al. 2013). Distinct changes in the
community structure of biofilms as a result of seawa-
ter pH have been found both experimentally (Witt et
al. 2011, Webster et al. 2013b) and across environ-
mental pH gradients (Lidbury et al. 2012, Johnson et
al. 2013). Hence, it is likely that larvae settling in
future predicted OA conditions will encounter bio-
films that differ in composition and function to those
found today. Webster et al. (2013b) considered the
effects of changes in biofilms associated with CCA
grown under reduced seawater pH conditions (pHT

8.09, 7.91, 7.72 and 7.57) as the mechanism for alter-
ing settlement patterns. In that study, decreases in
the abundance of dominant microbial groups (Alpha -
proteobacteria and Bacteroidetes) and the appear-
ance of Proteobacteria were observed in reduced
seawater pH, coinciding with lower settlement of
coral larvae, although it was not possible to deduce if
altered settlement on CCA is due to changes in the
chemical inducer of the algae or changes in the asso-
ciated microbial community. Certainly, microbial
films play an important role in the induction of settle-
ment in marine species (Johnson & Sutton 1994, Had-
field & Paul 2001, Huggett et al. 2006), and changes
in their composition, such as related to age, can affect
settlement rate in marine invertebrates (i.e. Pearce &
Scheibling 1991, Toupoint et al. 2012). The impact of
OA-induced changes in biofilm communities on re -
cruitment success warrants further examination.

The coral Acropora millepora settles differentially
on substrates, depending on the pH in which the sub-
strates were grown (Doropoulos et al. 2012). In this
respect, Doropoulos et al. (2012) found that substrates
conditioned for 60 d at 800 and 1300 µatm CO2 (pHT

~7.79 and 7.60, respectively) induced significantly
lower settlement than substrates under control condi-
tions (400 µatm CO2, pH ~8.04) and also changed the
pattern of settlement selectivity on substrate types.
Changes in CCA species composition were observed
on the treated substrates, and the settlement prefer-
ence of A. millepora larvae varied for each substrate.
Interestingly, this involved a decline in the settlement
of larvae on the previously most preferred CCA (Ti-

tanoderma spp.) when pCO2 levels were elevated.
Similarly, Doropoulos & Diaz-Pulido (2013) showed
direct evidence that rates of coral (A. selago) settle-
ment were consistently reduced under OA conditions
in the presence of 3 common CCA species, despite
the fact that CCA abundance was un affected. Web-
ster et al. (2013b) observed a similar ef fect of sub -
strate conditioning on A. millepora settle ment, with
the percentage of settlement significantly lower on
pHT 7.57 and 7.72 (~1638 and 1187 µatm CO2) condi-
tioned substrates compared with control substrates
conditioned at pHT 8.09 (~464 µatm CO2). Larvae of
the CoTS Acanthaster cf. solaris also settled at signifi-
cantly lower rates on substrata that had been condi-
tioned for 85 d in reduced pHNBS (8.05 and 7.94) com-
pared with those conditioned in seawater pH at
present-day (pHNBS 8.15) and pre-industrial (pHNBS

8.23) levels (Uthicke et al. 2013).
Multiple studies have shown that benthic diatoms

are very important cues for larval settlement in cer-
tain species of marine invertebrates (e.g. some spe-
cies of abalone, Ding et al. 2017). Previous studies
have shown the importance of benthic diatoms in the
settlement process of the polychaete Hydroides ele-
gans (Harder et al. 2002, Lam et al. 2003) which
seems to be induced by heat-stable surface compo-
nents emitted from the diatoms (Lam et al. 2003). Lit-
tle is known, however, on how OA affects benthic
diatom communities. For instance, a recent study has
shown changes in the species composition of benthic
diatoms and a significant increase in diatom abun-
dance with increasing pCO2 at a natural volcanic
vent site off the coast of Italy (Johnson et al. 2015).
The potential for such changes in diatom communi-
ties to occur under future OA conditions and the out-
come of such changes on settlement (and early post-
settlement growth) on invertebrates is of interest for
future research.

Altered larval settlement as a result of OA-induced
changes to CCA and microbial/microalgal biofilms
could have profound ecological effects. Modification
of the nature of the settlement substratum as a result
of elevated pCO2 may cause a loss or reduction in the
abundance of encrusting species, as well as changes
in the biofilm, both of which have been linked with
changes in settlement patterns. For instance, Doro -
poulos et al. (2012) linked changes in coral settle-
ment to differential responses of CCA under reduced
pH and discussed the implication of these findings
for the future recruitment of corals. Similarly, Uthicke
et al. (2013) suggested that future changes in CCA
under OA conditions that reduce settlement in CoTS
A. cf. solaris could be the most important bottleneck
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for future recruitment of the species. These observa-
tions have wide implications for settlement in future
oceans, given that CCA and biofilms influence the
settlement of numerous marine taxa (Pearce &
Scheib ling 1991, Hadfield & Paul 2001). Findings that
CCA communities change in abundance and species
composition in response to OA, both experimentally
(Kuffner et al. 2008) and along natural pH gradients
(Hall-Spencer et al. 2008, Fabricius et al. 2011), has
significant implications for the settlement of marine
species in future oceans.

Changes in host−symbiont interactions

The role of microbial symbionts in marine inverte-
brate larvae (particularly in sponges and corals) has
received considerable research attention in the past
decade (Bourne et al. 2016, Webster & Thomas 2016).
In some coral species, phototrophic symbionts (dino-
flagellates) supply energy to the larvae during the
planktonic life stage (Rivest et al. 2018), and in
sponges, microbial symbionts crucial to host health
are vertically transmitted from adults to larvae (Web-
ster et al. 2010). Environmentally induced disruption
of these microbial symbionts can destabilise the holo-
biont with adverse consequences for host health
across life history stages (Webster et al. 2011a, Fieth
et al. 2016, Pita et al. 2018). Given that larval settle-
ment is a crucial step in the life cycle of the larvae,
environmental factors affecting the health or per-
formance of the symbiont could jeopardize the out-
comes of larval settlement for those larvae strongly
dependent on symbiont health. Rivest et al. (2018)
tested the effects of OA and warming on host and
symbiont of Pocillopora damicornis larvae and found
that the mechanisms used to tolerate high pCO2 in
coral larvae and the symbiont differ, with greater
gene expression changes measured in the symbiont.
Similarly, Webster et al. (2013a) found that reduced
pH/increased pCO2 caused microbial shifts in coral
and foraminifera over 6 wk, despite no visible signs
of host stress being detected over this period. The
high sensitivity of host-associated microbes to OA
highlights the need for research that assesses the
implications of microbial shifts for larval health and
recruitment processes.

Early post-settlement processes

Quantifying the effects of OA on early post-
 settlement processes is key to understanding future

species population persistence/success because (1)
measurements of ‘settlement’ in experiments often
incorporate some post-settlement period; (2) effects
of reduced seawater pH on larvae can carry over to
post-settlement fitness; and (3) early post-settlement
processes are key to determining recruitment pat-
terns (Rowley 1989, Hunt & Scheibling 1997).

A number of studies have indicated that early post-
settlement growth and survival is adversely affected
by reduced pH, with corals consistently showing
reduced growth in OA experiments (Fig. 3C). For
instance, skeletal extension in newly settled Porites
astreoides is positively correlated with aragonite sat-
uration state, with 50 and 78% reductions in growth
occurring at 560 and 720 ppm CO2, respectively
(Albright et al. 2010). Foster et al. (2015) also found
that while survival of newly settled Acropora spi-
cifera was unaffected, a significant reduction in early
skeletal development and weight (48 to 60%, com-
pared to controls) occurred when pCO2 levels were
elevated to ~900 µatm). Similarly, Albright et al. (2010)
found a 39 and 50% decline in the linear growth of A.
palmata at pCO2 levels of 560 and 800 µatm, respec-
tively, compared with controls. Re duced polyp growth
at pHT 7.31 and 7.64 has been reported for A. digi-
tifera (Suwa et al. 2010); however, Nakamura et al.
(2011) found no significant effect on  survival on set-
tled A. digitifera recruits. Similarly, growth of newly
settled P. panamensis was only slightly reduced (3%)
at pHNBS 7.77−7.92, with no effect on survivorship
(Anlauf et al. 2011).

Growth of newly settled bryozoan ancestrula
were slowed by 5% after 24 h in reduced pHT 7.60,
compared with controls (Pecquet et al. 2017). Fitzer
et al. (2014) found that juvenile Mytilus edulis that
were spawned and grown under high pCO2 con -
ditions (1000 µatm) did not produce aragonite, and
their shells were entirely calcitic. In the soft-
 sediment clam Mercenaria mercenaria and scallop
Argo pecten irradians, Talmage & Gobler (2010)
studied the growth, survival and condition of larvae
and juveniles under past, present and future (21st
and 22nd centuries) ocean CO2 concentrations.
Higher CO2 concentrations were related to lower
growth and metamorphosis as well as to lower sur-
vival and lipid accumulation rates in juveniles. In
addition, newly settled bivalves grown under near
pre-industrial CO2 levels displayed thicker, more
robust shells than  individuals grown at present CO2

concentrations, whereas bivalves exposed to CO2

levels expected later this century had shells that
were malformed and eroded (Talmage & Gobler
2010).
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While seawater pH can reduce early post-settle-
ment growth and survival under laboratory condi-
tions, there are also examples of limited impacts of
reduced pH. In one of the most comprehensive stud-
ies on early post-settlement responses to reduced pH,
Wolfe et al. (2013) examined a range of developmen-
tal responses in newly settled sea urchins Helioci-
daris erythrogramma under a range of pHT levels
(8.13−7.44). Survival and test growth was robust to
near-future reduced pH levels, although spine length
was re duced and morphology altered under the
 lowest pH levels. Interestingly, a contrasting study
showed that post-settlement sea urchins (Paracentro-
tus lividus) were significantly larger at pHNBS 7.7
compared to 8.1 (García et al. 2015), which was
attributed to elevated metabolic rates in individuals
reared in reduced pH under non-energy limited con-
ditions. However, juveniles of the sea urchin Arbacia
lixula generated at pHT 7.69 were smaller (Wangen-
steen et al. 2013). In lecithotrophic echinoderm lar-
vae and juveniles of the sea star Crossaster pappo-
sus, Dupont et al. (2010a) found that, when cultured
at low pH (7.7), growth and development were faster
with no visible effects on survival or skeletogenesis.
Juvenile CoTS Acanthaster cf. solaris grown under
acidification conditions during their early herbivo-
rous phase grew faster under OA conditions, which
was attributed to the greater vulnerability of their
CCA food grown under the same conditions, an
example of indirect effects of OA on algal−grazer
interactions (Kamya et al. 2017, 2018). In addition,
while the juveniles reared in OA were larger, they
weighed less because they were less calcified
(Kamya et al. 2018). The early benthic juveniles of
the dwarf cushion sea star Parvulastra exigua are
also highly tolerant of low pH, with deleterious
effects only seen after 4 wk at pHT 7.24 (Nguyen &
Byrne 2014). For newly settled bivalves (Macoma
balthica), growth in mesocosm experiments was not
significantly different up to 17 d post-settlement
(Jansson et al. 2016), nor was there a clear effect of
increased pCO2 on juvenile survival. In an earlier
study on the same species, Green et al. (2004) found
reduced survival of juveniles in marine sediments in
very low estuarine pH conditions (pH 7.2).

Changes in early post-settlement barnacle growth
under reduced pH appear to be species-specific.
McDonald et al. (2009) recorded growth of Amphi -
balanus amphi trite unaffected by pHNBS 7.4 for up to
8 wk, Campanati (2016) found no difference in the
size of 15 d old post-settlement juvenile Balanus am -
phi trite between control (pHNBS 8.2; ~400 µatm CO2)
and low pHNBS (7.61, ~2000 µatm CO2) treatments,

while Findlay et al. (2010) found reduced growth of
newly settled cyprid larvae of Semibalanus bal-
anoides in pHNBS 7.70 (~1100 µatm CO2) over a 20 d
period.

While early post-settlement corals appear sensitive
to reduced pH, many other newly settled inver -
tebrates appear relatively tolerant. For corals, the
direct difficulties of calcifying in reduced pH appears
to explain the reduced growth rates, and it is likely
that the same mechanism explains the slower growth
of newly settled bryozoans, the poorer development
of early-juvenile urchin calcareous spines and the
dissolution of shells in bivalves. However, for other
newly settled calcifying taxa, such as barnacles and
some molluscs, calcification is not impaired. It is still
unknown if altered post-settlement growth rates are
also due to other physiological responses to reduced
pH, such as reduced metabolic rates or altered acid–
base regulation. Indeed, the studies available on the
effects of reduced pH on non-calcifying newly settled
invertebrates are scarce, and the wider effects (not
associated with calcification) of elevated pCO2 on
newly settled individuals are yet to be determined.
Furthermore, laboratory experiments do not account
for the wider ecological effects, such as altered food
supply (biofilms, CCA) on newly settled individuals.
For example, newly settled juveniles, such as sea
urchins, will first feed on biofilms, which in turn can
change in abundance and composition under ele-
vated pCO2 (Witt et al. 2011, Lidbury et al. 2012,
Webster et al. 2013b, Raulf et al. 2015).

Carryover effects

Larval developmental history may also influence
post-settlement development in marine species
(Pechenik 2006). Such carryover or non-lethal re -
sponses include the effects of larval nutrition and
environment on metamorphosis, settler sizes and
post-settlement growth (i.e. Phillips 2002). Given the
documented effects of reduced seawater pH on larval
development (Byrne et al. 2011, 2017) and feeding,
metabolism and energy budgets (Stumpp et al. 2013),
there is strong potential for OA-induced carryover
effects to occur in post-settlement stages. Hettinger
et al. (2012) found strong carryover effects on larvae
of Olympia oysters Ostrea lurida reared in reduced
pHNBS (7.73 and 7.86), where reduced pH resulted in
smaller larvae and smaller post-settlement juveniles
that grew significantly slower even in ambient pH
water (growth in 1 wk old juveniles was reduced by
41% if their larval stage was reared under reduced
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pH). This same study showed that carryover effects
occurred irrespective of the pH during post- settle ment.
Carryover effects were also observed when O. lurida
larvae were reared in laboratory conditions through
metamorphosis in both control (400 µatm, pHNBS

~8.10) and elevated pCO2 concentrations (1000 µatm,
pHNBS ~7.80), resulting in a 80% reduction in meta-
morphosis (Hettinger et al. 2013). Additionally, carry-
over effects were also observed when the juveniles
were out-planted into the field (Hettinger et al. 2013),
and these effects can be long-lasting. In particular,
while survival rates did not differ, juvenile growth in
the field was 15 to 50% lower than in controls for
juveniles exposed to elevated pCO2 (1000 µatm) as
larvae. Carryover effects were still evident 4 mo post-
settlement, with growth 20− 40% lower in juveniles
from exposed larvae. 

In the Pacific oyster Magallana gigas, reduced
metamorphosis due to carryover effects in larvae
reared under combinations of temperature (24 and
30°C), pHNBS (8.04 and 7.47) and salinity (15 and
25 psu) was evident (Ko et al. 2014). Decreased pHNBS

(7.47) significantly delayed pre- and post- settlement
growth, alone or in combination with the other stres-
sors. For the sea urchin S. droebachiensis, Dupont et
al. (2013) found negative carryover effects of expo-
sure to elevated pCO2 on the post-settlement sur-
vival and growth. While settlement success after 28 d
was not related to pCO2 exposure as a larva (i.e. 1200
vs. 941 µatm, pHT 8.1 and 7.7, respectively), mortality
in juveniles was 95% after 3 mo if they had been
exposed to elevated pCO2 as larvae, compared with
46 to 60% in juveniles originating from control lar-
vae. Mortality of juveniles in a second sea urchin,
Arbacia lixula, generated from OA conditions did not
differ from controls, but they were only reared for 3 d
post-settlement. The juveniles generated in OA con-
ditions were smaller than the controls (Wangensteen
et al. 2013). In corals, Yuan et al. (2018) observed re -
duced percentage settlement of Acropora gemmifera
larvae that had been cultured at 3 concentrations of
CO2 (corresponding to pHNBS 8.1, 7.8 and 7.5). After
settlement, the recruits showed decreased calcifica-
tion and growth, changes consistent with the down-
regulation of calcification-related genes.

Carryover effects between larvae and juveniles are
often attributed to altered energetic states in larvae
due to the need to physiologically mitigate the effects
of reduced pH (i.e. increased acid/base regulation,
longer development times). If that is the case, it is
likely that settling larvae have depleted metabolic
reserves available for early juvenile development or
earlier for the process of metamorphosis into poten-

tially smaller juveniles (Parker et al. 2015). In order to
better understand the OA-induced carryover effects
on larval settlement, analysis of the effects of OA on
the energetic reserves during the larval stage and at
the time of settlement are required.

FURTHER CONSIDERATIONS

Multi-stressors and settlement

OA occurs concomitant with other climate change-
related stressors, including ocean warming, hypoxia,
changes in nutrient concentrations or stratification
and altered salinity from freshwater runoff. It is there-
fore important to consider the interactions among
multiple global change-related stressors. While many
studies have considered the effects of multiple stres-
sors on marine larvae (reviewed by Przeslawski et al.
2015), few have specifically examined the effects of
multiple stressors on the process of settlement and
early post-settlement development (Table S3). Cam-
panati (2016) examined the interaction between low
oxygen and reduced pH on settlement and metamor-
phosis of Balanus amphitrite and subsequently the
growth and condition of newly settled juveniles. Set-
tlement was lower under reduced oxygen and in a re-
duced pH/O2 treatment, but not when pH was ap-
plied as a single stressor. There were no effects of the
stressors, administered singly or in combination, on
growth of newly settled juveniles, but the condition
index of the juveniles subjected to low O2 was signifi-
cantly poorer when pH was added as a co-stressor.
Foster et al. (2015) quantified settlement survival,
growth and calcification of newly settled Acropora
spicifera under elevated  temperatures (24 and 27°C)
and pCO2 (250 and 900 µatm). There was no signifi-
cant effect of treatment on settlement, either adminis-
tered separately or in combination, while the negative
effects of elevated pCO2 on early development were
not significantly different under warming. 

By contrast, Chua et al. (2013) found that elevated
temperature was the more important stressor in the
metamorphosis of A. millepora and A. tenuis. For
Porites panamensis planulae settlement, no signifi-
cant differences were found when exposed to OA,
temperature or a combination of both (Anlauf et al.
2011). However, significant reduction in growth of
primary polyps appeared when subjected to a combi-
nation of high temperature and low pH. No interac-
tion between temperature and pH on development of
newly settled sea urchins was seen by Wolfe et al.
(2013), with the exception of reduced spine length,
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where there was a stronger effect of temperature at
ambient pH levels. Wangensteen et al. (2013) tested
both temperature and pH on larval development, set-
tlement and juvenile survival of a Mediterranean
population of the sea urchin Arbacia lixula, reporting
that elevated temperature resulted in increased lar-
val survival and size. Acidification resulted in higher
survival rates, but in smaller larvae with marginal
effects on larval morphology. No carry-over effects
between larvae and juveniles were detected in early
settler survival, although settlers from larvae reared
at pHT 7.69 were significantly smaller than their
counterparts developed at pHT 8.09. 

A complex experiment tested the interactive ef -
fects of biotic (exposure to macroalgae) and abiotic
(temperature and pH) variables on the settlement of
the coral P. astreoides (Olsen et al. 2015). While the
rate of settlement was significantly lower when com-
peting with the algae Dictyota spp., there was no sig-
nificant effect of either pH or temperature on coral
settlement, nor any interaction among the biotic and
abiotic factors on the process. Huggett et al. (2018)
examined larval settlement of the sea urchin Helioci-
daris erythrogramma on the coralline alga Amphiroa
anceps that had been preconditioned in a combina-
tion of elevated temperature (23 vs. 19°C) and re -
duced pH (0.3 pH unit reduction) treatments during
21 d. The surface microbial community on A. anceps
was altered by both temperature and pH treatment,
although sea urchin settlement only decreased on
algae from the temperature treatments, alone or in
combination with reduced pH, while no effect was
seen on larval settlement when presented with algae
conditioned under reduced pH. 

These observations point to the potentially com-
plex interactions of environmental change with macro -
algae and associated biofilm responses, whereby set-
tlement is influenced by specific components of the
microbial community that differentially respond to
warming and acidification, and not simply by broad-
scale microbial shifts. Ko et al. (2014) re ported carry-
over effects (reduced metamorphosis) in Pacific oys-
ter larvae reared under combinations of temperature
(24 and 30°C), pHNBS (8.04 and 7.47) and salinity (15
and 25 psu). The combination of de creased pHNBS

(7.47), elevated temperature (30°C) and reduced
salinity (15 psu) significantly delayed pre- and post-
settlement growth.

While too few studies have been conducted to
allow a generalisation on the direct effects of multi-
ple stressors on settlement and early post- settlement
development, it is clear that important interactions
will likely occur (Przeslawski et al. 2015). In addi-

tion, indirect effects on settlement from interactions
of multiple stressors are yet to be considered, not
only for carryover effects from the larval phase, but
also related to settlement substrates. In this respect,
substrates used to test for changes in settlement are
typically subjected to altered pH, but not in combi-
nation with temperature (i.e. Uthicke et al. 2013).
This is despite the fact that temperature in combina-
tion with pH has been shown to alter the settlement
substrate characteristics of coralline algae (Martin &
Gattuso 2009, Diaz-Pulido et al. 2012, Johnson &
Carpenter 2012) and their associated benthic micro-
bial communities (Webster et al. 2011b, Russell et
al. 2013).

Microhabitats — diffuse boundary layers

Larval settlement typically involves movement into
the surface boundary layer of the substrate (Koehl &
Hadfield 2010). The importance of this is that seawa-
ter pH can change across small distances from the
overlying water column into the diffuse boundary
layer. For example, measurements of seawater pH in
boundary layers can vary from the overlying water
column by up to 0.35 units lower (Hurd et al. 2011)
and up to 0.5 units higher (Hurd et al. 2011, Cornwall
et al. 2013, 2014). Changes in pH in boundary layers
are generally associated with biological activity (res-
piration, calcification and photosynthesis), and their
magnitude can vary as a function of physical pro-
cesses (e.g. water flow, temperature), day vs. night
variability (e.g. photosynthesis vs. respiration) and
biological variability (Hurd et al. 2011, Cornwall et
al. 2014). In addition, pH variation in boundary layers
is more likely to occur on short time scales. Diel vari-
ation in photosynthesis of coralline algae, for exam-
ple, resulted in a boundary layer pH 0.5 units higher
than the overlying water column under illumination,
and 0.35 units lower in the dark (Hurd et al. 2011).
These observations suggest that settlement and early
post-settlement development may be occurring in pH
conditions that are not the same as the water column
where the larvae develop, both in terms of pH level
and the degree of variability. 

Diffuse boundary layers also exist around slow-
moving or sessile marine invertebrates. For exam-
ple, Hurd et al. (2011) showed that pH on the sur-
face of sea urchins was 0.35 units lower than that of
the overlying seawater. The relevance for this is that
many highly gregarious species (i.e. barnacles and
tubeworms) settle directly onto adult conspecifics
(Hadfield & Paul 2001), where pH levels are po -
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tentially lower than the water column and which
may in fluence processes such as cue perception and
early post-settlement development. Similarly, a num -
ber of species that settle specifically onto their prey
(i.e. Phestilla nudibranchs on Porites corals, Miller &
Hadfield 1986) may encounter pH values associated
with diffuse boundary layers around the prey ani-
mal surface. The boundary layer associated with
building environmental structures is also an impor-
tant consideration as seen where oyster larvae are
attracted to the calcium hydroxide cue emanating
from these structures as well as the likely buffering
influence of the high pH of this habitat (pH 9.24)
(Anderson 1996).

To date, however, there are no examples of re -
search where the effects of boundary layer seawater
pH on settlement have been tested directly, although
experiments that incorporate pH treatments beyond
that predicted for future water column levels may
provide some insight. A key step in understanding
the process would be to quantify pH at the substrate
level during experiments. Experiments where the
boundary layer is manipulated (i.e. through altered
water flow or biological activity on the substrate) may
also provide greater insight into the future effects of
OA on larval settlement.

CONCLUSIONS

A review of the literature shows that, to date, 48
studies have focussed on how the key processes of
larval settlement and metamorphosis are impacted
by OA. Most research (39 studies) has focussed on
the processes of settlement (Figs. 2 & 4), with fewer
studies investigating the pre- (4) and post-settlement
(22) processes.

The bulk of research assessing effects of OA on lar-
val settlement has examined the settlement process
of (tropical) corals (Cnidaria), echinoderms (pre-,
post- and settlement processes) and fish (pre-settle-
ment processes), generally revealing a negative
effect on settlement and post-settlement processes.
In other taxa (arthropods, bivalves, sponges and bry-
ozoans), most of the effects caused by exposure to
reduced seawater pH were also negative.

Recruitment of marine species with indirect life -
cycles involves a series of discrete and relatively
independent processes, with settlement linking these
through its association with the larval phase and
post-settlement juveniles (Fig. 1). Indeed, settlement
and metamorphosis are arguably the most important
processes in a marine species’ lifecycle, as they

determine the final location where the organism
will spend its life, especially in sessile and benthic
taxa. Selective settlement maximises the potential for
optimal future developmental conditions. However,
despite the importance of settlement, most research
into OA effects on recruitment has focussed on pre-
settlement processes and effects on post-settlement
juveniles. 

Hypotheses for future testing

From this comprehensive review of the literature,
we have identified 8 hypotheses to prioritise for
experimental testing:

(1) Larval survival, growth and development rates,
which can be reduced by elevated pCO2, will have
direct effects on settlement by determining the num-
ber of larvae reaching competency.

(2) Larval supply for settlement will be altered
through elevated pCO2, affecting horizontal swim-
ming behaviour or vertical migration that will, in
turn, influence horizontal advection.

(3) Longer PLD under elevated pCO2 will alter set-
tlement through decreased larval substrate selectiv-
ity (i.e. the desperate larval hypothesis).

(4) Perception of settlement cues in marine inverte-
brate larvae will not be influenced by elevated pCO2

directly, as opposed to fish larvae.
(5) Larval settlement will be altered via elevated

pCO2 effects on the composition and distribution of
suitable settlement substrates.

(6) Elevated pCO2 will interact with other environ-
mental stressors to have additive or synergistic
impacts on the settlement of marine larvae.

(7) OA will alter diffusive boundary layers in such a
way that it will negatively affect larval settlement
and recruitment.

(8) Carryover effects of larval development under
elevated pCO2 will occur at settlement due to
delayed larval development, smaller larval size or
altered energy budgets that reduce fitness at meta-
morphosis and during post-settlement development.

Knowledge gaps and new research direction in
larval settlement research

Lack of knowledge about the impacts of OA on lar-
val settlement in most marine species currently limits
our ability to predict the broader ecological outcomes
of altered settlement for future recruitment. Here we
have highlighted a need for further research on a
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Knowledge gaps                                                   Experimental strategies on larval settlement research

1. How will elevated pCO2 (hypercapnia)         Studies focussing on:
or reduced pH affect the number and            • Diverse taxa
quality of larvae reaching competency          • Elucidating the mechanisms underpinning reduced larval survival 
(through altered larval survival, growth           and development rates that in turn influence the number of larvae 
and development rates)?                                     reaching settlement; e.g. altered ion transportation (e.g. membrane

potentials), enzyme activity, gene expression, metabolic rates or altered
acid base regulation

                                                                               • Evolution of larval energy reserves when exposed to different pH
treatments, and determining how the amount of energy left at the time
of settlement influences settlement success

                                                                               • Modelling the interaction between reduced larval survival and develop-
ment on numbers of larvae reaching settlement

2. How will elevated pCO2 or reduced               Studies focussing on:
pH influence larval swimming behaviour      • Swimming ability and mechanisms of marine larvae in large numbers 
in such a way that it will alter larval                  of taxa
supply for settlement?                                      • Interaction of changes in swimming ability, changes in vertical distribu-

tions and larval swimming duration with water movement — studies in
flumes and how these interactions relate to successful recruitment

                                                                               • Evolution of larval energy reserves when exposed to different pH
treatments and effects on active larval swimming

                                                                               • Physical transport modelling studies combining larval dispersal with
OA-induced changes in larval behaviour

3. Does elevated pCO2 or reduced pH               Studies focussing on:
decrease substrate selectivity in such            • Understanding the interaction between OA and the desperate larval 
a way that it would alter settlement                  hypothesis and how a loss in substrate selectivity might affect settle-
success (i.e. the ‘desperate                                 ment success and early post-settlement survival
larva hypothesis’)?                                            • Effects of longer PLDs on settlement behaviour — do larvae alter their

substrate selectivity?
                                                                               • Consequences of changes in settlement selectivity sufficient on settle-

ment patterns and recruitment to suboptimal conditions?

4. Does elevated pCO2 or reduced                     Studies focussing on:
pH influence larval settlement through         • Direct effects of OA on larval settlement in large numbers of taxa
direct pathways, namely by directly              • Physiological mechanisms by which OA directly impairs settlement: is it 
altering the larval behaviour or                         through sensory alteration or attachment structures in the larvae?
physiology and subsequently changing         • Understanding the mechanisms responsible for the sensory recognition 
the larval sensory capacity or                             of substrates by larvae, e.g. neurosensory signalling pathways (e.g. Wnt 
attachment mechanisms?                                    signalling) at cellular/molecular levels

5. How will elevated pCO2 or reduced pH        Studies focussing on key changes that occur on settlement substrates 
alter the composition and distribution of       under OA conditions that may affect settlement success and settlement 
suitable settlement substrates in such a         patterns
way that it will indirectly affect larval            • Distribution/composition of settlement substrates (e.g. metagenomics)
settlement?                                                        • Changes in specific settlement-inducing chemical signals associated

with settlement substrates (waterborne or adsorbed) (e.g. composition of
cue and molecular changes responsible for changes)

6. How will elevated pCO2 or reduced pH        Studies focussing on:
interact with other environmental                  • Interaction with other global stressors, e.g. temperature
stressors to have impacts on the                     • Interaction with local stressors, e.g. nutrients, sedimentation, salinity, 
settlement of marine larvae?                               pollution

                                                                               • Single-stressor vs. multi-stressor experiments

7. Will elevated pCO2 or reduced pH alter        Studies focussing on:
the boundary layers in such a way that         • Understanding the relationship between boundary layers and 
it will negatively affect larval settlement          settlement/early post-settlement: how important are boundary layers for 
and recruitment?                                                  settlement success and for survival of newly settled individuals?

                                                                               • Elucidating the effects of OA on boundary layers on biofilms, CCA and
living organisms under different conditions, e.g. light vs. dark, flow vs.
no flow

Table 1. Knowledge gaps in larval settlement research and experimental strategies to address those gaps. OA: ocean acidi-
fication, PLD: planktonic larval duration, CCA: crustose coralline algae
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broader range of taxa that focuses on both the direct
and indirect effects of OA. This research should
explore the pH environment at the scale relevant to
the settling of small larval stages (boundary layers,
variability) and incorporate the multiple stressors
that occur in conjunction with OA at time of settle-
ment, both at present and in the future. Table 1 pres-
ents a summary of knowledge gaps in larval settle-
ment research based on the hypotheses presented
above. For each of the knowledge gaps, research
suggestions have been formulated in order to
address those gaps.

Addressing these knowledge gaps will provide
a more comprehensive understanding of the com-
plex processes and interactions that affect and steer
larval settlement success in marine invertebrates.
It will provide a greater understanding in the rela-
tive im portance of settlement responses to OA com-
pared with other important life-history processes and
finally allow a more generalised understanding by
examining a greater range of taxa and larval forms.
Moreover, this knowledge would support policy
makers in decisions pertaining to the conservation
and management of marine ecosystems under future
OA scenarios.
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