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Fig. 9. Heat maps representing calling intensity scores of spotted seatrout Cynoscion nebulosus at Stns (A) 9M; (B) 14M; and

(C) 37M. Time is shown between noon and noon of the next day (EST: Eastern Standard Time). Dark and white circles corre-

spond to new and full moon, respectively. Two gaps in data (23 May—-4 June and 16-29 August 2014) correspond to breaks
between deployments due to maintenance of equipment
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Fig. 10. Seasonal and spatial patterns of bottlenose dolphin Tursiops truncatus vocalizations in the May River. Sum of echoloca-
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Fig. 11. Seasonal and spatial patterns of boat noise in the May River. Total number of boats detected per day at Stns (A) 4M; (B)
9IMV; (C) 14M; (D) 37M with corresponding water temperature (red line). Two gaps in data (23 May—-4 June and 16-29 August
2014) correspond to breaks between deployments due to maintenance of equipment
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and much higher at deeper locations towards the
mouth. These sound pressure levels varied over sea-
sonal, monthly, lunar, daily, and tidal scales. The
most striking patterns were the oscillating peaks in
low frequency SPLs driven by spotted seatrout cho-
rusing that followed a circadian and lunar phase
rhythm in calling, as well as the diagonal peaks in
high frequency SPLs driven by snapping shrimp
snaps that followed the tide. Understanding these
patterns of biological sounds is an absolute necessity
in order to determine how organisms use acoustic
cues for larval settlement and recruitment, and how
soundscapes may respond to noise pollution, degra-
dation in habitat quality, and climate change.

4.1. Spatial patterns in sound pressure levels and
biological sounds

In many studies, high frequency SPLs are consid-
ered to be a close representative of snapping shrimp
acoustic activity (Lillis et al. 2014b, Staaterman et al.
2014, Ricci et al. 2016). Our study, however, showed
that this correlation was weaker than expected, with
high frequency SPLs reaching an asymptote despite
a continued increase in snap rate. Signal detectors
for snapping shrimp calls have been used in the past,
and our observations confirm that this quantitative
method is more accurate in investigating patterns of
acoustic activity (Radford et al. 2008, Bohnenstiehl et
al. 2016). We found differences in snap rates among
stations, with the highest amount of snaps detected at
Stn 14M and the least at Stn 4M. At Stn 14M, the
recorder was situated close to a small island that was
surrounded by mud banks and oyster reefs, while
Stn 4M was located at the shallow headwaters with
minimal oyster reefs present. Studies have shown
that snapping shrimp are typically found in waters
less than 55 m deep and are associated with struc-
tures like oysters, rocks, and corals that provide
interstices in which shrimp thrive (Everest et al. 1948,
Lillis et al. 2014b, Butler et al. 2016). Studies con-
ducted in Pamlico Sound, NC revealed that oyster
reef habitats display more snapping shrimp calls
than soft bottom habitats (Lillis et al. 2014a, 2018).

We also observed similar spatial patterns in fish
and bottlenose dolphin sound production with the
headwaters having lower abundance in fish calling
and dolphin vocalizations than the mouth of the May
River. These findings are consistent with previous
fish acoustics work conducted in this area, which col-
lectively provides evidence of persistent spatial pat-
terns in fish courtship sounds that are present year

after year (Montie et al. 2015, Monczak et al. 2017).
Of the 5 fish species recorded, 4 belonged to Sci-
aenidae, a family of fish that is considered a primary
diet of bottlenose dolphins in the southeastern USA
(Gannon & Waples 2004, Pate & McFee 2012). Thus,
the higher echolocation abundance at the mouth of
the May River may be associated with the higher
amount and diversity of fish calls at this location.

The spatial differences in species contribution to
the soundscape among the various stations may be a
representation of habitat quality. The headwaters of
the May River experiences larger fluctuations in tem-
perature, salinity, pH, and dissolved oxygen than
locations further towards the mouth. These fluctua-
tions in environmental parameters are more chal-
lenging for marine organisms and may explain why
we detect fewer snapping shrimp snaps, fish calls,
and bottlenose dolphin vocalizations in the head-
waters (Lenihan & Peterson 1998, Tolley et al. 2006).
An alternative explanation may be that the head-
waters are lower in volume than locations further
downriver. The widening and deepening of the tidal
river estuary downriver increases the acoustic space,
which allows the recorders to detect more snaps, fish
calls, and dolphin vocalizations.

4.2. Processes underlying temporal patterns of
sound in the May River estuary

4.2.1. Seasonal changes

High frequency SPLs varied with seasons, ranging
from ~80 dB re 1 pPa in the winter to ~130 dB in the
summer. These sound level patterns followed the
warming and cooling patterns of the estuary and
were similar to patterns described in the West Bay
Marine Reserve estuary (WBMR), North Carolina
(Bohnenstiehl et al. 2016). Seasonal patterns of snap
rates were also similar to the findings from the
WBMR (Bohnenstiehl et al. 2016). In the present
study, the highest number of snaps increased in the
spring and summer (i.e. April to September), as water
temperature and hours of daylight increased. As the
fall (i.e. October to November) approached, the num-
ber of snaps decreased, following decreasing hours
of daylight and the cooling patterns of the estuary.

These data also provide details on temporal pat-
terns of sound production for a community of sonifer-
ous fishes that were similar to the patterns observed
previously in this area (Monczak et al. 2017). The
calling season of black drum was observed between
February and March, silver perch between February
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and June, oyster toadfish between February and June
with some calling to November, spotted seatrout be-
tween May and September, and red drum between
September and October (Montie et al. 2015, Monczak
et al. 2017). Of the 5 soniferous fish species detected
in the May River, spotted seatrout chorusing con-
tributed most significantly to the oscillating pattern of
low frequency sound levels. The repeated patterns
from one year to the next (i.e. 2013 and 2014) show
that passive acoustic monitoring could be used to
track annual changes in fish courtship sounds.

At the mouth of the May River (i.e. Stn 37M), we
detected peaks in dolphin vocalizations in the early
spring and fall, which were most likely associated
with higher abundance of bottlenose dolphins in that
area during that time. However, we did not observe
this seasonal pattern at other locations. Prior photo ID
studies within southeastern USA estuaries have de-
monstrated seasonal immigration and emigration of
dolphins, as well as the presence of resident and
transient animals (Gubbins 2002, Mattson et al. 2005,
Speakman et al. 2006). It is possible that the southern
migratory stock passes and feeds near the mouth of
the May River (i.e. Stn 37M) on their northward
spring migration to North Carolina between Febru-
ary and April and on their southward fall migration to
northern Florida between October and December
(Zolman 2002, Speakman et al. 2006). The presence
of residents and transients may increase the levels of
detected vocalizations at the mouth and not deeper
into the May River because of the higher diversity
and abundance of prey at the mouth as compared to
the headwaters (i.e. as suggested by the greater
diversity and the increased acoustic detections of fish
at Stn 37M).

4.2.2. Lunar phase

A few studies have observed differences in SPL
patterns that followed the astronomical lunar cycle
(Radford et al. 2008, Staaterman et al. 2014). Our
findings support these observations, suggesting that
the lunar phase significantly influences biological
sound levels in an estuary. The lunar cycle was a sig-
nificant factor that influenced the acoustic activity of
snapping shrimp, with more snaps detected during
the new moon. These findings are different from the
results previously reported in estuaries of North Car-
olina, USA (i.e. Middle Marsh within the RCERR) by
Ricci et al. (2016), who observed no significant differ-
ence in the high frequency SPLs among the different
lunar phases. Our findings do align with research

conducted on coral reefs in northeastern New Zea-
land and the Florida Keys, where the number of
snaps were higher on the new moon (Radford et al.
2008, Butler et al. 2016). The same studies reported
higher number of snaps during nighttime suggesting
a correlation between the amount of light and snap-
ping activity. This correlation might explain why
snap rates were highest during the new moon, when
light from the moon is minimal. Both the May River
and the RCERR have higher turbidity than coral reef
systems and this difference in lunar phase effect (i.e.
May River vs. RCERR) on snap rates is surprising and
might suggest an interaction between lunar phase
and tide (see discussion below).

The lunar phase significantly influenced calling in-
tensity of oyster toadfish and spotted seatrout. We
recorded longer calling episodes of oyster toadfish
around the new moon and first quarter in comparison
to the full moon and last quarter of the lunar phase.
Longer chorusing episodes of spotted seatrout with
earlier start times occurred on the first and last
quarter phases as reported by Monczak et al. (2017).
These persistent patterns in sound production are im-
portant and may indicate preferable times of spawn-
ing (McMichael & Peter 1989, Saucier & Baltz 1993).

4.2.3. Tidal phase

We recorded differences in high and low frequency
SPLs over the tidal cycle with higher levels occurring
on the low tide. Snap rates followed the same tidal
pattern. In addition, the highest snap rate was de-
tected on the low tide during the new moon when the
average tidal ranges are larger. These findings differ
from the studies conducted on oyster reefs in the
RCERR that recorded no significant differences in
high frequency SPL throughout a tidal cycle (Ricci et
al. 2016). Ecological and tidal differences exist be-
tween our study site and RCERR, which may explain
the different patterns. First, the recorders in the May
River were located at deeper depths (0.5 to 9.9 m)
than the recorders at the RCERR (0.1 to 1.5 m). Sec-
ondly, the May River is influenced by larger semidi-
urnal tides (2.5 to 3.1 m) as compared to the RCERR
tides (1.0 to 1.5 m). Lastly, in the May River, the
oyster reefs are intertidal, while in the RCERR, the
oyster reefs are subtidal (Eggleston et al. 1999, Ricci
et al. 2016). These tidal and ecological differences
may explain the discrepancy in the lunar and tidal ef-
fects on these 2 estuarine soundscapes.

Due to the large tidal range in the southern portion
of South Carolina, as the water drains during the low
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tide, many of the intertidal creeks and marsh grasses
are not accessible to marine animals, forcing them to
retreat into the deeper portion of the river and closer
to our recorders. This temporal pattern most likely
explains why we detect higher numbers of snap
rates, louder chorusing of spotted seatrout (i.e. as
measured by low frequency SPLs), and increased
acoustic presence of bottlenose dolphins on the low
tide. The higher snap rates on the low tide could re-
flect increased foraging behavior of snapping shrimp
(i.e. through detection of snaps) when small prey are
forced out of the marsh grass into the deeper parts of
the river (MacGinitie 1937, Hazlett & Winn 1962).
Fish chorusing and spawning, particularly spotted
seatrout, might also be associated with the tide, with
individuals seeking prey in the marsh grass at high
tide and then moving into the deeper open water to
spawn at low tides (i.e. during the evening and
night). In this way, the tide affects predator-prey
interactions and may make it more efficient for
bottlenose dolphin to forage actively on the low tide
(i.e. as detected by increased echolocation rates) as
opposed to the high tide when prey can easily dis-
perse into the marsh grass (Hoese 1971).

4.2.4. Circadian rhythms

Interestingly, we detected daily fluctuations in high
and low frequency SPLs that varied seasonally.
Sound pressure levels peaked during the night in the
summer, while levels peaked during the day in the
winter. In the RCERR during the summer, sound lev-
els in the low and high frequency bands were also
higher at night (Ricci et al. 2016). Snap rates exhib-
ited similar patterns to high frequency SPL and were
elevated during the day in the winter, spring, and fall
and during the night in the summer. The shifts
between diurnal and nocturnal snapping activity
occurred in June (diurnal to nocturnal) and Novem-
ber (nocturnal to diurnal). These findings confirm the
circadian patterns of snapping shrimp acoustic activ-
ity first reported by Bohnenstiehl et al. (2016) in the
WBMR. The reasoning for this shift is still not clear
and could be driven by changes in water tempera-
ture, species composition, behavior, and/or foraging
activity (Bohnenstiehl et al. 2016). Similar to studies
conducted previously in the May River and in the
RCERR, sciaenids were more active in the late after-
noon and evening, elevating low frequency SPLs in
the spring and summer shortly before sunset and into
the evening (Montie et al. 2015, Ricci et al. 2016,
Monczak et al. 2017).

4.3. Monitoring the health of an estuary through
soundscape analysis

The spatial and temporal patterns in the sound-
scape of the May River illustrate the importance of
this estuary as essential habitat for snapping shrimp,
fish, and bottlenose dolphins. In the headwaters of
the May River, there are minimal to no oyster reefs,
less snapping shrimp snaps, no fish chorusing (which
most likely indicates no spawning of sciaenids and
oyster toadfish), and few dolphin vocalizations (which
most likely indicates minimal presence and minimal
foraging). As mentioned previously, this part of the
river is shallower and experiences higher fluctua-
tions in environmental parameters; therefore, it may
not be suitable habitat for key ecosystem processes.
In addition, due to increases in development, these
volume sensitive headwaters have experienced a
greater deterioration in water quality as compared to
locations further towards the mouth (Van Dolah et al.
2008).

In this study, we showed that soundscape ecology
is a powerful, noninvasive tool that can be used to
investigate acoustic behavior and complex inter-
actions between multiple trophic levels, from inver-
tebrates to apex predators. Many behaviors in the
estuary (e.g. foraging, socializing, defense, mating,
and spawning) depend on acoustic communication.
Recording underwater sounds allowed us to hone in
on key behaviors at much finer temporal scales,
which is not possible with traditional monitoring
techniques. In this case, it allowed us to detect dis-
tinct temporal patterns in snapping shrimp acoustics,
fish courtship, and foraging and communication pat-
terns of bottlenose dolphins. These are key behaviors
of marine organisms that can help with gauging the
health of estuaries.
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