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1.  INTRODUCTION

Eutrophication has been linked to the formation of
extensive areas of recurring depleted bottom dis-
solved oxygen (DO) in a variety of aquatic habitats
across the globe (Diaz & Rosenberg 2008). In general,
systems that are eutrophic are highly productive
aquatic ecosystems. However, excessive productivity

coupled with stratification can cause bottom oxygen
to be reduced to levels that lower habitat quality for
marine life (hypoxia). When DO is reduced below the
tolerance level of an organism, the organism must
move or perish (Rabalais et al. 1991). The cumulative
effects of eutrophication and hypoxia are, therefore,
difficult to decipher. For example, although en -
hanced productivity in the surface waters of hypoxic
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zones (DO <2.0 mg l−1) may lead to long-term in -
creases in some pelagic fishes (Adamack et al. 2017,
Glaspie et al. 2018), hypoxic bottom waters may also
lead to long-term declines in some demersal fishes
(Hondorp et al. 2010, Rose et al. 2018a,b).

Most of the world’s largest hypoxic zones occur in
enclosed and semi-enclosed basins (Diaz & Rosen-
berg 2008). Some of these systems are plagued by
persistent anoxia and hypoxia, such as the Baltic and
Black Seas, while extensive hypoxia in other systems
is seasonal and transient, such as Lake Erie, Chesa-
peake Bay, the Seto Inland Sea, the East China Sea,
and the northern Gulf of Mexico (nGOM). Conse-
quently, not all systems and their fauna respond to
hypoxia in the same way at both the population and
ecosystem level. Many of the systems affected by
hypoxia, such as the Baltic Sea and Chesapeake Bay,
have experienced dramatic changes in their demer-
sal and pelagic fishes while other systems, such as
the nGOM, have not shown significant declines in
fisheries landings over recent decades (Chesney &
Baltz 2001, Hondorp et al. 2010). Despite the differ-
ent responses among these systems to eutrophica-
tion, effects on fishes and invertebrates are evident in
all systems at some level. For example, hypoxia has
been shown to affect the spatial distribution of fish
and invertebrate populations (Craig & Crowder 2005,
Langseth et al. 2014, Kraus et al. 2015) and this redis-
tribution can make them more vulnerable to fishing
gear (Kraus et al. 2015, Purcell et al. 2017). Spatial re-
distribution has the potential to indirectly affect
organisms by increasing densities along hypoxic
margins (Craig 2012, Craig & Bosman 2013, Kraus et
al. 2015), by changing the community structure of
fishes and invertebrates (Craig & Bosman 2013), by
altering predator−  prey dynamics (Taylor & Rand
2003, Costantini et al. 2008, Webster et al. 2015) and
by altering the quality of habitat selected by marine
organisms (Eby 2001, Craig & Crowder 2005, Zhang
et al. 2014). Increased use of suboptimal environ-
mental conditions for variables such as salinity, tem-
perature, water depth, and DO can affect metabo-
lism, growth or reproduction (Thomas et al. 2006)
and might lead to population bottlenecks if access
to suitable habitat is insufficient (Coutant 1985,
Dieterich & Fulford 2012). Spatially explicit popula-
tion studies coupled with water quality models have
been used to better understand the complicated ef -
fects of eutrophication and hypoxia (Adamack et al.
2017). Increased understanding of the complex inter-
actions involved in these types of models is important
for integration of an ecosystem approach to fisheries
management within eutrophic systems.

While systems around the world that are affected
by low oxygen have many similarities, the nGOM has
several attributes that stand out as unique. It is the
world’s only open-shelf system affected by eutro -
phication and hypoxia in a subtropical environment
(Chesney & Baltz 2001). Coastal Louisiana is a deltaic
landscape at the terminal drainage of the third
largest watershed on Earth (Milliman & Meade 1983).
Consequently, a mean annual discharge of 580 km3

(Milliman & Meade 1983) of fresh water drains into
the nearshore waters off Louisiana’s coast, re sulting
in estuarine conditions in the nearshore zone. Within
the nearshore waters off Louisiana, salinity, tempera-
ture, turbidity, and nutrient distributions fluctuate in
response to river discharge (Pok ryf ki & Randall 1987),
winds (Rabalais et al. 1991), and currents (Wiseman
et al. 1975, 1997) that influence the Mississippi and
Atchafalaya river plumes, and their interactions with
marine waters and bottom bathy metry (Hetland & Di-
Marco 2008). River discharge typically peaks in early
April (Turner & Rabalais 1991), and the inundation of
nutrient-rich waters fuels intense phytoplankton
blooms that co-occur with seasonal stratification of
the water column and reduced shelf turnover (Coch -
rane & Kelly 1986). This stratification adds a vertical
dimension to the existing lateral environmental gra-
dients emanating from the river mouths. The water
column can be dynamic, ranging from nearly fresh to
fully marine, with temperature differences of several
degrees (Wise man et al. 1997), representing a sub-
stantial range of different habitat conditions for aqua -
tic organisms like fishes.

The stratified, eutrophic conditions can cause de -
pletion of DO in the lower water column during sum-
mer (Turner & Rabalais 1991, Justić et al. 1993, Rabal-
ais et al. 2007). As a result, the seasonally recurring
hypoxic zone of the nGOM is second in size only to
the hypoxic zone of the Baltic Sea (Rabalais et al.
2002), with peak hypoxia typically forming by June
and persisting through mid-September (Rabalais et
al. 1991). Over several decades, the size of the hyp -
oxic zone has grown in both area and total volume
(Raba lais et al. 2002, Obenour et al. 2013) to a mean
area of 16 600 km2 in recent years, with peaks
>22 000 km2, and a 27 yr mean vertical extent of
3.9 m, with annual means as high as 6.2 and 6.3 m oc-
curring in 2008 and 2009, respectively (Obenour et al.
2013). It is important to understand how hypoxia im-
pacts fishes on the nearshore Louisiana shelf because
coastal Louisiana supports many of the most highly
productive US fisheries (Chesney et al. 2000), and eu-
trophication-driven hypoxia is increasing globally
(Diaz & Rosenberg 2008, Breitburg et al. 2018).

200



Munnelly et al.: Habitat suitability for platform-associated fishes

Another distinctive feature of the Louisiana coast-
line is the multitude of oil and gas platforms (hereafter
platforms) which extend from the bays and marshes
seaward beyond the continental shelf. Platforms offer
a unique opportunity to study the effects of hypoxia
and how other physicochemical variables interact
to influence fishes. In 2013 there were >2600 feder-
ally listed platforms in federal waters off Louisiana
(BOEM 2018), as well as thousands of additional struc-
tures in state waters (Liu et al. 2018). These federal and
state-regulated platforms are ‘de facto artificial reefs’
that provide hard substrate in a region that is otherwise
dominated by soft sediments (Parker et al. 1983).
 Furthermore, many of these platforms are in areas
where benthic hypoxia forms. A unique ecological
service that platforms provide is vertical hard substrate
that extends from the seafloor to above the sea surface.
Platforms therefore serve as complementary features
by providing vertical relief that extends into well-
 oxygenated waters in a region where natural reefs are
rare, and relief is low (Gallaway & Cole 1998).

While coastal migration to more suitably oxy-
genated waters is the only option for some fishes re -
sponding to hypoxia (Switzer et al. 2006, 2009, Keller
et al. 2010), many demersal and pelagic species first
move up in the water column where more suitable
DO conditions exist (Rabalais et al. 2001, Stanley &
Wilson 2004, Reeves et al. 2018b). Suitable condi-
tions for platform-associated species can thus be
found around platforms in areas that might be less
suitable given inadequate vertical relief (Stanley &
Wilson 2004, Reeves et al. 2017). Although many
aspects of hypoxia have been well studied, coinci-
dent responses of fishes throughout the water col-
umn have received relatively little attention (Stanley
& Wilson 2004, Ludsin et al. 2009, Vanderploeg et al.
2009, Reeves et al. 2018b). Impacts of hypoxia on
pelagic species have also been understudied (Prince
& Goodyear 2006, Vanderploeg et al. 2009, Zhang et
al. 2009, 2014, Glaspie et al. 2018). More generally,
fish responses to environmental variation in stratified
waters have not been investigated outside of model
simulations (Breitburg et al. 1999, Zhang et al. 2014).
Given the dominant influence that physicochemical
properties can play in driving estuarine fish distribu-
tions (Baltz et al. 1998), these are important consider-
ations within dynamic aquatic environments like
estuaries, enclosed and semi-enclosed seas, and
river-influenced ocean margins, such as nearshore
Louisiana. Assemblage compositions in these set-
tings are likely to reflect interwoven distributions of
individual species (Remmert 1983) or life stage toler-
ances to many variables within a complex environ-

ment (Livingston 1988, Baltz & Jones 2003). A com-
pelling example of one such environment, the Gulf of
Bothnia in the Baltic Sea, is described by Kautsky &
Kautsky (2000, p.8), who write: ‘A mix of freshwater
and marine fish species such as perch, pike, cod and
flounder can often be caught in the same net’. Lateral
and vertical movement in aquatic settings like these
in response to an environmental variable or prey dis-
tribution might result in a trade off by requiring a fish
to accept less favorable conditions of other variables
(Eby & Crowder 2002, Craig & Crowder 2005, Prince
& Goodyear 2006). For example, a fish moving up in
response to hypoxia, or displaced prey might find
itself in significantly warmer waters than it would
otherwise select (Prince & Goodyear 2006, Costantini
et al. 2008, Zhang et al. 2014). Such an interaction
could result in eventual movement away from the
platform in search of more suitable habitat, or fishes
may tolerate less favorable physical conditions and
remain associated with the platform if other needs
can be met.

The goal of this study was to examine the habitat-
selection patterns of platform-associated fishes for
salinity, temperature, DO, water depth, and Secchi
depth, and to compare patterns at platforms through-
out the nearshore zone off coastal Louisiana. The reg-
ular presence of bottom-water hypoxia (DO <50%
saturation or ~3.0−3.5 mg l−1 across a wide range of
observed salinities, temperatures, and pressures)
throughout the study area presented a unique oppor-
tunity to evaluate the interactive effects of the vertical
displacement of fishes in response to hypoxia, and
habitat selection of other environmental variables. To
our knowledge, this is the first study to evaluate habi-
tat selection of fishes using a 3-dimensional approach
that accounts for the vertical distributions of species
occurring across the wide range of environmental
variation associated with a stratified water column.

2.  MATERIALS AND METHODS

2.1.  Field sampling

Platforms were sampled along Louisiana’s coast
from Mississippi to Texas in waters 3.7−18 m deep
using a modified-random strategy (Fig. 1). Platforms
were selected using the Bureau of Ocean Energy
Management (BOEM) platform information and
United States Geological Survey (USGS) datasets to
sample evenly across known sources of variability
(distance to shore, depth, dominant sediment type,
platform complexity, date of deployment, and prox-
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imity to other platforms). Sampling occurred during
day trips aboard a small vessel and included 14 trips
between 12 July and 6 September of 2013 and 14
trips from 2 July to 12 September of 2014.

The camera array consisted of a triangular-shaped
aluminum frame with 3 outward-facing and 1 down-
ward-facing synchronized GoPro Hero 3 cameras
mounted to the underside of a PVC plate attached to
the upper part of the frame. The array was lowered
vertically (mean rate of 0.23 ± 0.02 m s–1 [95% CI]) on
the down-current side near each platform and left on
the bottom for 90 s. The array was not baited and had
no supplemental lighting. The 3 outward-facing
cameras were mounted at 120° from one another to
provide a circular and non-overlapping field of view.
Two forward-facing lasers spaced 10 cm apart were
mounted on either side of the camera that was ori-
ented toward the platform. The downward-facing
camera was centrally mounted and used to record
fishes swimming under the array, to record a depth
gauge, and to provide benthic substrate images.
Each camera had a 62° (horizontal) × 36° (vertical)
field of view, and recorded images at 30 frames s−1.
Following array retrieval, salinity, temperature,
depth, DO, turbidity, and Secchi depth were col-
lected using a YSI model 6820 V2 water quality
sonde (hereafter YSI) and a 20 cm Secchi disk. YSI
measurements were taken every 2 s, within ~0.2 m of
the surface and the bottom.

2.2.  Video processing

Videos of the fish assemblages were determined to
be adequate for analyses if the submerged platform
structure (the ‘jacket’) was in view (mean distance of
3.0 ± 0.2 m [95% CI]). This standard was adequate
for the purposes of this study due to the strong asso-
ciation of most fishes with the platforms, and the
small footprint of the platforms we targeted. The fish
assemblages were concentrated around the small
nearshore platforms, and were more conducive to
video-based sampling than prior studies on larger
structures reported (Scarborough Bull & Kendell
1994). Video and water quality data from 150 unique
platform locations were used for analyzing fish as -
sem blages. Of these 150 samples, 65 were obtained
in 2013, and 85 were obtained in 2014. Furthermore,
84 of these samples were recorded in the absence of
hypoxia while 66 were recorded in the presence of
hypoxia (bottom DO <50% saturation).

Videos were analyzed to estimate the minimum
number of individuals present for each species
(MAXNO) and to generate relative abundance esti-
mates for the assemblages at each platform (Ellis &
DeMartini 1995). This approach precluded double
counting by using the maximum number of each spe-
cies simultaneously recorded on video as an index of
abundance (Priede et al. 1994, Willis & Babcock 2000,
Wells & Cowan 2007). Since there was potential for
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Fig. 1. Chart of the coastal zone off Louisiana. Yellow circles show the locations of all small platforms included in analyses
(n = 150). The brown, green, and blue areas show the extent of the East, Central, and West regions referenced in the text
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overlapping fields of view of the downward-facing
camera with the outward-facing cameras, MAXNOs
were compiled separately, and the higher of the 2
estimates for each species were used.

Of the 150 platforms analyzed, 37 were recorded
with a single outward-facing camera and a synchro-
nized downward-facing camera rather than the full
array of 4 cameras. In these videos, the outward-
facing camera maintained a view of the submerged
structure. Disparities in water volume sampled oc -
curring between camera array configurations, as well
as due to variation in water clarity, were accounted
for with a covariate (effort). Midwater turbidity was
multiplied by the number of outward- facing cameras
and standardized relative to the lowest value en -
countered, effectively down-weighting counts at plat -
 forms that sampled a larger volume of water. Esti-
mates of species richness, Shannon-Wiener di versity,
and assemblage composition did not significantly dif-
fer between the 2 camera array configurations when
effort was accounted for (Munnelly 2016).

2.3.  Habitat suitability analyses

Habitat suitability reflects habitat use relative to
habitat availability (Bovee 1982). This information
can be used to characterize patterns of habitat selec-
tion, or resource use, and species-specific environ-
mental responses (Baltz 1990, Switzer et al. 2009).
Additionally, this information can be used to evaluate
potential shifts in patterns of habitat use by fishes in
response to physicochemical variables, including DO
(i.e. hypoxia; Switzer et al. 2009, 2015). We chose a
50% DO saturation level instead of the 2.0 mg l−1

threshold typically used when defining hypoxia in
aquatic environments (Breitburg 2002, Eby & Crow-
der 2002, Vaquer-Sunyer & Duarte 2008). We chose
this standard because many fishes exhibit sub-lethal
reactions, such as increased ventilation rates and
decreased growth around 50% DO saturation (Breit-
burg 2002 and references therein), and avoid these
conditions when possible (Howell & Simpson 1994,
Eby & Crowder 2002, Vanderploeg et al. 2009).

Because of the complex structure of the water col-
umn around platforms, salinity, temperature, and DO
were plotted by depth for all hydrographic profiles,
and all major and minor haloclines, thermoclines,
and oxyclines were identified (Fig. 2). This approach
partitioned the water column into 2 to 8 distinct lay-
ers of varying vertical extent (strata) at each platform
for 684 total strata among the 150 platforms ana-
lyzed. Environmental variation within each stratum

was minimal and so a single point was used to char-
acterize the conditions occurring throughout its verti-
cal extent. Frequency distributions of the summed
extent of all water-column strata (in vertical meters)
falling within the assigned ranges were created for
salinity, temperature, DO, water depth, and Secchi
depth to account for both lateral and vertical gradi-
ents and represent the habitat availability associated
with each variable in 3 dimensions.

At platforms, species distributions often occurred
across multiple vertical strata. In order to account for
this and to determine how fishes were distributed
over the larger environmental gradients occurring
across all 684 strata, patterns of habitat use were
described by weighted occurrences based on the rel-
ative abundance estimates of fishes at each platform
(MAXNOs). Since MAXNO estimates could not be
made for each individual stratum without potentially
double counting individuals, proportional use was
assumed for all strata in a water column, excluding
strata that were clearly being avoided. Propor-
tional MAXNOs were calculated by multiplying the
MAXNOs by the fraction of the water column repre-
sented by each stratum not being avoided. Species-
specific habitat use for each variable was repre-
sented by frequency distributions of the summed
extent of all occupied strata (m). This approach pro-
vided a conservative microhabitat description (Baltz
et al. 1993, Hurlbert 1981) of species-specific habitat
suitability within a compressed water column that
reflected weighted use patterns and described spe-
cies responses along each environmental gradient.

This information was incorporated into a community
microhabitat analysis evaluating the responses of the
26 species that were reliably detected and identified
on video (all species with >10 observations and oc -
curring at >5 platforms, see Supplement 1 at www.
int-res. com/ articles/ suppl/  m608 p199_ supp/). Factor
ana lysis was used to resolve 6 variables into 4 factors.
The variables included in the analysis were: salinity,
temperature, DO, Secchi depth, water depth, and the
extent of habitat compression (based on the number
of vertical meters of the water column that fishes were
not avoiding). A varimax rotation was used to scale or-
thogonal, multivariate factors relative to one another
and to create a 3-dimensional environmental space
useful for comparing patterns in the species-specific
distributions relative to water quality. Factor centroids
were weighted by abundances for 26 species each in
the presence and absence of hypoxia. Centroids were
plotted as bubbles representing 2 SE radii around the
centroid means. Non-overlapping error bubbles sug-
gested significant differences in habitat selection

http://www.int-res.com/articles/suppl/m608p199_supp/
http://www.int-res.com/articles/suppl/m608p199_supp/
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among fishes in the presence and absence of hypoxia.
In addition, the position of the weighted centroid
means indicated the ways in which fish distributions
varied with regard to the 6 physicochemical variables
in cluded in the 4 factors.

Habitat suitability indices (HSIs) were plotted for
the 11 species that together composed >96% of the
total number of fishes observed: Atlantic bumper
Chloro scombrus chrysurus (~56%), Atlantic spadefish
Chaetodipterus faber (~18%), blue runner Ca ranx
crysos (~9%), bluefish Pomatomus saltatrix (~4%),
sheepshead Archosargus probatocephalus (~3%),
gray snapper Lutjanus griseus (~2%), sergeant major
Abudefduf saxatilis (~1%), Bermuda chub Kyphosus
sectatrix (<1%), young-of-the-year (YOY) greater
amberjack Seriola dumerili (<1%), gray triggerfish
Balistes capriscus (<1%), and adult red snapper Lut-
janus campechanus (<1%). Suitability plots were con-
structed for each of 5 environmental gradients (salin-
ity, temperature, DO, Secchi depth, and water depth)
in the presence and absence of hypoxia. Also indi-
cated within each plot is the overall suitability calcu-
lated for fishes in the presence and absence of hy-
poxia. Habitat suitability (S) was calculated within

each interval of the smoothest possible habitat avail-
ability frequency curve following: S = P(E ⏐F) / P(E). P
is the probability of a value of an environmental vari-
able, E, given the presence of fish, F, in that interval,
and P(E) is the probability of a value of an environ-
mental variable in that interval regardless of the pres-
ence of fish. The terms P(E ⏐F) and P(E) represent the
relative frequency distributions of fish occurrence and
of environmental conditions for all samples, respec-
tively (Baltz 1990). Raw suitability was normalized to
1 by dividing each interval value by the greatest suit-
ability value for a given distribution.

2.4.  Statistical models

We tested for significant shifts (α = 0.10) in habitat
suitabilityduring thepresenceandabsenceofhyp oxia
using generalized linear mixed models (GLMMs)
 following Switzer et al. (2015). Combining GLMMs
and HSI provides an analysis that indicates environ -
mental drivers of fish habitat selection and describes
the magnitude of variation between habitat selec-
tion comparisons. The response variable was the
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Fig. 2. Scaled photo-collage reconstruction of the submerged structure of platform ST 21-GC, recorded 20 August 2014. Plot-
ted to the right are continuous salinity, temperature and DO profiles by depth relative to vertical fish distributions. Grey circles
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See Video S1 in Supplement 2 at www. int-res. com/ articles/ suppl/ m608 p199_ supp/
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MAXNO- derived relative abundance of each spe-
cies, fit as lognormal distributions. Explanatory vari-
ables were fixed effects for hypoxia (presence vs.
absence) and year (2013 vs. 2014), and continuous
variables for salinity, temperature, DO, depth, and
Secchi depth, and first-order interactions among all
the continuous environmental variables and the
presence of hypoxia. We also used a covariate to
adjust for effort (SAS 9.4 Proc GLIMMIX). Sites were
designated as repeated measures subjects to account
for the clustered structure of the data (Breslow & Day
1980) and to preclude pseudo-replication (Hurlbert
1984). Additionally, denominator degrees of freedom
were conservatively downscaled by fixing them at
126 for each term in the model, despite the repeated
blocking structure. All other assumptions were met,
and there was no indication of multicollinearity
among environmental variables.

The extent of habitat compression from avoidance
of the bottom-water hypoxic and surface strata was
evaluated regionally at all hypoxic sites, including
sites where videos were not used in analyses do to in-
adequate visibility (n = 131 of 343 water quality pro-
files) across the entire Louisiana coast for areas desig-
nated as East, Central, and West nearshore regions
(Fig. 1), by dominant sediment types of
sand (majority composition ≥63 µm) or
mud (majority composition <63 µm),
and by year (2013 and 2014). Regional
and sediment type comparisons were
based on Mun nelly (2016), and sedi-
ment composition data was from IN-
STAAR (2011). A 3-way ANCOVA
compared re gion, dominant sediment
type, and year (α = 0.05), and in cluded
first-order interactions, and a covari -
ate for depth, fit as a negative bi no mial
distribution (SAS 9.4 Proc GLIMMIX).
Tukey-Kramer post hoc adjust ments
were used for comparing significant
interactions.

3.  RESULTS

3.1.  Observations

Video and diver observations sug-
gested that fishes avoided water with
low and high DO concentrations. All
fishes observed near small platforms
in nearshore Louisiana waters gener-
ally avoided strata with DO <50%

saturation, which occurred at 64 platforms. Included
among these fishes were the small, cryptic species or
early life stages that we regularly observed while
diving (see Munnelly 2016 for a complete list). Addi-
tionally, fishes avoided surface strata (3.5 ± 0.3 m
thickness; means ± 95% CI) of 46 of the platforms
that were often turbid (1.6 ± 0.2 m Secchi depth) and
DO supersaturated, or hyperoxic (140.7 ± 7.0% satu-
ration). Fish distributions were, therefore, often com-
pressed into midwater strata. Under low-DO condi-
tions, YOY lane snapper Lutjanus synagris and L.
campechanus were regularly displaced from their
strong association with the bottom to a strong associ-
ation with the platform jacket higher in the water col-
umn (Fig. 3D, Video S2). Similarly, southern stingray
Dasyatis americana, red drum Sciaenops ocellatus,
and black drum Pogonias cromis were observed as
high as 4.7, 3.7, and 3.7 m, respectively, off the bot-
tom and into waters ≥50% DO saturation when low-
DO bottom conditions were present. Conversely,
species with strong associations with the more struc-
turally complex platform features near the surface,
including Kypho sus sectatrix and Abudefduf saxa -
tilis, also moved down in the water column to depths
immediately underlying surface strata. Fishes, in -
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Fig. 3. Comparisons of the vertical extent of the fraction of the nearshore water
column used by fishes for (A) all hypoxic sites (n = 131). Comparisons across
nearshore Louisiana included significant effects of region (West, Central, and
East); (B) dominant sediment type (sand or mud), year (2013 and 2014; A,B);
and (C) depth. Bars represent 1 SE, and significant differences occurred be-
tween groups not sharing a letter. (D) Video frame showing young-of-the-year
red and lane snapper up in the water column at nearshore platform SS 93-66 in
response to hypoxic bottom conditions on August 21, 2014. The snapper were 

feeding in the current. See Video S2 in Supplement 2
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cluding Archo sargus probatocepha lus and L. griseus,
were occasionally observed entering strata with
<50% saturation but these fishes were usually alone
and MAXNOs were never obtained from strata with
DO <50% saturation.

3.2.  Habitat compression

The extent of habitat compression associated with
the avoidance of hypoxia and surface strata varied
significantly across nearshore Louisiana by region
(F2,122 = 6.64, p = 0.002), dominant sediment type
(F1,122 = 5.01, p = 0.027), year (F1,122 = 12.15, p < 0.001),
and depth (F1,122 = 27.37, p < 0.001), and there was a
significant region × year interaction (F2,122 = 9.47, p <
0.001), and a significant dominant sediment type ×
year interaction (F1,122 = 6.21, p = 0.014). Habitat com-
pression was greater in 2014 than 2013, particularly
in the East region (Fig. 3A; see Fig. 1 for regional
boundaries), and greater over muddy sediments than
over sand (Fig. 3B). In both years, there was a trend
of decreasing habitat compression from east to west
(Fig. 3A) and as water depth increased (Fig. 3C).

When habitat use was restricted due to avoidance
of surface strata and DO-depleted bottom waters,
GLMMs identified the physicochemical variables
that fishes responded to, after accounting for year
and effort (Table 1). Significant interaction terms
involving hypoxia and other environmental variables
indicated shifts in habitat use in the presence of
hypoxia. Interactions between hypoxia and at least 1
other environmental variable significantly influenced
the distributions of the 11 most abundant species.

3.3.  Microhabitat factor analysis and habitat
 suitability indices

The factor analysis resolved 6 variables into 4 fac-
tors that together explained 90.72% of the environ-
mental variation (Table 2). Factor 1 included increas-
ing DO and decreasing salinity, which typified the
upper water column strata. Factor 2 included increas-
ing Secchi depth and increasing temperature, which
most often reflected increasing distance from the
Mississippi and Atchafalaya river deltas. Factor 3 was
simply increasing depth, and Factor 4 was simply in-
creasing habitat compression due to bottom-hypoxia
and surface-strata avoidance. Factors 3 and 4 had
identical eigenvalues and are interchangeable for in-
terpretations when plotted against Factors 1 and 2 in
3 dimensions, explaining a cumulative 72.72% of the
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total variance (Fig. 4). Most species distributions oc-
curred in significantly different physicochemical con-
ditions when compared at platforms in waters above
and below 50% DO saturation. For many fishes, habi-
tat shifts due to hypoxia were greater within species
than were interspecific differences at platforms in
waters above or below 50% DO saturation. The gen-

eral trend for most species was an increased
loading on factors 1, 3, and 4 in the presence of
hypoxia. Thus, in general, the fish assemblages
selected fresher, more highly oxygenated wa-
ters, in addition to occupying waters with a
greater water depth as habitat compression in -
creased. These shifts were, however, species
specific, and the change in the centers of abun-
dance relative to one another suggested that as-
semblage-level shifts in community structure
occurred between comparisons.

Finally, the HSI plots show the magnitude of
change in habitat selection in the presence and
absence of hypoxia occurring within the near-
shore part of the hypoxic zone without model-
ing other effects. Availability is expressed in
meters (m) and reflects the cumulative vertical
extent of all 684 layers as if stacked atop one
another. In many cases, HSI plots in the pres-

ence and absence of hypoxia differed substantially;
however, the range of tolerance for every species was
wide (Figs. 5−9).

Results from the HSI analysis are best interpreted
when compared with the significant interaction terms
(p-values <0.10) between hypoxia and other environ-
mental variables from the GLMMs. These significant
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Environmental               Factor 1    Factor 2    Factor 3    Factor 4
variable

DO                                        0.91         −0.06           0.07         −0.26
Salinity                               –0.87         −0.11           0.21         −0.22
Secchi                                −0.22           0.86           0.06         −0.34
Temperature                        0.48           0.78         −0.23           0.05
Depth                                 −0.08         −0.06           0.94           0.25
Compression                     −0.04         −0.21           0.30           0.89
                                                                                                   
Eigenvalue                          1.86           1.42           1.08           1.08
Percent of var. expl.          31.05         23.67         18.00         18.00
Cumulative var. expl.       31.05         54.72         72.72         90.72

Table 2. Rotated factor loadings of 6 variables. The sign of each
loading indicates whether variables are increasing or decreasing,
while the magnitude indicates the strength of contribution to each
factor. Underlines indicate the loadings used to guide interpreta-
tions about the system as described by these variables. var. expl.: 

variance explained
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interactions indicate that the effects of hypoxia and
those of the additional variable were not independ ent.
For example, there were significant shifts in salinity
selection in the presence of hypoxia. Based on the sig-
nificant salinity × hypoxia interactions (Table 1), the
−10 salinity unit shift in the peak frequency of the
salinity selected by Balistes capris cus (Fig. 5) likely
reflected the significantly different habitat selection
of salinity in the presence of hypoxia (p = 0.051). Sim-
ilarly, there was a −8 salinity unit shift in the salinity
selected by Seriola dumerili and L. campechanus (p =
0.006 and 0.067, respectively).

There were significant shifts in temperature selec-
tion in the presence of hypoxia. Significant tempera-
ture × hypoxia interactions (Table 1) helped explain a
+10°C shift in the peak frequency of the temperature
selected by L. griseus (p = 0.003; Fig. 6). Similarly,

there was a −5°C shift in the temperature selected by
Chloroscombrus chrysurus (p < 0.001). Finally, there
was a −4°C shift in the temperature range selected by
S. dumerili (p = 0.055).

There were significant shifts in DO selection in the
presence of hypoxia. Significant DO × hypoxia inter-
actions (Table 1) helped explain a −30% shift in the
peak frequency of the DO selected by Chaetodipte-
rus faber and B. capriscus (p = 0.039 and 0.006,
respectively; Fig. 7). Similarly, there was a +15%
shift in the DO selected by A. saxatilis and L. campe -
chanus (p = 0.039 and 0.040, respectively). The sig-
nificant DO × hypoxia interactions for C. chrysurus
(p = 0.005) did not lead to apparent shifts in DO
 selection.

There were significant shifts in water depth selec-
tion in the presence of hypoxia. Significant water
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depth × hypoxia interactions (Table 1) helped explain
+6 m and +2 m shifts in the peak frequency and
range of water depth selection by K. sectatrix (p =
0.047; Fig. 8). Similarly, there were +2 m shifts in
water depth selection by L. campechanus (p = 0.067).
We also observed a −2 m shift in the peak frequency
of water depth selected by A. probatocephalus (p =
0.032). Finally, there was a +4 m shift in the water
depth range selected by Caranx crysos (p = 0.001).

There were significant shifts in surface-water clar-
ity selection in the presence of hypoxia. Significant
Secchi depth × hypoxia interactions (Table 1) helped
explain +1.5 m and −1.5 m shifts in the peak fre-
quency and range of surface-water clarity selection
by Pomatomus saltatrix (p = 0.005; Fig. 9). Similarly,
there were +4.5 m and +1.5 m shifts in surface-water
clarity selection by L. campechanus (p = 0.005). Also,
a −1.5 m shift in the peak frequency of surface-water
clarity selected by the planktivorous C. chrysurus

and C. crysos occurred (p = 0.003 and 0.039, respec-
tively). Although the peak frequency of surface-
water clarity selected by C. faber remained consis-
tent, waters with lower surface-water clarity were
se lected with greater frequency (p = 0.012). The sig-
nificant Secchi depth × hypoxia interactions for L.
griseus (p < 0.001), A. saxatilis (p = 0.012), and B.
capriscus (p = 0.044) did not lead to apparent shifts in
surface-water clarity selection.

4.  DISCUSSION

Patterns of habitat selection by fishes that aggre-
gate around small nearshore platforms in the nGOM
are complex, especially because of the river dis-
charges and the added effects of eutrophication and
seasonal hypoxia. Eutrophication and hypoxia exert
an influence on fishes throughout the water column,
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leading to habitat compression that limits access to
the entire water column. During this study, DO
reached concentrations where species-specific or
life-history-stage tolerances were probably ex -
ceeded at high, as well as low tolerance levels. Habi-
tat compression associated with the avoidance of
hypoxic lower-water column strata and unsuitable
surface strata significantly altered habitat selection
for the most common fishes associated with near-
shore platforms. Habitat compression also signifi-
cantly shifted the assemblage structure of the fish
community as a whole. This is an important finding
given that physicochemical conditions and prey dis-
tributions are the primary factors determining spe-
cies or life-stage distributions of fishes in dynamic
estuarine environments (Remmert 1983, Baltz et al.
1993, 1998). Among the most important physico-
chemical variables structuring fish communities
across marine− estuarine gradients are salinity (Gun -

ter 1961, Rako cinski et al. 1992), temperature (Rako -
cinski et al. 1992, Szedlmayer & Able 1996), DO
(Rako  cinski et al. 1992), water depth (Rakocinski et
al. 1992), and water clarity (Blaber & Blaber 1980,
Cyrus & Blaber 1992). At small nearshore platforms,
shifts in habitat-selection patterns of up to 10 salinity
units, 10°C, 30% DO saturation, 6 m water depth,
and 4.5 m Secchi depth were observed when fishes
were forced into midwater strata because of the need
to avoid hypoxic lower water-column strata and
unsuitable surface strata. On a community level in -
traspecific shifts in habitat selection in the presence
of hypoxia were, in many cases, greater than those
between species distributions, given the same habi-
tat availability.

During the 2 yr that we observed fishes around
platforms, we never saw any evidence of direct lethal
effects of coastal hypoxia on fishes. However, the
 distributional responses of fishes within this DO-
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stressed environment demonstrated that sub-lethal
effects of eutrophication might have important con-
sequences. Several studies reported altered meta-
bolic and growth rates associated with salinity (Lank-
ford & Targett 1994, Bœuf & Payan 2001, Sampio &
Bianchini 2002) and temperature variation (Wuen-
schel et al. 2004, Craig & Crowder 2005) within the
range of environmental conditions that platform-
associated fishes experienced when forced to avoid
hypoxic lower water-column strata and surface strata.
Altered reproductive potential within the nGOM
hypoxic zone has also been documented (Thomas &
Rahman 2010, 2012), and models have shown that
the combined effects of temperature and reduced
reproductive potential can have substantial negative
effects on the long-term stability of displaced fish
populations (Rose et al. 2018a,b).

Displacement of fishes or their prey due to environ-
mental factors can also alter direct and indirect

trophic interactions (Keister et al. 2000, Webster et al.
2015). Distributions of prey are greatly influenced by
eutrophication (Dagg & Breed 2003) and hypoxia
(Pihl 1994, Briggs et al. 2017). Fishes might remain in
areas they would otherwise leave in order to exploit
emerging benthic prey or leave areas they might oth-
erwise occupy due to depletion of prey during a per-
sistent event (Pihl et al. 1991, Rahel & Nutzman
1994). Pelagic and planktivorous fishes within the
hypoxic zone might benefit from the concentration of
zooplankton biomass (Dagg & Breed 2003, Glaspie et
al. 2018) and increased predator−prey interactions
that occur when water column habitats are com-
pressed by hypoxia (Prince & Goodyear 2006, Cos -
tantini et al. 2008, Roman et al. 2012). There is also
evidence that areas fishes avoid can serve as a refuge
for prey (Zhang et al. 2009, Kimmel et al. 2010, Web-
ster et al. 2015), resulting in predator and prey spatial
disconnects (Taylor & Rand 2003, Ludsin et al. 2009,
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Van der  ploeg et al. 2009). Habitat compression may
also increase interspecific and intraspecific interac-
tions when high densities of fishes become restricted
by physiological demands (Coutant 1985, Eby &
Crowder 2002, Dieterich & Fulford 2012). Further,
displacement of fishes can alter fishing effort, and
therefore impact fisheries, and management deci-
sions (Craig & Crowder 2005, Langseth et al. 2014,
Kraus et al. 2015).

Because of the large-scale perturbations that occur
when bottom-water hypoxia forms in the nGOM,
habitat selection in the absence of hypoxia might not
mirror behavior patterns of the same fishes outside of
the hypoxic zone. The overall suitability for each spe-
cies (Figs. 5−9) describes habitat selection occurring
within the hypoxic zone during the hypoxic season.
These patterns might be useful for comparing selec-
tion from the same area pre- and or post-hypoxia,
among years of varying hypoxia severity, or those

generated from other areas not influenced by a large
region of depressed-DO concentrations. Also, if the
avoidance of surface strata was caused by supersatu-
rated DO, this restriction might be limited to part of
the day when oxygen production was excessive.

When evaluating the effects of hypoxia on aquatic
organisms, the threshold used to define hypoxia
should carefully reflect the study objectives. We
selected 50% DO saturation as the break point for
our analyses because fishes were observed to avoid
waters with <50% DO saturation, and a primary
objective was to evaluate some of the effects of dis-
placement by fishes capable of moving up in the
water column. In a 3-dimensional environmental
space as dynamic as nearshore Louisiana, this defini-
tion of hypoxia for fishes provides important habitat-
selection information that would be lost if the 2.0 mg
l−1 standard had been used. Although some fishes
were occasionally observed in waters <50% DO sat-
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uration (and <2.0 mg l−1), they did not remain there
for long, and MAXNOs for all species were always
obtained in DO saturations ≥50%. Archosargus pro-
batocephalus and Lutjanus griseus were regularly
observed entering waters <50% saturation, a behav-
ior consistent with previously observed forays into
hypoxic water (Pihl et al.1991, Rahel and Nutzman
1994, Webster et al. 2015). This behavior may also
reflect physiologies of these species that make them
more tolerant of low DO, but oxygen tolerances have
not been established for these species.

Avoidance of surface strata was an unexpected
finding which we cannot attribute to any one vari-
able with absolute certainty. However, fishes often
avoided surface strata despite otherwise suitable
salinities, temperatures, and water clarity. The avoid-
ance might have been caused by complex inter -
actions among these and other abiotic or biotic factors
which we did not measure, such as light availability,
or predator− prey dynamics. However, the presence
of supersaturated DO conditions (hyper oxia) was a
variable ob served at all sites where fishes avoided
the surface-strata (mean DO of 140.7 ± 7.0% satura-
tion [95% CI]). Consequently, the scarcity of fishes in
waters of DO >125%, and the lack of any fishes de -
tected in waters of DO >140% saturation, strongly
suggest that DO supersaturation was the factor driv-
ing the observed avoidance behavior.

Although it is rarely documented in natural systems,
supersaturation of atmospheric gases (nitrogen and
oxygen) can cause gas bubble disease in fish (Gorham
1899, Marsh & Gorham 1905). Gas-supersaturated en-
vironments can cause diffusion of gases into body tis-
sues, which can cause internal and external lesions,
disrupt buoyancy control, and, if persistent, can fatally
reduce circulation. Nitrogen has a more potent effect
than oxygen supersaturation (Nebeker et al. 1978),
while total gas pressure is the most important factor
controlling gas bubble disease (Colt 1983).

Many aquatic organisms respond negatively to
oxy gen supersaturation (Nebeker et al. 1978). In
tropi cal and subtropical marine environments sur-
face waters are naturally slightly supersaturated with
nitrogen (Emerson et al. 1995). Consequently, the
total gas pressure found there is often high, a situa-
tion that could amplify the effects of photosyntheti-
cally derived oxygen supersaturation (Crunkilton et
al. 1980). However, dissolved nitrogen was not meas-
ured during this study, and variation in total gas pres-
sure throughout surface waters of the nGOM has not
been documented.

Nevertheless, avoidance of supersaturated waters
has been previously documented at levels of ~125%

gas saturation, so exclusion from the surface waters
in the nGOM related to supersaturation of gases is a
feasible explanation for the avoidance of surface
strata (Gray & Haynes 1977, Nebeker et al. 1978,
Chamberlain et al. 1980, Parker et al. 1984). Mortality
is only a risk where fishes cannot avoid gas-supersat-
urated environments such as in aquaculture settings
or below dams, where bubble injection or heating of
water supersaturates waters with dissolved gases.
Renfro (1963) reported a fish kill in Galveston Bay
during 1959 of more than 300 adult spotted seatrout
Cynoscion nebulosus, many Atlantic croaker Micro-
pogonias undulatus, various eels, and other fishes. He
attributed the kill to photosynthetically derived oxy-
gen supersaturation of 250% in shallow waters where
fishes could not avoid these conditions. In our study, a
total of 109 of the 343 water quality samples (includ-
ing the 150 paired with video data) had surface strata
with DO saturation >125%, and, while uncommon,
DO values upward of 295% were recorded in near-
shore waters of coastal Louisiana. However, in open-
water environments such as nearshore Louisiana,
these conditions are easily avoided by fishes, as was
observed at 46 of the 150 platforms included in the
analyses. As with hypo xia, the indirect effects of dis-
placement, rather than direct mortality, have greater
overall impact on mobile organisms like fishes be-
cause they can affect every fish that remains in the
area of the hypoxic zone.

Video-based sampling provided information on the
distribution and behavior of fishes at a scale not ob -
tainable with other methods. While trawling studies
have attempted to evaluate habitat compression due
to hypoxia and the effects of displacement of fishes
within the water column (Hazen et al. 2009), video
provided the finer spatial resolution needed in near-
shore Louisiana waters. Our sampling was based on
discrete points with paired video and continuous
water quality profiles with a mean reading every
0.08 ± 0.0074 m (95% CI), allowing us to characterize
species-specific selection patterns. Despite their
advantages, even unbaited and unlighted video ar -
rays can alter fish behavior, with some species being
attracted  and others repelled. Video methods are
also vulnerable to poor visibility and large schools of
fish, for which MAXNO-derived relative abundance
estimates become non-linear relative to actual abun-
dance (Schobernd et al. 2014, Campbell et al. 2015),
and post processing of the data becomes labor inten-
sive. Hydroacoustic methods are less intrusive than
video cameras and complement visual studies be -
cause they can greatly expand the sampling area be -
yond the limitations of visibility and camera fields of
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view (Stanley and Wilson 2004, Zenone et al. 2017,
Reynolds et al. 2018). However, standard hydro -
acoustic methods also have limitations, such as diffi-
culty monitoring fish very close to boundaries (near
bottom, hard objects or the water surface) plus the
inability to definitively or reliably identify species
directly. Future studies of biotic and environmental
interactions in complex settings such as nearshore
Louisiana and other river-influenced ocean margins
could benefit from a combined video-hydroacoustic
sampling approach that accounts for the high varia-
tion in water quality.

Unbaited remote video systems did allow the ob -
servation of some behaviors in a minimally invasive
way and without the chaotic behavior that bait can
cause. In 1 interesting video, habitat compression by
surface strata with supersaturated DO of 172% re -
stricted Spanish mackerel Scomberomorus macula-
tus, Caranx crysos, Chloroscombrus chrysurus, cobia
Rachycentron canadum, red drum Sciae nops ocella-
tus, black drum Pogonias cromis, and age 1−2 juve-
nile Lutjanus campechanus to within 3.5 m of the
well-oxygenated seafloor in a 9 m water column. The
pelagic species appeared to be feeding at the lower
edge of a phytoplankton bloom within the surface
strata (a commonly observed behavior) and a school
of S. ocellatus was observed in apparent pursuit of
the vertically compressed, and exploitable school of
C. chrysurus.

In the example illustrated in Fig. 2 (see Video S1 in
Supplement 2), 10 species of pela gic and demersal
fishes in a 15.9 m water column were restricted to 4.7 m
at midwater. Fishes were compressed into ~30% of
the entire water column by DO levels <23% saturation
(1.5 mg l−1) below and >126% saturation (8.3 mg l−1)
above. In another instance of more extreme compres-
sion, the fish assemblage was re stricted within a 1.4 m
layer of a 14.3 m water column, constrained by waters
containing <32% DO saturation (2.5 mg l−1) below
and 204% DO saturation (15.2 mg l−1) above. This as-
semblage consisted of high abundances of densely
packed Chae to dipterus faber, C. crysos, L. griseus,
and A. pro batocephalus (73 total fishes). In the latter
case, the salinity and temperature within the usable
part of the water column, 23.1 salinity units and 31°C,
were near or beyond the tolerance levels of many spe-
cies in this study (Figs. 5 & 6).

Many fishes do not readily leave nearshore plat-
forms in the face of extreme environmental change
but continue their strong association with them
(Reeves et al. 2018b). Such fidelity often comes at the
cost of reduced habitat suitability. Reasons to stay
may accrue from reduced predation risk (Rountree

1989), greater prey availability on the platform itself
(Beaver 2002, Reeves et al. 2018a, Reeves et al. in
press a,b), or in surrounding waters (Keenan et al.
2003), or the use of platforms as current breaks that
allow fishes to remain in an area where they would
otherwise struggle to maintain position. This obser-
vation supports the hypothesis that use of suboptimal
habitat generally increases as availability of optimal
habitat is decreased by DO restrictions (Eby 2001,
Zhang et al. 2014). This pattern of behavior is consis-
tent with optimization theory (Kramer 1987) which
predicts that fishes will minimize energetic costs and
risks of predation in order to select an adequate if
suboptimal set of environmental conditions. Prince &
Goodyear (2006) noted such a response in the form of
an interplay of DO, temperature, depth, and preda-
tor−prey dynamics in Pacific pelagic fishes. Elliott et
al. (2012) found a similar interaction in the responses
of zooplankton to salinity and temperature in the
presence of hypoxia.

A benefit of platforms is that their fish aggregating
device effects facilitate study of detailed responses to
extremes of hydrographic conditions that sometimes
ap proach or exceed the tolerances of fishes when
habitat compression creates ephemeral habitat bot-
tlenecks. These responses would be far more difficult
to document elsewhere within the hypoxic region
where fish densities are low or unaggregated. At the
current rate of platform removal from nearshore
Louisiana (~180 platforms yr−1 net loss from 2008−
2017; BOEM 2018), soon few will remain to serve this
purpose and they may be gone before their ecologi-
cal role is fully understood. The apparent absence of
negative population-level effects on fishery landings
within the hypoxic region of the nGOM suggests that
degradation of suitable fish habitat has not been
severe enough to limit populations of most species
(Chesney & Baltz 2001, Cowan et al. 2008, Breitburg
et al. 2009). Even the most severely re stricted waters
sampled during this study (that had acceptable visi-
bility) were being used by fishes. Nevertheless,
avoidance of hypoxic bottom waters and surface
strata significantly influenced habitat-selection pat-
terns and probably influenced the spatial distribu-
tions for the most common fishes. Habitat compres-
sion reduced the volume and quality of suitable
habitat, where tolerances to some physicochemical
variables were exceeded or suboptimal conditions
were tolerated. Ultimately, the perturbed physico-
chemical conditions and the amplified inter- and
intraspecific interactions strongly influence species
and life-history stage distributions at shallow-water
nearshore platforms throughout the hypoxic zone
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during the summer season. Although complex, new
tools and approaches are helping to understand the
overall impact these interactions have on fishes of the
region (Chesney & Baltz 2001).

Acknowledgements. This project was funded by the Bureau
of Ocean Energy Management (N12AC00015) and sup-
ported by a match from the Louisiana Department of
Wildlife and Fisheries for a companion project. The research
took place at the Louisiana Universities Marine Consortium
and Louisiana State University. We thank Bill Childress for
his field assistance. Opinions, findings, conclusions, or rec-
ommendations expressed in this report are those of the
authors and do not reflect the views of the State of Florida. 

LITERATURE CITED

Adamack AT, Rose KA, Cerco CF (2017) Simulating the ef -
fects of nutrient loading rates and hypoxia on bay anchovy
in Chesapeake Bay using coupled hydrodynamic, water
quality, and individual-based fish models. In:  Justić D,
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