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1.  INTRODUCTION

Bioturbation by macrofauna species describes the
widespread process of biogenic modification and
transport of particulate materials through sediment
mixing and water movements, which occurs in the
surrounding sediment and the sediment−water inter -
face during feeding, foraging, and burrowing activi-
ties (Solan et al. 2004a, Volkenborn et al. 2007, Kris-
tensen et al. 2012). Several biological and chemical

processes in the benthic environment are influenced by
bioturbation, such as oxygen (Wenz höfer & Glud
2004, Stahl et al. 2006, Glud 2008), carbon (Kris-
tensen et al. 2012, Zhang & Wirtz 2017), and nitrogen
cycling (Bertics et al. 2010), pH gradients (Aller
1994), and bacterial activity (Yingst & Rhoads 1980,
Gilbertson et al. 2012). Through vertical reworking
processes, oxygen, nutrients, and organic matter are
transported into deeper layers, and exchange pro-
cesses between pore water and the water column are
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increased (Yingst & Rhoads 1980, Meysman et al.
2006). Additionally, the sediment granulometry and
grain size distribution can be modified (Giangrande
et al. 2002, Kristensen et al. 2012), which changes the
ecosystem functioning or macrofauna diversity itself
(Mermillod-Blondin & Rosenberg 2006, Volkenborn
et al. 2007, Morys et al. 2016).

Thus, in coastal habitats such as the south-eastern
North Sea (NS), bioturbation is a valuable indicator
for describing functional ecology patterns and eco-
system interactions, such as benthic−pelagic cou-
pling and changes therein (Teal et al. 2008, 2013).
Food availability and the intake of organic carbon is
one of the major factors limiting benthic communities
(Rosenberg 1995, Schückel et al. 2013). In coastal
shelf seas, such as the south-eastern NS, the intake
of food depends mainly on pelagic phytoplankton
primary production (PP), while preservation and
transport depend on benthic bioturbation (Graf 1992,
Zhang & Wirtz 2017). Most recent studies have
reported a decline in phytoplankton PP across the
coastal and offshore NS, the North Atlantic, and the
Baltic Sea (van Beusekom et al. 2009, Boyce et al.
2010, Capuzzo et al. 2018). This decrease was cor -
related with decreasing nutrient loads from the
 adjacent rivers such as the Rhine, Weser, and Ems
(Capuzzo et al. 2018).

Nevertheless, recent long-term and large-scale
studies on NS macrofauna communities have focused
mainly on structural community aspects, limited to
the taxonomical approach, including abundance,
biomass, or diversity (Künitzer et al. 1992, Reiss et al.
2010, Kröncke et al. 2011). These studies found long-
term changes in abundance, biomass, and species
composition of macrofauna communities within the
south-eastern NS, driven by anthropogenic and cli-
matic changes (Reid & Edwards 2001, Kröncke et al.
2011, Meyer et al. 2018). However, determining eco-
system changes is very difficult to achieve using only
the classical taxonomical approach, because ecosys-
tem stability, processes, and changes are more
defined through functional composition and interac-
tions of prevalent species and their environment,
than through their taxonomic identity (Loreau
2000, Díaz & Cabido 2001). Therefore, functional
ecol ogy ap proaches focusing on functional diversity,
ecosystem functioning and bioturbation, and thus on
traits of species, are becoming increasingly impor-
tant (Braeck man et al. 2010, Kristensen et al. 2012).

A theoretical bioturbation measurement was first
described by Solan et al. (2004a), while Queirós et al.
(2013) developed a classification for macrofauna spe-
cies depending on feeding modes, behavior, and life

stage and styles according to Dauwe et al. (1998) and
Kristensen et al. (2012). In the present study, the
community bioturbation potential (BPc) classification
according to Queirós et al. (2013) was used, which
combines biomass and abundance, along with sedi-
ment reworking (Ri) and mobility (Mi) traits, which
regulate biological  sediment mixing (Solan et al.
2004b). BPc is an estimate of the potential of a com-
munity rather than a direct measurement of a defined
process, and it does not consider important pro-
cesses, such as species interactions or individual spe-
cies reactions to environmental changes (Kristensen
et al. 2012, Queirós et al. 2013). Transferring labora-
tory results to field conditions might lead to missing
cause−effect relations with regard to environmental
and climate factors, comparable to using only a theo-
retical ap proach (Birch enough et al. 2012, Braeck-
man et al. 2014, Queirós et al. 2015). However, theo-
retical approaches such as the BPc (Solan et al.
2004b, Queirós et al. 2013) have been proven and
compared to laboratory results. According to Braeck-
man et al. (2014), Morys et al. (2017), and Wrede et
al. (2017), BPc is a valuable indicator, which ensures
a direct comparison of  commonly available abun-
dance and biomass data, although it provides little
information e.g. about the different feeding modes
and their effects (Morys et al. 2017).

For the NS and the Baltic Sea there are several
approaches describing the spatial and long-term
variability of benthic bioturbation potential in rela-
tion to environmental parameters (Braeckman et al.
2010, Birchenough et al. 2012, Queirós et al. 2013).
For example, for the German Bight, Wrede et al.
(2017) compared results of an experimental approach
with a theoretical approach according to Queirós et
al. (2013), which revealed that Echinocardium corda-
tum, Amphiura filiformis, and Nucula nitidosa are
the key bioturbators. In the Baltic Sea, a high vari-
ability in bioturbation potential even for closely
located areas was found, which depends on the food
supply and sediment variability, while seasonal
changes were mainly caused by temperature vari-
ability (Maire et al. 2008, Morys et al. 2016, Gogina et
al. 2017). For the southern NS, similar relations be -
tween geochemical cycling, sediment variability, and
bioturbation potential were found (Braeckman et al.
2014, Oehler et al. 2015a,b, Wrede et al. 2017). The
highest functional macrofauna diversity was found
in fine sandy sediments with the highest oxygen
 consumption, in contrast to cohesive muddy and per-
meable sediments that showed a low macrofauna
functional diversity (Braeckman et al. 2014). Never-
theless, there is a paucity of valuable long-term,
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large-scale studies that could allow us to analyze the
influence of an thropo genic and climatic pressures on
macrofauna BPc, trait-based macrofauna communi-
ties, and trait diversity.

Due to their easy accessibility, highly productive
shallow coastal shelf seas such as the south-eastern
NS are affected by on-going high levels of bottom
trawl fishing, dredging and dumping, oil and gas ex-
tractions, and the discharge of the Rhine, Ems, Weser,
and Elbe Rivers (OSPAR 2000, Engelhard 2009). Si-
multaneously to anthropogenic pressures, changes in
the hydroclimatic environment of the south-eastern
NS have occurred, such as an increase in mean an -
nual sea surface temperature (SST) of the  south-
eastern NS by 1.5−1.8°C (Federal Maritime and
 Hydrographic Agency of Germany, BSH) and fluctua-
tions in the North Atlantic Oscillation Index. The
changing hydroclimatic environment has clearly af-
fected the  marine environment, but also shows
 reinforcing or synergistic effects with anthropogenic
pressures (Drink water et al. 2010, Dye et al. 2013). Al-
together, anthropogenic and climatic pressures lead
to seabed degradation (Reiss et al. 2009), increasing
water turbidity (Roulet & Moore 2006, Dupont & Ak-
snes 2013), nutrient enrichment (Painting et al. 2013),
fluctuations in nitrogen to phosphorus (N:P) ratios
(Burson et al. 2016), and decreasing riverine nutrient
input. As a consequence, phytoplankton PP decreases,
which leads to decreasing food availability (Capuzzo
et al. 2018).

Based on the significant relation between taxo-
nomical macrofauna community structure and envi-
ronmental parameters, we expect that (1) spatial
variability of BPc and trait diversity is structured by
environmental parameters, namely depth and sedi-

ment characteristics; (2) large-scale patterns of trait-
based community structure (trait structure) and taxo-
nomic-based macrofauna structure are congruent;
and (3) south-eastern NS macrofauna BPc has de -
creased due to decreasing PP.

2.  MATERIALS AND METHODS

2.1.  Study area

The study area (Fig. 1) is part of the Senckenberg
Long Term Ecological Research (LTER) North Sea
Benthos Observatory. It is located in the  south-
eastern NS below the 50 m depth line, is a highly
 heterogeneous but stable habitat (Glémarec 1973,
Künitzer et al. 1992, Kröncke 2011). Relatively shal-
low, hydrodynamically ex posed areas, e.g. the Dog-
ger Bank and the North Frisian coast, are character-
ized by a high shell content, while deeper and less
exposed parts of the Oysterground have a higher
mud content (see Fig. 5). Depth of the study area
 varied from 20 to 50 m and increased from south to
north, except for the shallow Dogger Bank areas,
where depth is around 20 to 30 m (Fig. 2). Sampling
took place in an area between 53° 30’ and 56° N and
between 3° and 8° E, represented by 24 International
Council for the Ex ploration of the Sea (ICES) rect -
angles with a size of 30 × 30 nautical miles (Fig. 2).

2.2.  SST anomalies

The BSH provided monthly SST data of fixed
 stations in the NS (https:// www. bsh. de/ DE/ DATEN/
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Fig. 1. Study area located in the south-eastern North Sea (Meyer et al. 2018)
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Meerestemperaturen/ Meeresoberflaechentemperaturen/
meeresoberflaechentemperaturen_ node. html [in Ger -
man]). Monthly SST anomalies from 1980−2015 were
calculated for 1 central station of the study area
(White Bank, Fig. 2), subtracting mean SST from the
1968−2015 mean SST for each month.

2.3.  Nutrient loads

Nutrient loads (phosphate PO4, in mg P l−1 of river
surface waters after filtration; and nitrite NO2, in mg
N l−1 of river surface after filtration) from the Rhine
River, measured at station Lobith in the Netherlands,
were used in the present study (extracted from the
Dutch ministry of Infrastructure and the Environment,
Rijkswaterstaat; http://waterinfo.rws.nl [in Dutch]).
Due to the significant correlation between nutrient
intake and PP in the south-eastern NS, these data are
a proxy for phytoplankton PP (Capuzzo et al. 2018).

2.4.  Environmental parameters

Depth (m) was measured at each station in each
study period. For the study period 2010−2015, a sep-
arate Van Veen grab was taken for sediment analy-
sis. For the study periods 1986 and 2000, sediment
parameters were extracted from interpolated maps
(see Fig. 5). Interpolated maps of sediment character-
istics, i.e. shell (>2 mm), mud (<0.063 mm), and sand

(>0.063 mm) contents (%), were processed with
Arc GIS 10.3, using the inverse distance weighting
method (Li & Heap 2008), including all available sed-
iment data for the study area, which were extracted
from the Senckenberg sediment database.

Average summer (June) and winter (February)
data on salinity, sampling SST, chlorophyll a (chl a,
re ferred as pelagic PP), and tidal parameters (tidal
stress, TS; peak wave stress, PWS; and average wave
stress, AWS) were generated according to Kröncke et
al. (2011) for the study periods 1986 and 2000. For
study period 2010−2015, PWS, AWS, TS, and salinity
data were extracted from NS Benthos Project (NSBP)
dataset. PP data were used from a long-term simula-
tion of the ECOHAM Version 4 (Lorkowski et al.
2012) as annual mean values in g C m−2 yr−1 with a
hori zontal resolution of 20 × 20 km. ECOHAM4 in -
cludes interactions between 34 pelagic and benthic
variables. Average data (means from 2000−2004)
were used for the present analysis. For a detailed
description of the simulated PP, see Lorkowski et al.
(2012).

2.5.  Macrofauna data

In this study, macrofauna data of the NS Benthos
Survey (NSBS) in 1986 (Heip et al. 1992, Künitzer et
al. 1992), NSBP in 2000 (Reiss et al. 2010, Kröncke et
al. 2011), and a recent study from 2010−2015 (Meyer
et al. 2018) were used. NSBS and NSBP data were
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Fig. 2. Sampling stations in the south-eastern North Sea from 1986 to 2010−2015, sea surface temperature reference station 
White Bank (WB), and depth contours of the study area (Meyer et al. 2018)
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revised up to the current taxonomic level. In total, we
used data from 58 stations (NSBS 1986 data) and
from 56 stations (NSBP 2000 data). For the recent
study period from 2010−2015, we collected 2 samples
per ICES rectangle (Fig. 2) and year with a 0.1 m2

Van Veen grab. In all study periods, sampling was
carried out between June and August. Samples were
sieved over a mesh size of 1 mm and stored in 4%
formaldehyde sea water solution buffered with hexa-
methylenetetramine.

2.6.  Community bioturbation potential

In the present study, BPc was determined accord-
ing to Solan et al. (2004b) and Queirós et al. (2013).
Macrofauna biomass (Bi) and abundance (Ai) of
taxon i were used. Each taxon i was classified into
categorical scales of mobility (Mi) and sediment
reworking (Ri) (Table 1). Summed up, the BPc m−2

at each station was determined as:

(1)

Thus, based on Mi and Ri, a total of 16 combinations
of traits are possible, shown as functional groups (e.g.
B/SM = biodiffusors with slow free movement through
the sediment matrix).

2.7.  Trait diversity

Trait diversity was determined according the Shan-
non diversity index H ’ log(e), which uses a combina-
tion of richness and equability of bioturbation traits:

(2)

the Shannon diversity index uses the total number of
functional groups X and the proportion of the total
count of a functional group t (Pt) (Clarke & Warwick
1994).

2.8.  Data analysis

2.8.1.  Spatial variability of BPc and trait diversity.
For each study period, the spatial variability of BPc
(BPc m−2) and trait diversity (H ’ log(e) m−2) were given
in interpolated maps, processed with Arc GIS 10.3,
using the inverse distance weighting method (Li &
Heap 2008).

2.8.2.  Characteristic taxa of functional groups. For
each functional group, characteristic taxa with a per-
centage >1% on the total BPc of each study period
were chosen (Table 2), to create a link between func-
tional groups and the species and thus, to the struc-
tural community structure.

2.8.3.  Trait-based community analysis. Based on
the BPc of functional groups per station, a trait-
based community analysis was accomplished using
PRIMER 7. For the study period 1986, multi -
dimensional scaling (MDS) and similarity profile
analysis (SIMPROF) were accomplished based on a
Bray-Curtis similarity matrix of fourth-root trans-
formed data. Functional groups, which provided the
similarity/discrimination between the clusters, were
identified by similarity percentage analysis (SIM-
PER) (Clarke & Warwick 1994). The clusters found
within the trait-based community analysis of 1986
were named according to their locality (CW: coast,
OG: Oysterground, DB: Dogger Bank). To examine
changes in trait-based community structure, multi-
variate analyses of 2000 and 2010−2015 data were
based on the 3 clusters identified in the 1986 commu-
nity analysis. For 2000 data, matching positions with
1986 stations were used, while for 2010−2015 data,
distances to stations of 1986 were measured with
Arc GIS 10.3.

An analysis of similarities (ANOSIM) was per-
formed, which is a permutation test that analyzes the
statistical significance of a priori divided clusters.
The test reveals a global R, testing for statistically
significant differences within the whole dataset,
and a pairwise R, testing for significant differences
between the clusters (Clarke & Warwick 1994).

∑= × × ×
=

BPC
1

Bi
Ai

Ai Mi Ri
i

n

∑= − ×
=

’ log
1

eH P P
t

x

t t
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Score Mobility Abbr Reworking Abbr

1 Living in a fixed tube FT –
2 Limited movement LM Surficial modifiers S
3 Slow free movement through the sediment matrix SM Upward/downward conveyors U
4 Free, 3-dimensional movement FM Biodiffusors B
5 – Regenerators R

Table 1. Abbreviations (Abbr) and scores for mobility and sediment reworking traits for benthic taxa in the south-eastern 
North Sea according to Queirós et al. (2013)
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To visualize changes over the years and between
the zones within a matrix display analysis, a shade-
plot was generated, which is a visual interpretation of
the trait matrix based on a colored scale from white
(0) to black (8). Sample-sorting was based on a clus-
ter- and SIMPROF-analysis, while variable-sorting
was based on a numeric standardized dataset of each
trait (Clarke et al. 2014).

2.9.  Relationship between environmental
 parameters and trait structure

To find relationships of environmental parameters
and trait structure, we performed a  RELATE-
analysis, based on a Bray-Curtis similarity matrix of
trait data and an environmental matrix. A RELATE-
analysis tests the relation between multivariate
results of environmental and trait analyses. As on
ordination method, a distance-based redundancy
analysis (dbRDA) was used. The dbRDA is a multi-
variate multiple regression of a principal coordinate
analysis on predictor variables that is used to find lin-
ear combinations of the predictor variables which
explain the greatest variation in the data cloud
(Clarke & Gorley 2006). To analyze changes within
each location, a separate dbRDA is shown for each
community (OG, DB, and CW), including the study
periods 1986, 2000, and 2010−2015.

3.  RESULTS

3.1.  Environmental parameters

3.1.1.  SST anomaly. From 1980−2015, 3 different
phases in the mean SST anomaly were observed (Fig.
3). The first phase from 1980−1988 was dominated by
cold winters and a negative mean SST anomaly in
summer and winter. In the second phase from the
late 1980s until the early 2000s, winter months were
dominated by a negative, summer months by a posi-
tive mean SST anomaly. Even the cold winter effect
in 1995/96 is clearly visible. The third phase from the
early 2000s to 2015 was dominated by a mainly posi-
tive SST anomaly in summer and winter (Fig. 3).
However, during the third study period between
2010 and 2013, only summer months were dominated
by a positive mean SST anomaly, while winter months
were dominated by a negative mean SST anomaly.
The years 2014 and 2015 were dominated by a posi-
tive SST anomaly in summer and winter (Fig. 3).

3.1.2.  Nutrient loads. Both total dissolved phos-
phate and nitrite de creased considerably between
1980 and 2015. Phosphate decreased mainly
between 1985 and 1991, from 0.39 to 0.09 mg PO4 l−1,
while nitrite decreased between 1989 and 1997, from
0.12 to 0.02 mg NO2 l−1 (Fig. 4).

3.1.3.  Sediment parameters. Sediment characteris-
tics of southern NS areas are highly variable, show-
ing a significant negative correlation between mud
and sand content. Sand dominated the area (72.7−
99.8%). Aside from the inner German Bight, which
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Functional  Characteristic taxa                                  %
group                                                               1986  2000  2010

U/FM          Upogebia deltaura                         *        *        *

B/LM           Priapulida                                       *        *        *

B/FM           Callianassa subterranea              3.7     1.6     2.8
                    Scalibregma inflatum                    *        *       1.9

R/FM           Corystes cassivelaunus                 *       1.6     2.4

B/SM           Amphiura filiformis                   23.9    8.4    19.4
                    Acrocnida brachiata                      *       2.5       *
                    Echinocardium cordatum          21.0   33.5   13.3
                    Echinocardium spp. juveniles     *+     20.9   16.9
                    Nephtys hombergii                      5.8     1.3     2.5
                    Nephtys cirrhosa                          1.1       *        *
                    Scoloplos armiger                        3.3       *        *
                    Ophelia borealis                           2.3       *        *
                    Nemertea                                      2.9       *       1.9
                    Sigalion mathildae                        *        *       1.3
                    Brissopsis lyrifera                          *        *       1.2
                    Sipunculidae                                1.2       *       1.2

S/SM           Nucula nitidosa                            1.1     2.8     1.1
                    Bathyporeia elegans                     *        *        *
                    Bathyporeia guilliamsoniana        *        *        *

S/LM           Chamelea striatula                       3.1       *        *
                    Arctica islandica                          2.4       *        *
                    Kurtiella bidentata                       1.6       *        *
                    Magelona johnstoni                       *        *       1.0
                    Ophiura albida                             2.4       *        *

U/LM          Echiurus echiurus                          *        *        *
                    Aonides paucibranchiata              *        *        *
                    Spio filicornis                                 *        *        *
                    Scolelepis bonnieri                        *        *        *

S/FT            Myriochele spp.                             *        *        *
                    Owenia fusiformis                         *        *        *
                    Phoronis spp.                                 *        *       1.9

U/FT            Spiophanes bombyx                      *        *       4.7
                    Lagis Koreni                                   *        *       1.3
                    Lanice conchilega                         *       1.1     1.9

S/FM           Corophium spp.                             *        *        *

                    Total                                             76.9   73.6   75.9

Table 2. Percentage of functional groups (see Table 1 for defi-
nitions) and their characteristic taxa on the total bio turbation
potential of each study period (1986, 2000, and 2010−2015);
asterisks (*) indicate <1%. The main bioturbators are shown
in bold. (+) In 1986 juvenile Echinocardium spp. and Echino -

cardium cordatum were pooled
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has a mud content of up to 79.0%, the
highest mud content (up to 27.3%)
was found in central parts of the Oys-
terground, while in the other areas,
mud content ranged from 0.1 to 5%. A
high shell content of up to 23.7% was
found on the North Frisian coast and
in the shallower areas of the Dogger
Bank, whereas in most areas of the
Oysterground, shell content was
<0.01% (Fig. 5).

3.2.  Spatial variability of BPc and
trait diversity

In 1986, a maximum mean BPc of
8439 was found in the central parts
of the Oysterground, while in 2000, a
maximum mean BPc of 15 240 was
found in the transitional area along
the North Frisian coast. In 2010−2015,
a maximum mean BPc of about 10 535
was found in the northern parts of the
Oysterground and along the North
and East Frisian coasts. While in 1986
and 2000 maximum BPc was spatially
restricted, in 2010−2015 high values
were widely distributed (Fig. 6).

The diversity index of functional
groups remained nearly stable at <1.8
from 1986 to 2010−2015. In 1986 and
2010−2015, the highest values were
found in the south-eastern part of the
study area, in the German Bight and
on the East Frisian coast, while in
2000, the highest trait diversity was
found in the south-western part of the
study area in the muddy parts of the
Oysterground (Fig. 6).

3.3.  Trait-based community analysis

A trait-based multivariate SIMPER
analysis revealed 3 significantly dif-
ferent clusters of functional groups for
the study period 1986, which were
named by their location (DB: Dogger
Bank, OG: Oysterground, and CW:
coast community) and used as the
basis for long-term analysis (Table 3).
With a pairwise ANOSIM, we tested
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whether the clusters found in 1986 differed signifi-
cantly in 2000 and 2010− 2015 and whether there
were differences between the study periods with in
the clusters DB, OG, and CW.

The pairwise ANOSIM revealed an R < 0.5, i.e. no
significant differen ces between the clusters of the
study periods 2000 and 2010−2015, but sig nificant
differences (R > 0.5) between the study periods within
each cluster (Table 4). A global ANOSIM, which tests
trait-based communities and study periods against
each other, revealed a significant difference with
a global R of 0.468 (Table 4). Thus, results of the
ANOSIM revealed no differences within the study
area for 2000 and 2010−2015, but adapting spatial
cluster boundaries from 1986 to clusters of 2000 and
2010−2015 revealed significant changes within each
cluster.

3.4.  Relationship between trait-based community
analysis and environmental parameters

Relating functional group data with environmental
parameters (sediment parameters [AWS, PWS, TS],
SST, PP, and depth), by aggregating available data of
the study periods, RELATE-analysis revealed a sig-
nificant R of 0.26. In all study periods, RELATE-
analyses between traits and environmental para -
meters revealed a significant correlation for each
location (CW: R = 0.271; OG: R = 0.281; DB: R =
0.339).

With the dbRDA, patterns of the cumulative trait-
based community analysis were visualized, showing
only significant correlations with correlation coeffi-
cients >0.5 (Fig. 7). The long-term analysis of the OG
revealed a significant correlation of sand and mud
content, PWS, and AWS with the first axis, and of PP
with the second axis. The first axis of the DB is signif-
icantly correlated with SST and sand content, while
the second axis is significantly correlated with AWS,
PWS, TS, and shell and mud content. The first axis of
the CW reveals a significant correlation with SST,
and the second axis is significantly correlated with
AWS, PWS, TS, depth, and mud and sand content
(Fig. 7).

3.5.  Long-term variability of functional groups

The long-term comparison of trait-based macro-
fauna communities revealed B/SM (see Table 1 for
trait definitions) as the most important functional
group with the highest BPc. The highest BPc was

found within the OG community, which increased
slightly from 1986 to 2010−2015. In addition to B/SM,
the OG was also characterized by the functional
groups S/LM and B/FM, which showed constant BPc
in all study periods. The BPc of the DB community
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Fig. 5. Sand, shell, and mud content (%) of the study area in 
the south-eastern North Sea
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was characterized by S/SM and S/LM, which
decreased until 2010−2015, along with B/SM. Within
the CW community, the BPc of the functional groups
U/FT and B/SM has increased since 1986 (Fig. 8)

3.6.  Characteristic taxa of functional groups

Across the study area and in all study periods, the
functional group B/SM, which contributed >60% of

the total BPc, was represented by the brittle star
Amphiura filiformis, the sea urchin Echinocardium
cordatum, and juvenile sea urchins Echinocardium
spp. In 1986, the functional group S/LM contributed
about 10% of the BPc and included bivalves such as
Chamelea striatula, Arctica islandica, and Kurtiella
bidentata, while in 2000 and 2010−2015, this func-
tional group ac counted for <2% of the BPc. Contrast-
ingly, in 2010− 2015, the functional groups S/FT and
U/FT contributed about 10% to the total BPc (Table 2).

25

Fig. 6. Interpolated (inverse distance weighting) community bioturbation potential (BPc m−2) and trait diversity H’ log(e) (DIV) 
in south-eastern North Sea areas in 1986, 2000, and 2010−2015
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4.  DISCUSSION

4.1.  BPc and trait diversity

The theoretical BPc (Solan et al. 2004b, Queirós et
al. 2013) is the only option for a large-scale and long-
term comparison of data such as the NSBS 1986 and
NSBS 2000 data, for which no experimental measure-
ments are available. Due to the consistent sampling
and processing of data in the present study, theoreti-
cal BPc (Solan et al. 2004b, Queirós et al. 2013) can be
used to describe and compare spatial and long-term
BPc variability. Owing to several limitations, which
are discussed below, the focus of the present study
was on the comparison of BPc between the study pe-
riods in relation to environmental parameters.

Most ecological studies on macrofauna species re-
ferred to abundance data (Kröncke et al. 2011, Meyer
et al. 2018), while the bioturbation potential is highly
related to the biomass of organisms (Gogina et al.
2017, Morys et al. 2017). Thus, mass occurrences e.g.
of small tube-living species might cause significant
changes in abundance-based community structure,
but may influence BPc less than the biomass of large
single specimens such as Echinocardium cordatum.
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Average similarity
1986 2000 2010−2015

CW 58.9 49.0 52.0
OG 70.8 49.0 54.0
DB 77.3 49.2 58.9

Table 3. Results of SIMPER-analysis of the a priori defined
communities in the North Sea (coast: CW, Oysterground:
OG, and Dogger Bank: DB), providing information about 

average similarity of each community per study period

Groups R

Global test 0.468
OG1986, OG2000 0.959
OG1986, OG2010 0.876
OG2000, OG2010 0.252
DB1986, DB2000 0.939
DB1986, DB2010 0.838
DB2000, DB2010 0.334
CW1986, CW2000 0.378
CW1986, CW2010 0.451
CW2000, CW2010 0.343

Table 4. Results (R statistic) of ANOSIM, differentiating
between communities in the North Sea (CW: coast, OG:
Oysterground, and DB: Dogger Bank), and between study
periods (1986, 2000, and 2010−2015). Significance % was 0.1 

in all cases

Fig. 7. Trait-based distance-based redundancy analysis
(dbRDA) of the clusters Oysterground (OG), Dogger Bank
(DB), and coast (CW) in 1986, 2000, and 2010−2015. Signifi-
cant, highly correlated (R > 0.5) environmental parameters
(mud, sand, and shell content [%], peak wave stress [PWS],
average wave stress [AWS], tidal stress [TS], primary pro-
duction [PP], sea surface temperature [SST], and depth) are
shown as vector lines, whose length is proportional to their 

relative significance
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BPc successfully predicts particle distance trans-
port (Queirós et al. 2015), but prediction of bioturba-
tion depth, activity, and the biodiffusion coefficient
(Db) is limited. Nevertheless, comparisons of results
for experimental approaches and theoretical BPc
revealed significant correlations (Gogina et al. 2017,
Morys et al. 2017, Wrede et al. 2017), thus supporting
the use of BPc.

In addition to biomass (Bi) and abundance (Ai), BPc
also incorporates reworking (Ri) and mobility (Mi)
traits of macrofauna species, which are the most
important traits describing interactions between
macrofauna and the sediment as a consequence of
feeding mode, mobility, and construction of burrows
(Dauwe et al. 1998, Solan et al. 2004a, Queirós et al.
2013). Trait scores (Table 1) are species specific, in
contrast to species characteristics such as life span,
feeding mode, and reproduction. Nevertheless, there
is a high complexity, which cannot be fully described
by the theoretical BPc. For example, the tube-living
polychaete Spiophanes bombyx is a good example
of high variability in feeding mode. It is characterized
as an interface-feeder, which could be either a
deposit- or a suspension-feeder, depending on sedi-
ment structure and food availability (Dauer et al.
1981, Taghon & Greene 1992). During deposit feed-
ing, particles are transported up and down, while
during suspension feeding vertical transport pro-
cesses are modified. Thus, in the present study, the
clusters will provide similar patterns, regardless of
the classification of S. bombyx as upward and down-
ward conveyors in fixed tubes (U/FT) or as surficial
modifiers in fixed tubes (S/FT) (Fig. 8). Thus, we
assume that the most important and common func-
tional traits regarding the biogenic mixing and influ-

ence of macrofauna on sediment structure are in -
cluded in the BPc.

Approaches for biological trait analysis (Bremner et
al. 2003, Neumann et al. 2016) have mainly been
used for well-known epibenthic fish species, since
macrofauna trait information is seldom available or
provides conflicting information (Queirós et al. 2013,
Shojaei et al. 2016). In the present study, simple
diversity measures (H ’) based on functional groups
were used to compare spatial and long-term variabil-
ity in trait diversity within the study area (Loreau et
al. 2001, Hooper et al. 2002, Bremner et al. 2003).

4.2.  Spatial variability of trait diversity, trait
structure, and functional groups

Our results revealed nearly stable large-scale spa-
tial variability of trait diversity among the study peri-
ods, determined by stable environmental parameters
such as sediment characteristics and depth (Künitzer
et al. 1992, Kröncke et al. 2011, Braeckman et al.
2014). Trait diversity decreased from the coastal
areas on the North and East Frisian coasts to the off-
shore areas of the northern Oysterground and the
Dogger Bank. These results revealed an opposite
gradient compared to diversity using taxa abun-
dance, for which the diversity gradient increased
from south to north (Künitzer et al. 1992, Rachor &
Nehmer 2003, Kröncke et al. 2011). However, in the
study area, the maximum and range of trait diver-
sity is much lower than those of structural diversity
(Meyer et al. 2018), because for this functional
approach, species contributing to a high structural
diversity were grouped into only 1 functional group.
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Fig. 8. Shade-plot of functional groups (sedi-
ment reworking [S: surficial modifiers, B: biod-
iffusors, U: upward/downward conveyors]) and
mobility (FT: living in a fixed tube, LM: limited
movement, SM: slow free movement through
the sediment matrix, FM: free 3-dimensional
movement), discriminating between the com-
munities (OG: Oysterground, DB: Dogger Bank,
CW: coast) and years (1986: green, 2000: red,
and 2010−2015: blue). Sample sorting was de-
fined by cluster analysis and a similarity profile
test, based on a Bray-Curtis similarity matrix of
square root transformed data; variable-sorting
was based on a numeric standardized dataset
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In the present study, a strong relationship between
spatial variability of trait diversity and sediment
parameters is obvious, although there was no signifi-
cant correlation. The lowest trait diversity was found
on the North Frisian coast and in central parts of the
Oysterground, in sediments with the highest shell
content and coarse sand. In contrast, the highest trait
diversity was found on the borders of the postglacial
valley of the River Elbe in the inner German Bight
and at the Frisian Front in intermediate fine sands, as
well as in the nearshore inner German Bight with the
highest mud content. On the one hand, our results
correspond to results of Braeckman et al. (2014), who
found the highest macrofauna functional diversity in
fine sandy sediments associated with the highest
oxygen consumption, while the lowest functional
diversity was found in permeable coarse sediments.
On the other hand, Braeckman et al. (2014) found low
macrofauna functional diversity in muddy sediments,
which is in contrast to our findings.

In areas such as the inner German Bight where the
highest trait diversity was found, a high mud content
is related to a high total organic carbon (TOC) con-
tent, and thus, a high amount of organic matter,
available as a food source for macrofauna in the sed-
iment (Dauwe et al. 1998, Zhang & Wirtz 2017). In the
south-eastern NS, the spatial distribution of macro-
fauna species and community structure is strongly
related to the TOC content and thus food availability
(Dauwe et al. 1998, Kröncke et al. 2004, Zhang &
Wirtz 2017). Nevertheless, a high TOC content only
provides information about the quantity of organic
matter but not about its quality, which is the most
important factor for community structure (Zhang &
Wirtz 2017). Focusing on functional groups, Dauwe
et al. (1998) found the lowest diversity in coarse
 sediments with low TOC content and high hydro -
dynamic stress, which corresponds to our results as
well as to those of Braeckman et al. (2014). Moreover,
Dauwe et al. (1998) found high functional diversity at
the Frisian Front in relation to TOC of intermediate
quality, measured as pigment concentration and
quantity of TOC, but also in the inner German
Bight, caused by the higher quality and quantity
of TOC, which further led to highest abundances
and biomass, mostly in the upper sediment layers.
Next to trait diversity, TOC also influences the verti-
cal  distribution and bioturbation activity and inten-
sity (Dauwe et al. 1998, Zhang & Wirtz 2017). Conse-
quently, more detailed sediment characteristics such
as grain size, pigment concentration, and TOC might
improve the correlation with trait structure and
diversity.

The spatial pattern of trait-based communities was
comparable to the species-based macrofauna com-
munity structure reported by Künitzer et al. (1992),
Kröncke et al. (2011), and more recently by Meyer et
al. (2018). These studies found a community limited
to the spatial extent of the central Oysterground,
characterized by the brittle star Amphiura filiformis;
a community on the Dogger Bank, characterized by
small amphipods such as Bathyporeia spp.; and a
community in coastal areas of the North and East
Frisian coasts, characterized by small mollusks such
as Tellina fabula and Nucula nitidosa, in addition to
small tube-dwelling species such as Phoronis spp.
and Spiophanes bombyx.

The 3 trait-based communities described in the
present study were differentiated by the largest
functional group B/SM (see Table 1), which con-
tributed most to the bioturbation activities in all study
periods. The functional group B/SM includes key
species, such as the suspension-feeding brittle star
Amphiura filiformis and the sea urchin Echino -
cardium cordatum. Both species are characteristic for
macrofauna communities of the study area, in terms
of biomass and abundance (Künitzer et al. 1992,
Kröncke et al. 2011), and were confirmed as the main
bioturbators of the German Bight by Wrede et al.
(2017) using an experimental approach. In the pres-
ent study, they contributed the largest amount of the
BPc, and can therefore be defined as key bioturba-
tors even by our theoretical approach. Wrede et al.
(2017) also defined Nucula nitidosa as a key biotur-
bator, but this could not be confirmed in our study.

4.3.  Long-term changes in trait-based community
structure and BPc since 1986

While our results revealed a relatively stable spatial
extent of 3 trait-based communities, distinct changes
over time were found within each of these communi-
ties, resulting in changes in characteristic and domi-
nant traits and BPc. These changes were probably
driven by changing anthropogenic and climatic pres-
sures, which caused changes in total abundance, bio-
mass, and community structure throughout the south-
eastern NS (Kröncke et al. 2011, Meyer et al. 2018).
Other marine areas, such as the Baltic Sea (Bonsdorff
et al. 1997) or the Northern Atlantic (Birchenough
et al. 2015), were affected by anthropogenic and cli-
matic pressures as well. Changes in community
structure affected the characteristics of functional
groups, because each functional group involves a va-
riety of macrofauna taxa, which are characterized by
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different feeding modes, temperature sensitivity, and
reproduction, in addition to Ri and Mi. Thus, each
functional group shows distinct reactions to environ-
mental changes, which again, causes regionally dif-
ferent changes in bioturbation activity and interac-
tions among functional groups (Brown et al. 2004,
Maire et al. 2007, Kristensen et al. 2012, Queirós et al.
2015). Therefore, changes in trait-based communities
(Fig. 7), and thus BPc (Fig. 6), are probably directly
connected with anthropogenic and climate-induced
changes in macrofauna abundance, biomass, and
community structure, which were found in the study
area since 1986 (Meyer et al. 2018).

In the present study, we found a decline in nutrient
loads (NO2 and PO4) of the Rhine River, which was
used as a proxy for decreasing pelagic phytoplank-
ton PP in the south-eastern NS, as also shown by
Capuzzo et al. (2018). This decline in nutrient loads
confirmed the decline in pelagic phytoplankton PP
and consequently food supply (van Beusekom et al.
2009, Boyce et al. 2010, Capuzzo et al. 2018). Nutri-
ent loads, and thus phytoplankton PP, decreased sig-
nificantly after the first study period of 1986, which
was probably a driver of the distinct decrease in BPc
in the central and northern areas of the study area
between 1986 and 2000, including parts of the Oys-
terground and Dogger Bank communities. This area
is also influenced by ongoing phosphate limitation
(Sarker 2018). The decrease in BPc was mainly
driven by decreasing abundance of the functional
groups B/SM and S/SM (see Table 1). As mentioned
before, the functional group B/SM included key bio-
turbators such as A. filiformis and E. cordatum, which
account for about 45% of the total BPc. Since their
abundance and biomass decreased (Kröncke et al.
2011, Meyer et al. 2018), the total BPc decreased
as well.

A locally restricted increase in BPc was found only
on the North Frisian coast in 2000, which was mainly
attributed to mass occurrences of mostly juvenile
 bioturbators of the functional group B/SM such as
Echinocardium spp. Until the study period 2010−
2015, BPc on the East Frisian coast and the border
between the northern Oysterground and the Dogger
Bank increased, mainly caused by increased BPc of
the functional groups S/FT and U/FT, which include
mainly opportunistic tube-living species such as Pho -
ronis spp. and S. bombyx (Meyer et al. 2018). In the
permanently mixed areas on the North Frisian coast,
where phytoplankton PP and the Redfield ratio have
remained stable and high during the last decades
(Capuzzo et al. 2018, Sarker 2018), juvenile and
opportunistic tube-living species seemed to benefit

from the stable food supply, which is probably influ-
enced by the River Elbe and Danish waters. In areas
with likely low food supply in the northern Oyster-
ground, a low abundance of adult individuals of E.
cordatum with higher biomass led to a higher BPc.

If changes in food availability modify the structure
of macrofauna communities, and a functional group
is replaced by others, this might lead to stable BPc or
changing BPc in different study periods (Queirós
et al. 2015, Zhang et al. 2015). Indeed, our results
revealed significant changes in functional composi-
tion, probably caused by the decline in phytoplank-
ton PP, which in turn caused the regionally restricted
decline of main bioturbators.

Next to BPc, changes in food supply and increasing
SST can affect bioturbation depth, activity, and Db,
which are not reflected by the BPc (Queirós et al.
2015). The time periods used in the present study
enabled us to observe the response of functional trait
structure to long-term changes in food availability,
in contrast to changes in bioturbation depth, activity,
and Db that took place within a narrow time frame
after PP changes. Simultaneous to changes in BPc,
we expected changes in bioturbation activity and
depth in the study area. Temperature is a regulator of
metabolic rates (Brown et al. 2004). To save energy,
BPc can be limited in warm periods often in connec-
tion with low food availability (Maire et al. 2007),
although temporary high temperatures such as sea-
sonal changes and higher summer SST might lead to
higher BPc intensity. In contrast, a lower food avail-
ability may lead to increased bioturbation activity, to
ensure the intake and preservation of organic car-
bon. However, both parameters cannot be measured
using only a theoretical approach.

4.4.  Effects of bottom trawl fishing effort on the
long-term variability of BPc and trait-based

 community structure

Bottom trawl fishing effort has multilayered effects
on target and non-target fish species as well as on
benthic communities (Callaway et al. 2007, Hinz et
al. 2009, Reiss et al. 2009). Fishing pressure is high
throughout the study area, with the highest effort
along the East Frisian coast and in the south-western
parts of the Oysterground, although ongoing fishery
management has ensured a slight reduction in bot-
tom trawl fishing effort (OSPAR 2000). Despite the
ongoing high fishing pressure, several studies have
reported increasing abundance of fish larvae and
higher abundances of small fishes during the last
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decades (Edwards et al. 2001, Hiddink & Ter Hof -
stede 2008), which has increased the predation pres-
sure on benthic species. However, in the south-east-
ern NS, a high impact of natural factors such as
pelagic PP are spatially correlated with fishing pres-
sure (van Denderen et al. 2014, Neumann et al.
2016), so it is hard to disentangle both. On the one
hand, a relation between increasing fishing pressure
and predation of macrofauna by small non-target
species, simultaneously with decreasing phytoplank-
ton PP, were found as drivers for a decline in macro-
fauna abundance and biomass (Meyer et al. 2018).
This decline can affect benthic prey species, and thus
could accelerate a decline in BPc. On the other hand,
the seabed is affected by mechanical disturbance
(Reiss et al. 2009). Thus, we expected increasing BPc
of functional groups with high mobility, such as
U/FM or R/FM. However, along with the significant
increase in BPc since 1986, trait-based community
structure has remained nearly stable, except for an
increase in traits S/FT and U/FT within the CW com-
munity. This stable trait-based community structure
seems to benefit from the relatively frequent and
intermediate disturbance through fishing effort, which
appears to have neither a positive nor a pronounced
negative effect (Connell 1978, Dial & Roughgarden
1998).

5.  CONCLUSIONS

As expected, we found a stable trait diversity and
a stable spatial extent of 3 trait-based communities
in the south-eastern NS since 1986 related to sedi-
ment, depth, and depth-related tidal parameters.
Except for a significant drop in BPc in the central
and northern Oysterground, a steady increase in
BPc across the south-eastern NS was found. Never-
theless, within each of the trait-based communities,
we found significant changes in dominance of func-
tional groups, caused by decreasing food availability
due to decreasing phytoplankton PP and increasing
SST, which seemed to be compensated by a fre-
quent and intermediate disturbance through fishing
effort.
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