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was characterized by S/SM and S/LM, which
decreased until 2010−2015, along with B/SM. Within
the CW community, the BPc of the functional groups
U/FT and B/SM has increased since 1986 (Fig. 8)

3.6.  Characteristic taxa of functional groups

Across the study area and in all study periods, the
functional group B/SM, which contributed >60% of

the total BPc, was represented by the brittle star
Amphiura filiformis, the sea urchin Echinocardium
cordatum, and juvenile sea urchins Echinocardium
spp. In 1986, the functional group S/LM contributed
about 10% of the BPc and included bivalves such as
Chamelea striatula, Arctica islandica, and Kurtiella
bidentata, while in 2000 and 2010−2015, this func-
tional group ac counted for <2% of the BPc. Contrast-
ingly, in 2010− 2015, the functional groups S/FT and
U/FT contributed about 10% to the total BPc (Table 2).
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Fig. 6. Interpolated (inverse distance weighting) community bioturbation potential (BPc m−2) and trait diversity H’ log(e) (DIV) 
in south-eastern North Sea areas in 1986, 2000, and 2010−2015
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4.  DISCUSSION

4.1.  BPc and trait diversity

The theoretical BPc (Solan et al. 2004b, Queirós et
al. 2013) is the only option for a large-scale and long-
term comparison of data such as the NSBS 1986 and
NSBS 2000 data, for which no experimental measure-
ments are available. Due to the consistent sampling
and processing of data in the present study, theoreti-
cal BPc (Solan et al. 2004b, Queirós et al. 2013) can be
used to describe and compare spatial and long-term
BPc variability. Owing to several limitations, which
are discussed below, the focus of the present study
was on the comparison of BPc between the study pe-
riods in relation to environmental parameters.

Most ecological studies on macrofauna species re-
ferred to abundance data (Kröncke et al. 2011, Meyer
et al. 2018), while the bioturbation potential is highly
related to the biomass of organisms (Gogina et al.
2017, Morys et al. 2017). Thus, mass occurrences e.g.
of small tube-living species might cause significant
changes in abundance-based community structure,
but may influence BPc less than the biomass of large
single specimens such as Echinocardium cordatum.
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Average similarity
1986 2000 2010−2015

CW 58.9 49.0 52.0
OG 70.8 49.0 54.0
DB 77.3 49.2 58.9

Table 3. Results of SIMPER-analysis of the a priori defined
communities in the North Sea (coast: CW, Oysterground:
OG, and Dogger Bank: DB), providing information about 

average similarity of each community per study period

Groups R

Global test 0.468
OG1986, OG2000 0.959
OG1986, OG2010 0.876
OG2000, OG2010 0.252
DB1986, DB2000 0.939
DB1986, DB2010 0.838
DB2000, DB2010 0.334
CW1986, CW2000 0.378
CW1986, CW2010 0.451
CW2000, CW2010 0.343

Table 4. Results (R statistic) of ANOSIM, differentiating
between communities in the North Sea (CW: coast, OG:
Oysterground, and DB: Dogger Bank), and between study
periods (1986, 2000, and 2010−2015). Significance % was 0.1 

in all cases

Fig. 7. Trait-based distance-based redundancy analysis
(dbRDA) of the clusters Oysterground (OG), Dogger Bank
(DB), and coast (CW) in 1986, 2000, and 2010−2015. Signifi-
cant, highly correlated (R > 0.5) environmental parameters
(mud, sand, and shell content [%], peak wave stress [PWS],
average wave stress [AWS], tidal stress [TS], primary pro-
duction [PP], sea surface temperature [SST], and depth) are
shown as vector lines, whose length is proportional to their 

relative significance
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BPc successfully predicts particle distance trans-
port (Queirós et al. 2015), but prediction of bioturba-
tion depth, activity, and the biodiffusion coefficient
(Db) is limited. Nevertheless, comparisons of results
for experimental approaches and theoretical BPc
revealed significant correlations (Gogina et al. 2017,
Morys et al. 2017, Wrede et al. 2017), thus supporting
the use of BPc.

In addition to biomass (Bi) and abundance (Ai), BPc
also incorporates reworking (Ri) and mobility (Mi)
traits of macrofauna species, which are the most
important traits describing interactions between
macrofauna and the sediment as a consequence of
feeding mode, mobility, and construction of burrows
(Dauwe et al. 1998, Solan et al. 2004a, Queirós et al.
2013). Trait scores (Table 1) are species specific, in
contrast to species characteristics such as life span,
feeding mode, and reproduction. Nevertheless, there
is a high complexity, which cannot be fully described
by the theoretical BPc. For example, the tube-living
polychaete Spiophanes bombyx is a good example
of high variability in feeding mode. It is characterized
as an interface-feeder, which could be either a
deposit- or a suspension-feeder, depending on sedi-
ment structure and food availability (Dauer et al.
1981, Taghon & Greene 1992). During deposit feed-
ing, particles are transported up and down, while
during suspension feeding vertical transport pro-
cesses are modified. Thus, in the present study, the
clusters will provide similar patterns, regardless of
the classification of S. bombyx as upward and down-
ward conveyors in fixed tubes (U/FT) or as surficial
modifiers in fixed tubes (S/FT) (Fig. 8). Thus, we
assume that the most important and common func-
tional traits regarding the biogenic mixing and influ-

ence of macrofauna on sediment structure are in -
cluded in the BPc.

Approaches for biological trait analysis (Bremner et
al. 2003, Neumann et al. 2016) have mainly been
used for well-known epibenthic fish species, since
macrofauna trait information is seldom available or
provides conflicting information (Queirós et al. 2013,
Shojaei et al. 2016). In the present study, simple
diversity measures (H ’) based on functional groups
were used to compare spatial and long-term variabil-
ity in trait diversity within the study area (Loreau et
al. 2001, Hooper et al. 2002, Bremner et al. 2003).

4.2.  Spatial variability of trait diversity, trait
structure, and functional groups

Our results revealed nearly stable large-scale spa-
tial variability of trait diversity among the study peri-
ods, determined by stable environmental parameters
such as sediment characteristics and depth (Künitzer
et al. 1992, Kröncke et al. 2011, Braeckman et al.
2014). Trait diversity decreased from the coastal
areas on the North and East Frisian coasts to the off-
shore areas of the northern Oysterground and the
Dogger Bank. These results revealed an opposite
gradient compared to diversity using taxa abun-
dance, for which the diversity gradient increased
from south to north (Künitzer et al. 1992, Rachor &
Nehmer 2003, Kröncke et al. 2011). However, in the
study area, the maximum and range of trait diver-
sity is much lower than those of structural diversity
(Meyer et al. 2018), because for this functional
approach, species contributing to a high structural
diversity were grouped into only 1 functional group.
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Fig. 8. Shade-plot of functional groups (sedi-
ment reworking [S: surficial modifiers, B: biod-
iffusors, U: upward/downward conveyors]) and
mobility (FT: living in a fixed tube, LM: limited
movement, SM: slow free movement through
the sediment matrix, FM: free 3-dimensional
movement), discriminating between the com-
munities (OG: Oysterground, DB: Dogger Bank,
CW: coast) and years (1986: green, 2000: red,
and 2010−2015: blue). Sample sorting was de-
fined by cluster analysis and a similarity profile
test, based on a Bray-Curtis similarity matrix of
square root transformed data; variable-sorting
was based on a numeric standardized dataset
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In the present study, a strong relationship between
spatial variability of trait diversity and sediment
parameters is obvious, although there was no signifi-
cant correlation. The lowest trait diversity was found
on the North Frisian coast and in central parts of the
Oysterground, in sediments with the highest shell
content and coarse sand. In contrast, the highest trait
diversity was found on the borders of the postglacial
valley of the River Elbe in the inner German Bight
and at the Frisian Front in intermediate fine sands, as
well as in the nearshore inner German Bight with the
highest mud content. On the one hand, our results
correspond to results of Braeckman et al. (2014), who
found the highest macrofauna functional diversity in
fine sandy sediments associated with the highest
oxygen consumption, while the lowest functional
diversity was found in permeable coarse sediments.
On the other hand, Braeckman et al. (2014) found low
macrofauna functional diversity in muddy sediments,
which is in contrast to our findings.

In areas such as the inner German Bight where the
highest trait diversity was found, a high mud content
is related to a high total organic carbon (TOC) con-
tent, and thus, a high amount of organic matter,
available as a food source for macrofauna in the sed-
iment (Dauwe et al. 1998, Zhang & Wirtz 2017). In the
south-eastern NS, the spatial distribution of macro-
fauna species and community structure is strongly
related to the TOC content and thus food availability
(Dauwe et al. 1998, Kröncke et al. 2004, Zhang &
Wirtz 2017). Nevertheless, a high TOC content only
provides information about the quantity of organic
matter but not about its quality, which is the most
important factor for community structure (Zhang &
Wirtz 2017). Focusing on functional groups, Dauwe
et al. (1998) found the lowest diversity in coarse
 sediments with low TOC content and high hydro -
dynamic stress, which corresponds to our results as
well as to those of Braeckman et al. (2014). Moreover,
Dauwe et al. (1998) found high functional diversity at
the Frisian Front in relation to TOC of intermediate
quality, measured as pigment concentration and
quantity of TOC, but also in the inner German
Bight, caused by the higher quality and quantity
of TOC, which further led to highest abundances
and biomass, mostly in the upper sediment layers.
Next to trait diversity, TOC also influences the verti-
cal  distribution and bioturbation activity and inten-
sity (Dauwe et al. 1998, Zhang & Wirtz 2017). Conse-
quently, more detailed sediment characteristics such
as grain size, pigment concentration, and TOC might
improve the correlation with trait structure and
diversity.

The spatial pattern of trait-based communities was
comparable to the species-based macrofauna com-
munity structure reported by Künitzer et al. (1992),
Kröncke et al. (2011), and more recently by Meyer et
al. (2018). These studies found a community limited
to the spatial extent of the central Oysterground,
characterized by the brittle star Amphiura filiformis;
a community on the Dogger Bank, characterized by
small amphipods such as Bathyporeia spp.; and a
community in coastal areas of the North and East
Frisian coasts, characterized by small mollusks such
as Tellina fabula and Nucula nitidosa, in addition to
small tube-dwelling species such as Phoronis spp.
and Spiophanes bombyx.

The 3 trait-based communities described in the
present study were differentiated by the largest
functional group B/SM (see Table 1), which con-
tributed most to the bioturbation activities in all study
periods. The functional group B/SM includes key
species, such as the suspension-feeding brittle star
Amphiura filiformis and the sea urchin Echino -
cardium cordatum. Both species are characteristic for
macrofauna communities of the study area, in terms
of biomass and abundance (Künitzer et al. 1992,
Kröncke et al. 2011), and were confirmed as the main
bioturbators of the German Bight by Wrede et al.
(2017) using an experimental approach. In the pres-
ent study, they contributed the largest amount of the
BPc, and can therefore be defined as key bioturba-
tors even by our theoretical approach. Wrede et al.
(2017) also defined Nucula nitidosa as a key biotur-
bator, but this could not be confirmed in our study.

4.3.  Long-term changes in trait-based community
structure and BPc since 1986

While our results revealed a relatively stable spatial
extent of 3 trait-based communities, distinct changes
over time were found within each of these communi-
ties, resulting in changes in characteristic and domi-
nant traits and BPc. These changes were probably
driven by changing anthropogenic and climatic pres-
sures, which caused changes in total abundance, bio-
mass, and community structure throughout the south-
eastern NS (Kröncke et al. 2011, Meyer et al. 2018).
Other marine areas, such as the Baltic Sea (Bonsdorff
et al. 1997) or the Northern Atlantic (Birchenough
et al. 2015), were affected by anthropogenic and cli-
matic pressures as well. Changes in community
structure affected the characteristics of functional
groups, because each functional group involves a va-
riety of macrofauna taxa, which are characterized by
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different feeding modes, temperature sensitivity, and
reproduction, in addition to Ri and Mi. Thus, each
functional group shows distinct reactions to environ-
mental changes, which again, causes regionally dif-
ferent changes in bioturbation activity and interac-
tions among functional groups (Brown et al. 2004,
Maire et al. 2007, Kristensen et al. 2012, Queirós et al.
2015). Therefore, changes in trait-based communities
(Fig. 7), and thus BPc (Fig. 6), are probably directly
connected with anthropogenic and climate-induced
changes in macrofauna abundance, biomass, and
community structure, which were found in the study
area since 1986 (Meyer et al. 2018).

In the present study, we found a decline in nutrient
loads (NO2 and PO4) of the Rhine River, which was
used as a proxy for decreasing pelagic phytoplank-
ton PP in the south-eastern NS, as also shown by
Capuzzo et al. (2018). This decline in nutrient loads
confirmed the decline in pelagic phytoplankton PP
and consequently food supply (van Beusekom et al.
2009, Boyce et al. 2010, Capuzzo et al. 2018). Nutri-
ent loads, and thus phytoplankton PP, decreased sig-
nificantly after the first study period of 1986, which
was probably a driver of the distinct decrease in BPc
in the central and northern areas of the study area
between 1986 and 2000, including parts of the Oys-
terground and Dogger Bank communities. This area
is also influenced by ongoing phosphate limitation
(Sarker 2018). The decrease in BPc was mainly
driven by decreasing abundance of the functional
groups B/SM and S/SM (see Table 1). As mentioned
before, the functional group B/SM included key bio-
turbators such as A. filiformis and E. cordatum, which
account for about 45% of the total BPc. Since their
abundance and biomass decreased (Kröncke et al.
2011, Meyer et al. 2018), the total BPc decreased
as well.

A locally restricted increase in BPc was found only
on the North Frisian coast in 2000, which was mainly
attributed to mass occurrences of mostly juvenile
 bioturbators of the functional group B/SM such as
Echinocardium spp. Until the study period 2010−
2015, BPc on the East Frisian coast and the border
between the northern Oysterground and the Dogger
Bank increased, mainly caused by increased BPc of
the functional groups S/FT and U/FT, which include
mainly opportunistic tube-living species such as Pho -
ronis spp. and S. bombyx (Meyer et al. 2018). In the
permanently mixed areas on the North Frisian coast,
where phytoplankton PP and the Redfield ratio have
remained stable and high during the last decades
(Capuzzo et al. 2018, Sarker 2018), juvenile and
opportunistic tube-living species seemed to benefit

from the stable food supply, which is probably influ-
enced by the River Elbe and Danish waters. In areas
with likely low food supply in the northern Oyster-
ground, a low abundance of adult individuals of E.
cordatum with higher biomass led to a higher BPc.

If changes in food availability modify the structure
of macrofauna communities, and a functional group
is replaced by others, this might lead to stable BPc or
changing BPc in different study periods (Queirós
et al. 2015, Zhang et al. 2015). Indeed, our results
revealed significant changes in functional composi-
tion, probably caused by the decline in phytoplank-
ton PP, which in turn caused the regionally restricted
decline of main bioturbators.

Next to BPc, changes in food supply and increasing
SST can affect bioturbation depth, activity, and Db,
which are not reflected by the BPc (Queirós et al.
2015). The time periods used in the present study
enabled us to observe the response of functional trait
structure to long-term changes in food availability,
in contrast to changes in bioturbation depth, activity,
and Db that took place within a narrow time frame
after PP changes. Simultaneous to changes in BPc,
we expected changes in bioturbation activity and
depth in the study area. Temperature is a regulator of
metabolic rates (Brown et al. 2004). To save energy,
BPc can be limited in warm periods often in connec-
tion with low food availability (Maire et al. 2007),
although temporary high temperatures such as sea-
sonal changes and higher summer SST might lead to
higher BPc intensity. In contrast, a lower food avail-
ability may lead to increased bioturbation activity, to
ensure the intake and preservation of organic car-
bon. However, both parameters cannot be measured
using only a theoretical approach.

4.4.  Effects of bottom trawl fishing effort on the
long-term variability of BPc and trait-based

 community structure

Bottom trawl fishing effort has multilayered effects
on target and non-target fish species as well as on
benthic communities (Callaway et al. 2007, Hinz et
al. 2009, Reiss et al. 2009). Fishing pressure is high
throughout the study area, with the highest effort
along the East Frisian coast and in the south-western
parts of the Oysterground, although ongoing fishery
management has ensured a slight reduction in bot-
tom trawl fishing effort (OSPAR 2000). Despite the
ongoing high fishing pressure, several studies have
reported increasing abundance of fish larvae and
higher abundances of small fishes during the last
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decades (Edwards et al. 2001, Hiddink & Ter Hof -
stede 2008), which has increased the predation pres-
sure on benthic species. However, in the south-east-
ern NS, a high impact of natural factors such as
pelagic PP are spatially correlated with fishing pres-
sure (van Denderen et al. 2014, Neumann et al.
2016), so it is hard to disentangle both. On the one
hand, a relation between increasing fishing pressure
and predation of macrofauna by small non-target
species, simultaneously with decreasing phytoplank-
ton PP, were found as drivers for a decline in macro-
fauna abundance and biomass (Meyer et al. 2018).
This decline can affect benthic prey species, and thus
could accelerate a decline in BPc. On the other hand,
the seabed is affected by mechanical disturbance
(Reiss et al. 2009). Thus, we expected increasing BPc
of functional groups with high mobility, such as
U/FM or R/FM. However, along with the significant
increase in BPc since 1986, trait-based community
structure has remained nearly stable, except for an
increase in traits S/FT and U/FT within the CW com-
munity. This stable trait-based community structure
seems to benefit from the relatively frequent and
intermediate disturbance through fishing effort, which
appears to have neither a positive nor a pronounced
negative effect (Connell 1978, Dial & Roughgarden
1998).

5.  CONCLUSIONS

As expected, we found a stable trait diversity and
a stable spatial extent of 3 trait-based communities
in the south-eastern NS since 1986 related to sedi-
ment, depth, and depth-related tidal parameters.
Except for a significant drop in BPc in the central
and northern Oysterground, a steady increase in
BPc across the south-eastern NS was found. Never-
theless, within each of the trait-based communities,
we found significant changes in dominance of func-
tional groups, caused by decreasing food availability
due to decreasing phytoplankton PP and increasing
SST, which seemed to be compensated by a fre-
quent and intermediate disturbance through fishing
effort.
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