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1.  INTRODUCTION

Sponges are sessile filter-feeders, and the basic
principles for water pumping and particle retention
are the same among all demosponges (Bergquist
1978, Larsen & Riisgård 1994, Riisgård & Larsen 2010,
Leys et al. 2011). Water enters the sponge through

numerous small openings (ostia) on the surface
(exopinacoderm) and flows through a branched
inhalant canal system to the water pumping units,
the choanocyte chambers, each containing about
50 to 139 choano cytes (Ludeman et al. 2017). Every
choanocyte has a beating flagellum and a collar of
microvilli acting as a filter that allows capture of free-
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living bacteria and other particles down to about
0.1 µm diameter (Fjerdingstad 1961, Reiswig 1975,
Langenbruch 1983, Leys et al. 2011). Phytoplankton
cells smaller than the ostia, with a diameter between
6.5 and 32 µm (Reiswig 1975), enter the ostia and are
retained and phagocytosed in the extensive inhalant
canal system (Kilian 1952) before the water is sieved
through the collar filter of the choanocytes. The fil-
tered water leaves the choanocyte chamber through
an opening (apopyle) to the exhalant canal system
that merges into one or more large openings (oscula)
through which the water leaves the sponge in an
exhalant jet (Bergquist 1978, Kumala et al. 2017).
Larsen & Riisgård (1994) suggested that in a ‘stan-
dard sponge’, the choano cyte chambers, with a den-
sity of 12 000 chambers mm−3 (Reiswig 1975), consti-
tute 30 to 50% of the wall structure separating
inhalant and exhalant canals, and thus stabilise the
entire structure of the sponge. 

Because sponges are extremely efficient in retain-
ing free-living bacteria, but have an upper size limit
for particles larger than the inhalant ostia, the impor-
tance of bacteria versus phytoplankton as their main
diet is unclear, and therefore this question forms part
of the present study. In temperate waters,  filter-
feeding sponges must cope with pronounced sea-
sonal changes in food availability, i.e. free-living bac-
teria and phytoplankton (Smetacek 1985, Zweifel et
al. 1993). During winter when light restricts primary
production, phytoplankton biomass and production
become low, and along with a subsequent decrease
in heterotrophic bacterial biomass, may give rise to
starvation of sponges. Bacterial density is otherwise
mainly controlled by the grazing activity of flagel-
lates limiting the bacterial concentration to about
1.5 × 106 cells ml−1 (Azam et al. 1983, Fenchel 2008).

Starvation is considered a state in which ener-
getic maintenance requirements cannot be matched
 anymore and may therefore be the major reason
for sponge death in vitro (Arndt 1933). According to
Barthel (1989), growth of the demosponge H. panicea
in a temperate North Sea habitat varies strongly with
season, with positive growth from June until Octo-
ber, whereupon the sponge starts to shrink in size.
However, Barthel (1989) did not associate the limited
food availability and starvation to shrinkage, but sug-
gested that symbiotic algae and uptake of dissolved
organic carbon (DOC) contribute to the nutrition
 during winter. For another temperate sponge species
(Haliclona oculata), Koopmans & Wijffels (2008) found
a similar trend, with lowest growth rate in January,
and correlated the variation with differences in tem-
perature, algal biomass and particulate organic mat-

ter (POM). In temperate Danish waters, blue mussels
Mytilus edulis frequently co-occur with H. panicea,
and both filter-feeders must cope with the same
problem of shortage of food during winter months.
While H. panicea stores almost no glycogen and rel-
atively few lipids within its tissue (Barthel 1986), and
has no specialised organs (Bergquist 1978, Simpson
1984) for storing energy reserves, M. edulis has well-
developed glycogen reserves that can be metabolised
during prolonged periods of starvation (Pleissner et
al. 2012, Riisgård & Larsen 2015). 

Koopmans et al. (2015) studied the fatty acid (FA)
composition of 3 temperate sponge species (includ-
ing H. panicea) in relation to seasonally changing
POM concentration to quantify the contribution of
bacteria, diatoms and dinoflagellates to their diets.
They concluded that the overall FA concentration in
sponges is related to the FA concentration in POM
and therefore emphasized that the internal condition
of the sponge is closely related to the ambient condi-
tions, i.e. high body condition when ambient FA con-
centration in POM is elevated. M. edulis closes its
valves, which reduces the respiration rate, when the
phytoplankton biomass becomes too low to cover the
mussel’s metabolic demands (Riisgård et al. 2011,
Tang & Riisgård 2016), but a comparable physiologi-
cal mechanism has not been described for H. pan-
icea. Barthel (1989) did not relate growth to food
availability, but suggested that the water tempera-
ture was an important factor governing growth of H.
panicea. Temperature was also found to be in a neg-
ative correlation with choanocyte chamber density,
when experimentally increased beyond the natural
range (Massaro et al. 2012). Using the F/R-ratio (litres
of water filtered per ml of oxygen respired), Riisgård
et al. (2016) evaluated the ability of H. panicea to
feed solely on phytoplankton versus free-living bac-
teria. It was estimated that the content of suspended
particulate organic carbon must be at least 0.03 mg C
l−1 to cover the maintenance requirement of H. pan-
icea, which may not be available during winter (Riis-
gård et al. 2016). Thus, the sponge may be able to
survive on a sole diet of phytoplankton in the produc-
tive season even when free-living bacteria are also
accessible to the sponge, and bacteria possibly are an
im portant although insufficient food source in terms
of carbon content and concentration compared to
phytoplankton.

The primary aim of the present study was to deter-
mine a lower biomass threshold resulting in incipient
starvation of H. panicea indicated by a low condi-
tion index (CI, i.e. the ratio of organic to inorganic
matter). This was done by following the seasonal
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changes in available phytoplankton biomass and
free-living bacteria concentration along with meas-
urements of the sponge CI as a proxy for favourable
or unfavourable growth conditions. The secondary
goal was to test the hypothesis whether clearance
rates of H. panicea are different at low (expected
for winter) and high (expected for summer) CI, re -
spectively, and explore if the filtration activity was
affected by differences in density of choanocyte
 chambers. A field growth experiment conducted in
spring and early summer aimed at correlating the CI
with increasing sponge body weight. Thus, an impor-
tant goal was to improve our present understanding
of how sponges in temperate waters cope with win-
ter starvation and recovery during spring and early
summer.

2.  MATERIALS AND METHODS

2.1.  Collection of sponges and preparation of explants

Halichondria panicea specimens were regularly
collected in the inlet to Kerteminde Fjord, Denmark
(55° 26’ 59’’ N, 10° 39’ 41’’ E), between January 2016
and May 2017, cleaned of epifauna and placed in
bio-filtered running seawater (temperature = 1.8−
21.2°C, salinity = 8.9−29.5). Additionally, for feeding
experiments, we collected larger specimens (sponge
volume, Vsp = 18−187 ml) from maximal 2 m depth
and either directly transplanted into the open-top
chamber setup (see ‘Clearance measurements’ below)
or kept in a cage in the fjord for a maximum of 2 wk.
For growth studies, entire sponges (Vsp = 6.2−22.5 ml)
were carefully detached from harbour walls (same
population as used for CI calculations) and directly,
without exposing them to air, brought into the nearby
laboratory where they were each placed on PVC
plates of around 36 cm2 in running seawater aquaria.
The specimens were fixed with a synthetic thread
and allowed to attach to the substratum for up to 19 d
before they were brought out into the fjord.

2.2.  Environmental parameters and bacterial
 concentration

Hydrographic parameters (temperature, salinity and
chlorophyll a [chl a] concentration) were measured
every morning, during the course of 1 yr at 1 m depth
(and 1 m away from the harbour wall) near the
sponge collection site using a YSI 650 (Yellow
Springs Instrument; 6 to 12% uncertainty of chl a

measurements in the used range) or a handheld
 fluorometer (AquaFluor).

Water samples (5 ml) were taken once or twice a
week at the same place to determine the bacterial
concentration (in triplicate) using 4’-6’-diamidino-2-
phenylindole (DAPI, Roche Diagnostics) staining
and epifluorescence microscopy according to Porter &
Feig (1980). Samples were preserved in 1.5 ml 1%
glutaraldehyde and stored in a refrigerator until
analysis. Samples were filtered through a 0.2 µm
black polycarbonate sheet filter (Whatman Nuclepore
Track Etch Membrane) and subsequently stained
with 100 µl DAPI (working solution: 198 µg ml−1) for at
least 4 min. When used in combination with epifluo-
rescence microscopy (Leica, type 020-505.030) and
UV excitation (Leica Hg-lamp Osram HBO 50 W L2;
filter cube A: excitation filter: Bandpass 340−380 nm,
emission filter: Longpass 425 nm), 60 to 300 bacteria
were identified during each count (1000× magnifica-
tion) in accordance with Muthukrishnan et al. (2017).

Measured overall chl a concentrations, including
phytoplankton species not available to the sponge,
were converted to phytoplankton carbon biomass
(PPCBpre, µg C l−1) using 1 µg chl a = 40 µg C (Li et
al. 2010). The PPCBpre was corrected for species cell
or cell colony size (PPCBpost, µg C l−1, based on the spe-
cies catalogue from NOVANA 2017), by excluding the
carbon contribution of all species >32 µm (cf. Reiswig
1975, diameter of ostia in his Table 1), which was set to
be the upper cell or cell colony size of phytoplankton
entering the sponge. In the present study, phytoplank-
ton composition data were used from 2011 (the only
recent available data set for the adjacent Great Belt),
which might not necessarily reflect the situation in
2016 and early 2017 (and respective total carbon bio-
mass [TCB] development is mainly driven by the size
distribution of phytoplankton, since only some sizes
are able to enter the ostia). Fenchel (1982) de termined
carbon contents from laboratory-cultivated bacteria
(1 × 10−4 µg C cell−1), whereas Fukuda et al. (1998)

 determined the average carbon content for natural
coastal bacterial assemblages to be 30.2 × 10−9 µg C
cell−1. However, Ferguson & Rublee (1976) measured a
substantially lower value for  field-collected bacteria
(7.8 × 10−9 µg C cell−1), which we have used here as a
conservative estimate, although the use of only 1 con-
version factor might be an oversimplification of the
bacterial community composition and its seasonal
change. Based on the corrected phytoplankton bio-
mass (PPCBpost) and the bacterial carbon biomass
(BCB, µg C l−1, 7.8 × 10−9 µg C cell−1, Ferguson &
Rublee 1976), we calculated the total carbon biomass
(TCB) available to the sponge as PPCBpost + BCB.
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2.3.  Sponge size and CI

The growth and CI of sponges were determined by
means of volume-specific dry weight (DWv, mg (ml
sponge)−1; 100°C, 24 h) and ash-free dry weight
(AFDWv, mg (ml sponge)−1; 500°C, 6 h, cf. Tho mas -
sen & Riisgård 1995) (Fig. 1). The sponge volume was
determined by adding the sponge to a known amount
of seawater and measuring the displaced volume.
Sample weight was determined on a precision bal-
ance (Sartorius BP210D). Based on volume-specific
weights, CI was calculated as the ratio of organic to
inorganic matter (Barthel 1986):

CI = AFDWv / (DWv − AFDWv) (1)

2.4.  Field growth experiments

Sponge explants were brought out to the inlet of
Kerteminde Fjord in April 2016 and installed in
frames at 1 m depth, which were held in position by
means of buoys and anchors (see Fig. S1 in the
 Supplement at www.int-res.com/articles/suppl/ m608
p119_ supp/, explant initial wet weight WW0 = 11.0 ±
5.6 g, n = 14). Every week the sponge explant hold-
ing plates were removed and brought to the nearby
laboratory. During the entire recording process
(approximately 30 min), sponges were only mini-
mally ex posed to air. Sponges and substrates were
carefully cleared of epifauna, using cotton sticks, and
their wet weights were measured every week using a

precision balance (Sartorius LP12000S). Pre-deter-
mined plate weights allowed this procedure. Wet
weight-specific growth rates (µWW, % d−1) were esti-
mated from exponential regression analysis.

2.5.  Clearance measurements

Measurements of clearance rates (volume of water
cleared of particles per unit of time) were performed
in an in situ setup consisting of a moveable bottom
plate that can be vertically adjusted and sealed with
an open-top chamber (cf. Lüskow & Riisgard 2018).
This setup allowed the addition of algal suspension
and removal of samples by means of a pipette in
experiments in autumn (n = 8) and winter (n = 9).
Sponges were placed in groups (Vsp = 80−426 ml;
Fig. 2) on the movable bottom plate and were allowed
to acclimate for 15 min. The transparent open plastic
cylinder was placed on top of the sponge holding
plate and carefully screwed at the bottom (remaining
volume in the chamber was between 6.9 and 29.1 l in
all experiments). Two air stones at the periphery of
the tube allowed sufficient water mixing without dis-
turbing the sponges. By taking water samples (25 ml)
in discrete time intervals from the mid-volume (ap -
proximately 10 cm above the sponges), the de crease
in relative algal concentration (Concalg) as a function
of time was recorded over a period of 30 min. When
Concalg fell below a certain level (reduction of about
50%), new algae (Rhodomonas salina) were added to
the cylindrical tube. Cell concentrations (cells ml−1)
were determined from water samples  preserved with
2.5 ml Lugol’s solution (6% iodine-potassium, 4%
iodine solution) using Utermöhl’s cell counting tech-
nique and tubular counting chambers (KC Denmark)

Mar Ecol Prog Ser 608: 119–132, 2019122

DW = 90.019Vsp  
R  = 0.983 

AFDW = 34.667Vsp
2

2

 
R  = 0.989 

0 

600 

1200 

1800 

2400 

0 5 10 15 20 25 

 
D

W
, A

FD
W

 (m
g)

 

Volume Vsp (ml) 

DW 
AFDW 

Fig. 1. Dry weight (DW, mg) and ash-free dry weight (AFDW,
mg) as a function of sponge volume (Vsp, ml) of Halichondria
panicea measured on 9 December 2016 (cf. no. 21 in Table S1
in the Supplement, n = 20, range 0.5−24 ml). Linear re -
gression lines are shown along with their equations and 
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Fig. 2. Halichondria panicea specimens photographed after
being used in in situ clearance experiments on (A) 22 Sep-
tember 2016 and (B) 14 February 2017. Size ranges of
sponges used in September and February were similar.
Sponges in different seasons look healthy from the outside, 

with no degenerated parts
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under an inverted microscope (Leica, DMIRB, 200×
magnification). The relative algal concentration was
determined by counting R. salina cells (>100 cells)
within a known number of fields of view (>6 fields)
so that the relative cell concentration was expressed
as cells field−1. Following the exponential decrease in
Concalg over time, the volume-specific clearance rate
(CRv, ml water (ml sponge)−1 min−1) of a sponge was
calculated as per Riisgård et al. (2016):

CRv = V × b / Vsp (2)

where V = volume of seawater in the chamber, b =
slope of regression line in a semi-ln plot for the
reduction in algal concentration versus time and
Vsp = sponge volume. Daily controls with R. salina
(and without sponges) showed only small reductions
in the algal concentration over time, which were sub-
tracted from sponge clearance rates.

2.6.  Choanocyte chamber density

The volume-specific number of choanocyte cham-
bers (density, D, in chambers mm−3) was compara-
tively evaluated in sponges from the inlet to Kerte-
minde Fjord taken during winter (i.e. January) and
spring (i.e. May). Freshly collected sponges were
placed in buckets with seawater and transported to
the University of Southern Denmark within 3 h after
sampling. These sponges (n = 6) with numerous ex -
halant openings were separately placed in 20 ml
beakers filled with 200 µm filtered seawater from
Kerteminde Fjord. Samples were stained with 100 µl
(working solution: 10 µg ml−1) green polystyrene
nanobead stock solution (G50, Fluoro-Max; diameter
47 nm, 468 nm excitation/508 nm emission) during
an ingestion time of 24 h in the dark and at room
 temperature. The next day, 3 distinct chimneys of
each sponge (n = 6) were cut off with a scalpel,
coated with optimum cutting temperature mounting
medium for cryotomy, placed in an aluminium con-
tainer and frozen in isopentane chilled with liquid
nitrogen. Samples were stored at −20°C until analy-
sis. Mounted sponge chimneys were cut at about
mid-height into 30 µm slices using a cryo-cutter
(Shandon Cryotome FSE, Thermo Fisher Scientific),
washed with phosphate-buffered saline and mounted
with ProLong Diamond antifade reagent on a glass
slide. The prepared chimney cross sections were
imaged using a Zeiss LSM 510 META laser scanning
microscope using a 63× water objective with a nu -
merical aperture of 1.2 and a 488 nm excitation laser
(Argon/2), operated by LSM 4.2 software (Sequence

S1 in the Supplement). In the case of the confocal
images taken, the resolution is below 0.3 µm in x and
y planes and on the order of 0.5 µm in the z plane
(Pawley 2006). Randomly selected spots were imaged
using z-stacking (width: 450 µm, length: 450 µm,
depth: 8−25 µm,  layers in 1 µm intervals). Choanocyte
chambers were identified from the z-stack (image
recording of  sample volume at different focal planes)
image sequences using the image analysis software
ImageJ (version 1.48v; Rueden et al. 2017). Using
ImageJ, chamber positions (x, y and z coordinates)
were mea sured. The coordinates of the chamber cen-
tre were determined at the maximum diameter in
the image se quence. This enables measurements of
chamber den sity and inter-chamber distance in 3
dimen sions in the intact 30 µm sample section. Based
on choano cyte chamber counts and z-stack dimen-
sions, volume-specific densities (D, chambers mm−3)
were calculated. All distances (d) from 1 chamber
centre to all others within 1 sample were calculated
using Eq. (3):

(3)

where x1, y1 and z1 denote the coordinates of cham-
ber centre 1 and x2, y2 and z2 are the coordinates of
chamber centre 2.

The shortest distance was listed per chamber using
C++. Finally, the mean (µm ± SD) of all shortest dis-
tances within 1 sample was calculated and compared
between high and low condition sponges.

2.7.  Statistical analyses

One-way ANOVA corrected for sampling day was
used to investigate differences in CI of sponges,
temperature, salinity and chl a in experiments per-
formed in autumn (n = 8) and winter (n = 9) 2016.
Temporal variation in the DW:WW ratio was tested
by a 1-way ANOVA, followed by a Tukey-HSD post
hoc test in order to differentiate between seasons.
One-way ANOVA was further used to  analyse dif-
ferences in volume-specific clearance rate and
choanocyte chamber densities of low and high con-
dition sponges. Analysis of covariance (AN COVA)
was applied for the investigation of interactive
effects of temperature and chl a on clearance rates
measured and CI calculated in autumn and winter.
Residuals have been tested for homogeneity. All
statistical tests were performed in R (R Core Team
2017). The hypothesis of significance was accepted
for p < 0.05.

( ) ( ) ( )1 2
2

1 2
2

1 2
2d x x y y z z= − + − + −
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3.  RESULTS

3.1.  Seasonal variation in environmental
 parameters and food concentration

Environmental parameters (temperature, salinity,
chl a) and bacterial concentrations were generally
measured on a daily basis between January 2016 and
January 2017 (Fig. 3A,B). Chl a (µg l−1, as an indica-
tor for overall phytoplankton  density) and bacterial
concentrations (Concbac, cells ml−1) were subject to
pronounced seasonal variations (Fig. 3B). Winter
concentrations of 2.0 ± 0.4 µg l−1 chl a and 0.3 ± 0.1 ×
106 bacteria ml−1 (mean ± SD from January to Febru-
ary 2016) increased rapidly during March, to 3.2 ±
0.9 µg l−1 chl a, although the increase in bacterial
concentration to 0.8 ± 0.2 × 106 bacteria ml−1 was
somewhat delayed (Table 1). After this peak, concen-
trations stayed high until the beginning of December
(3.1 ± 1.2 µg l−1 chl a and 0.8 ± 0.2 × 106 bacteria ml−1).
In the following winter, chl a and bacterial concentra-
tion steadily decreased and reached 1.5 ± 0.9 µg l−1

chl a and 0.4 ± 0.2 × 106 bacteria ml−1 in January
2017. The phytoplankton biomass (measured as chl a)
varied during the season, with low concentrations
during winter (Fig. 3B). Using the same data, the rel-
ative importance of bacteria in the sponges’ diet also
varied during the season, with lowest values in the
winter period, when primary production—and thus
loss of dissolved organic matter from phytoplankton
to be taken up by heterotrophic bacteria—was also
lowest (Fig. S2 in the Supplement).

Carbon available to the sponge via uptake of phyto-
plankton and bacteria was calculated on the basis of
measured concentrations (Fig. 3C). While the bacterial
concentration could be directly converted to bacterial
carbon biomass (BCB, µg C l−1), the chl a (as a proxy
for phytoplankton biomass, pre-corrected) first had
to be corrected for species-specific contributions to
the overall phytoplankton biomass (post-corrected).
Therefore, the pre-corrected phytoplankton biomass
(PPCBpre) can be understood as a direct  conversion of
chl a to carbon concentration. The corrected phyto-
plankton biomass (PPCBpost) and bacterial carbon
 biomass (BCB) add up to the total sponge-available
carbon (TCB, µg C l−1) as shown in Fig. 3C. The contri-
bution of BCB to TCB is rather small year-round (17.8
± 12.9%), while the overall biomass trend is defined
by the development of the corrected phytoplankton
biomass (Table 1). The total biomass increased from a
winter minimum of 7.5 µg C l−1 on 4 February 2016 to
a spring maximum of 153.8 µg C l−1 on 30 March 2016.
The spring−early summer peak (108.7 µg C l−1)

steadily vanished throughout summer (71.5 µg C l−1)
and autumn (31.0 µg C l−1), while in winter 2017, only
27.2 µg C l−1 were available to the sponges (calculated
mean concentrations per season, Fig. 3C, Table 1).
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3.2.  Sponge CI

The CI (ratio of organic to inorganic matter) devel-
opment over the 1 yr period is depicted in Fig. 3D
(data from Tables S1 & S2). From a low CI in winter
2016 (0.53 ± 0.09) it increased during March and
April along with the total carbon biomass (from
45.1 µg C l−1 during winter to 108.7 µg C l−1 in April)
and peaked in May and June at CI = 1.14 (spring CI:
0.88 ± 0.19), when food conditions were high
(Fig. 3C). After 1 mo, the CI dropped again to a sum-
mer minimum of 0.78 in July (summer CI: 0.92 ± 0.14)
and recovered in August and September to an inter-
mediate level (0.94−0.97). In the same period, the
TCB gradually diminished to about 31.0 µg C l−1 dur-
ing late summer and autumn. After a short increase
to 1.15 in October, the CI steadily decreased towards
winter 2017 (autumn CI: 0.97 ± 0.09). During winter,
the CI stayed as low as 0.66 ± 0.06, while the TCB
was further diminished to 27.2 µg C l−1 in this period
(Table 1). The fraction of dry weight in wet sponge

material (8.1 ± 0.9% dry weight share) varied
throughout the seasons (Fig. 4), but changes were
insignificant between seasons (ANOVA, F4,19 = 1.270,
p > 0.317).

3.3.  Field growth of sponges

A growth experiment on explanted sponges (initial
wet weight, WW0 = 11.0 ± 5.6 g, n = 14) was con-
ducted between April and August 2016 (over a
period of 125 d). The development of mean wet
weight over time is shown in Fig. 5 (period in -
dicated in Fig. 3D). The equation of an exponential
regression line shows that sponge explants devel-
oped with a wet weight-specific growth rate (µWW) of
0.6% d−1.

125

Season Period T S chl a PPCBpost Concbac BCB BCB/TCB TCB
(°C) (µg l−1) (µg C l−1) (×106 cells (µg C l−1) (%) (µg C l−1)

(min−max) ml−1)

Winter Jan−Feb 6.7 ± 1.5 18.5 ± 3.9 2.0 ± 0.4 (1.0−2.6) 42.6 ± 22.0 0.3 ± 0.1 2.5 ± 0.6 11.5 45.1
Spring Mar−May 9.8 ± 3.6 17.0 ± 4.1 3.2 ± 0.9 (1.9−7.2) 103.3 ± 23.3 0.7 ± 0.2 5.4 ± 1.7 5.9 108.7
Summer Jun−Aug 17.9 ± 1.4 19.8 ± 4.9 3.3 ± 0.7 (2.2−6.5) 65.0 ± 23.3 0.8 ± 0.2 6.5 ± 1.4 15.5 71.5
Autumn Sep−Nov 12.1 ± 4.1 16.0 ± 2.6 3.1 ± 1.2 (1.2−6.1) 24.4 ± 5.8 0.8 ± 0.2 6.6 ± 0.7 39.6 31.0
Winter Dec−Jan 4.8 ± 1.6 20.8 ± 3.2 1.5 ± 0.9 (0.5−3.8) 24.0 ± 12.4 0.4 ± 0.2 3.2 ± 1.4 16.4 27.2

Mean ± SD 17.8 ± 12.9

Table 1. Seasonal development (winter 2015/2016 until winter 2016/2017) of environmental parameters; T: temperature,
S: salinity, chl a: chlorophyll a concentration, Concbac: bacterial concentration. Mean phytoplankton (PPCBpost) and bacterial
carbon biomass (BCB) are summed up to total sponge-available carbon biomass (TCB = PPCBpost + BCB) and the BCB:TCB ratio. 

Data from Fig. 3. Mean ± SD are indicated
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3.4.  Clearance rates, CI of sponges and
 dependency on environmental parameters

Repeated measurements of clearance rate from
new algae addition are shown in Fig. 6. No signifi-
cant difference between volume-specific clearance
rates of sponges with low and high condition (au -
tumn: 1.5 ± 0.8 ml water (ml sponge)−1 min−1, winter:
1.9 ± 1.1 ml water (ml sponge)−1 min−1) was detected
(Fig. 7, ANOVA, F1,15 = 0.7, p = 0.416). Environmental
factors and CI were measured during experimental
days, and we found that the temperature (ANOVA,

F1,10 = 159.5, p = 1.8 × 10−7), chl a
(ANOVA, F1,15 = 35.449, p = 2.644 ×
10−5) and CI (ANOVA, F1,10 = 5.808, p =
0.037) varied significantly between the
experimental periods in autumn and
winter, while the salinity was not signifi-
cantly different (ANOVA, F1,10 = 2.106,
p = 0.177) between clearance experi-
ments performed in autumn and winter
(Fig. 8). Clearance rates of seasonally
acclimated sponges did not vary signifi-
cantly with respect to temperature and
chl a (ANCOVA, F1,8 = 0.1, p > 0.497).
Temperature (ANOVA, F1,8 = 8.5, p =
0.019) significantly affected the CI,
while chl a (ANOVA, F1,10 = 4.0, p =
0.073) was only marginally affected.
There was no significant interaction of
temperature and chl a on CI (ANCOVA,
F1,8 = 0.1, p = 0.723).
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3.5.  Density of choanocyte chambers

Sponges collected during winter (January 2017,
low CI) and spring (May 2017, high CI) were ana-
lysed for distances between nearest neighbouring
choanocyte chambers and volume-specific number

of chambers (Fig. 9). In 14 samples taken during
 winter and 8 samples taken during spring, 98 and 45
inter-choanocyte chamber distances were identified,
respectively. There was no difference in the mean
distance between closest neighbouring chambers
in winter (95.3 ± 76.5 µm, ± SD) and spring (86.1 ±

66.3 µm, Fig. 10A) (ANOVA, F1,141 = 0.542, 
p = 0.463). Further, we observed a constant vol-
ume-specific number of choanocyte chambers
(Fig. 10B) in winter (2429 ± 2117 chambers
mm−3) and spring (3235 ± 2348 chambers mm−3,
ANOVA, F1,18 = 0.610, p = 0.445).

4.  DISCUSSION

The present study shows that the demo-
sponge Halichondria panicea in temperate
Danish waters exhibits a pronounced variation
in CI during the year (Fig. 3D). Following a
decrease during autumn and winter (November
to February), the CI increased in early spring
(February to May), followed by a rather stable
CI during summer. CIs calculated for sponges
from adjacent areas confirm the presented range,
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Fig. 9. Images from z-stacks of cryocut Halichondria panicea collected on (A) 2
December 2016 and (B) 1 May 2017 (both stained with green nanobeads),
showing choanocyte chambers (ch), canals (c) and spicules (s). (C) Schematic
drawing of z-stack (width: 450 µm, length: 450 µm, depth: 8−25 µm) containing
2 exemplary choanocyte chambers with the coordinates x1, y1 and z1 and x2, y2

and z2 and inter-chamber distance d
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chambers (d) and (B) choanocyte chamber density (D) of Halichon-
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during spring, about 1.1) condition index (CI). Central boxes show
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even though they are slightly lower in March and
May (Table 2). An intervening period with a marked
fall and rise in CI during summer may be due to
spawning (Barthel 1986). Changes in CI from spring
to autumn may further be correlated with seasonal
changes in temperature (Fig. 3A) and the concentra-
tion of bacteria and phytoplankton biomass (chl a;
Fig. 3B). Depending on the conversion factor used for
the carbon content of bacteria, results may differ by
several orders of magnitude (Ferguson & Rublee
1976, Fenchel 1982, Fukuda et al. 1998). The low
CI during winter, when the available particulate
 biomass (TCB) is minimal, reflects starvation of the
sponge. However, the CI decreased with a time lag
after TCB reached a minimum already in September.
The phytoplankton species composition in specific
months might differ among years. This could explain
the difference in post-corrected PPCB, which would
lead to variation in the TCB and affect the measured
CI. Variation in CI implies variation in the organic
content of the sponge (at constant content of inor-
ganic components), i.e. number of living cells (due to
lack of specialised energy storage cells in sponges;
Barthel 1986). 

The fact that the distance between neighbouring
choanocyte chambers (Figs. 9 & 10) remains un -
changed indicates that the filter-feeding apparatus is
spared and thus ready for usage in early spring,
when the food supply is again sufficient to cover the
energetic demands of the sponge. For instance, sea-
sonal changes in the partitioning of assimilated food
energy into somatic growth and reproduction of the
demosponge Haliclona permollis were studied by
Elvin (1976), who found (over a period of 4 yr) that
the somatic growth rates of intertidal and flat
encrusting sponges on the Central Oregon Coast
were minimal from December to April, reaching a
maximum of about 1% d−1 in the autumn, whereas
the development of embryos was related to sus-
pended food supply in late spring. Further, inorganic
components of the sponge (i.e. spicules) may also

alter with season (Schönberg & Barthel 1997), but
only to a minor extent not significantly changing the
DW:WW share over the seasons. This statement is
supported by the measured volume-specific clear-
ance rates in sponges with high (0.94 ± 0.17) and low
(0.75 ± 0.10) CI, respectively (Fig. 7). In the hexa-
ctinellid deep-living sponge Rhabdocalyptus daw-
soni, Leys & Lauzon (1998) found seasonal variation
in sloughing of spicules that resulted in sponge size
changes. This differs from Halichondria panicea,
which appears unchanged during autumn and winter
(Fig. 2). Finally, seasonality in spicule evolution may
be different in sub-littoral hexactinellid sponges (R.
dawsoni) and intertidal demosponges (H. panicea).

The present study supports previous findings by
Barthel (1986), who described how the CI of Hali-
chondria panicea varied over the season. Barthel
(1988) suggested that mainly temperature and food
availability controlled the CI; likewise, Koopmans &
Wijffels (2008) argued that mainly temperature, algal
biomass and POM controlled the annual variation in
growth. From Fig. 3D, it appears that H. panicea has
a low CI between November and February when the
temperature was constantly low (Fig. 3A), and the
available carbon in phytoplankton and free-living
bacteria was low (Fig. 3C, Table 1). Based on the
F/R-ratio, Riisgård et al. (2016) estimated the mini-
mum maintenance requirements of H. panicea to be
around 30 µg C l−1. This estimation is in good agree-
ment with the actual field data shown in Table 1.
Thus in winter 2015/2016, the total biomass of
45.1 µg C l−1 was just above this level, while in
autumn and winter 2016/2017, the available biomass
was below (TCB = 31.0 and 27.2 µg C l−1, respectively),
indicating starvation of the sponge in this period.

The carbon to chl a ratios (C:chl a) have recently
been analysed for 7578 coastal seawater samples col-
lected from Danish waters from 1990 to 2014 (Jakob-
sen & Markager 2016). The estimated ‘grand arith-
metic mean’ for C:chl a ratios was found to be 41 ± 44
(mean ± SD). In the present work, we used a C:chl a
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Month and Collection site Vsp n DWv AFDWv CI Reference
year (ml) (mg ml−1) (mg ml−1)

March 1984 Kiel Bight, Germany 0.3−4 26 32.0 0.55 Barthel (1986)
March 1992 Rosmø Sund, Denmark 4−17 10 155.2 40.5 0.35 Riisgård et al. (1993)
May 1994 Kerteminde Fjord, Denmark 1−80 20 70.0 24.0 0.52 Thomassen & Riisgård (1995)
9 March 2016 Kerteminde Fjord, Denmark 0.5−21.5 25 85.3 33.1 0.63 This study, Table S1
26 May 2016 Kerteminde Fjord, Denmark 0.5−22.5 20 92.5 47.9 1.08 This study, Table S1

Table 2. Volume-specific dry weight (DWv) and ash-free dry weight (AFDWv) calculated for a Halichondria panicea ‘standard
sponge’ (sponge volume, Vsp = 10 ml) based on DW and AFDW taken from the literature. n = number of sponges, CI: condition 

index (ratio of organic to inorganic matter) taken or re-calculated from the literature
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ratio of 40, which seems appropriate for the study
site, but it should be noted that both seasonal and
spatial dynamics affect the ratio. Jakobsen & Mark-
ager (2016) found that the C:chl a ratios were lowest
during winter, about 15 across all stations. During
spring, the ratio increased to summer values between
20 and 96, depending on the total nitrogen concen-
tration. It appears from the contribution of free-living
bacteria to the total suspended particulate biomass
available to H. panicea that bacteria constitute a
small but consistent part of the diet, around 17.8 ±
12.9% (Table 1), but that BCB remains below mainte-
nance requirements year-round and therefore the
sponge cannot survive solely on bacteria. 

We found that bacterial concentrations varied dur-
ing the year, from 0.3−1.2 × 106 cells ml−1, in agree-
ment with earlier published values. For 2 sampling
stations in the Skagerrak region and in the Baltic
Proper, Rieck et al. (2015) reported bacterial concen-
trations of 0.52 ± 0.02 × 106 and 0.74 ± 0.11 × 106 cells
ml−1 in winter, respectively, and 0.52 ± 0.02 × 106 and
1.13 ± 0.03 × 106 cells ml−1 in summer, respectively.
Andersen & Sørensen (1986) presented bacteria
 concentrations from Limfjorden, Denmark, a highly
eutrophic area, that ranged from 0.5 to 15.2 × 106 cells
ml−1, with the lowest concentrations in autumn and
winter (September to November 1983) and the high-
est bacterial concentrations in summer (June and
July 1983). Further, Bernbom et al. (2011) showed
log-transformed cell counts from various stations in
Danish coastal waters with generally lower bacterial
concentrations in winter (November 2009 and Febru-
ary 2010) than in spring and summer (April and
June 2009), which confirms the seasonal variation
presented herein. The pronounced difference be -
tween ‘pre- and post-treated’ phytoplankton biomass
(PPCBpre and PPCBpost, Fig. 3C) may be related to
possible size-dependent particle retention efficien-
cies, as re ported by e.g. Ribes et al. (1999), and thus
to possible exopinacoderm uptake of particles bigger
than the ostia, as found in 2 Antarctic sponge species
(Gaino et al. 1994). The present study has focussed
on par ticulate organic carbon, but Yahel et al. (2003)
suggested that DOC might also be a food source
for sponges; however, Ribes et al. (1999) measured
net production of DOC in feeding experiments, thus
 contradicting this suggestion. To our knowledge, no
studies have shown that DOC is taken up by H. pan-
icea (low microbial abundance sponge; Weisz et al.
2008), although DOC seems to play an important
nutritional role in some (typically high microbial
abundance sponge) species (Yahel et al. 2003, Mueller
et al. 2014). Based on a review of the comprehensive

literature, Jørgensen (1976, p. 316,318) concluded that
it is ‘mainly within restricted regions of the sea that
dissolved organic compounds can be expected to be
of importance as a source of energy to aquatic ani-
mals’ and further that heterotrophic microorganisms
may be ‘far more important than the animals in
metabolizing’ DOC, which is in agreement with our
present understanding of the microbial loop and the
importance of heterotrophic bacteria that use DOC
lost to the water by the primary producers (Fenchel
2008).

Our observation that seawater contains fewer free-
living heterotrophic bacteria in winter (<106 bacteria
ml−1, Fig. 3B) is well documented (Pomeroy & Wiebe
2001) and is caused by the same factors (i.e. food
 limitation and grazing control by flagellates) as the
lower bacterial concentrations in very oligotrophic
waters (del Giorgio & Cole 1998). Free-living bacte-
ria depend on the production of DOC, mainly due to
photosynthesis of phytoplankton cells, which lose a
substantial part of their photosynthates to the ambi-
ent water (Fenchel 2008). The concentration of bac -
teria is a function of available DOC in the water
 column, and the predation of various protozoans,
especially flagellates, and therefore the bacterial
density follows the primary production, and usually
remains relatively constant around 106 bacteria ml−1

(Fenchel 2008).
When the temperature and available food (bacteria

and phytoplankton) increased in March and April
(Fig. 3B), the CI also increased (Fig. 3D), but it is dif-
ficult to separate the 2 factors as also stressed by
Barthel (1986). A growth experiment with H. panicea
conducted between April and August revealed a wet
weight-specific growth rate of 0.6% d−1 (Fig. 5), in
good agreement with growth rate measured by
Duckworth & Pomponi (2005) on H. melanadocia fed
a mixed diet of bacteria and algal cells, whereas
Thomassen & Riisgård (1995) who studied both in
situ and laboratory growth of H. panicea, obtained
specific growth rates of up to 4% d−1. After the CI
reached a maximum in summer (Fig. 3D), it first fell
and subsequently recovered to an intermediate level
until November, when water temperature and avail-
able food decreased. However, growth experiments
by Duckworth & Pomponi (2005) and Thomassen &
Riisgård (1995) indicate that growth and therefore
CI are a function of food availability rather than
 temperature.

The clearance rates of H. panicea with either low or
high CI (Figs. 7 & 8D) during autumn (1.5 ± 0.8 ml
water (ml sponge)−1 min−1) and winter (1.9 ± 1.1 ml
water (ml sponge)−1 min−1, mean ± SD) were nearly
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identical, and in fair agreement with earlier labora-
tory studies (Riisgård et al. 1993: 2.7 ± 1.1 ml water
(ml sponge)−1 min−1, Riisgård et al. 2016: 6.1 ml water
(ml sponge)−1 min−1, Goldstein et al. (pers. comm.):
2.3 ml water (ml sponge)−1 min−1). Riisgård et al.
(1993) also studied the effect of different tempera-
tures on the clearance rate of H. panicea and found
that an acute increase from 6 to 12°C caused a 4.3-
fold increase in the mean clearance rate. Such a pro-
nounced effect cannot be explained by temperature
alone. Recently, Riisgård et al. (2016) showed that the
filtration rate of H. panicea may vary considerably
over time concurrently with often pronounced varia-
tions in the osculum size caused by disturbance when
the seawater through-flow was stopped during filtra-
tion rate measurements. Acute changes of tempera-
ture in laboratory experiments are also likely to
cause disturbance and thus pronounced variations in
the filtration rate. However, no pronounced effect of
temperature was observed in the present study,
probably because the sponges were seasonally accli-
mated to the ambient water temperatures and stud-
ied under near optimal  conditions.

The present observations of constant choanocyte
chamber densities and mean distances between
neighbouring chambers during winter and spring
(Figs. 9 & 10), and likewise that the volume-specific
clearance rate is near identical in low and high CI
sponges, suggest that the density of filter-pump units
is not affected by starvation. It remains un known
which components are primarily metabolised during
starvation periods. The presented densities of choano -
cyte chambers (2429 ± 2117 and 3235 ± 2348 cham-
bers mm−3 in winter and spring, respectively) are low
compared with 18 000 chambers mm−3 reported by
Reiswig (1975). As the CI de creased due to starva-
tion, no reduction in the distance between adjacent
choanocyte chambers was observed, which could
have been the case if only cells other than choano -
cytes had been metabolised, not affecting the choano -
cyte chambers secured in position by inorganic com-
ponents (i.e. spicules). Thus, a low CI seems to
indicate an overall shrinkage (cf. Fig. 2, organic
weight loss), whereby the relative contribution of
inorganic components, i.e. spicules, increases. This
is also supported by an insignificant trend towards
lower DW:WW ratios during summer, when water
makes up a greater part of the sponge biomass as
shown by Schönberg & Barthel (1997). Clearly,
sponges have evolved effectively to cope with starva-
tion, and the present findings indicate a pronounced
ability to withstand long periods of very low concen-
trations of suspended food particles.
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