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1.  ETHICS OF MONITORING

Ethics deal with the moral principles that govern
human behaviour in general or the conduct of a spe-
cific activity. Concerning marine living re sources,
ethics have been discussed in the scientific literature
primarily with respect to  wild-capture fisheries (Lam
& Pitcher 2012). A central issue of fishery ethics is fish
welfare (Evans 2009, Metcalfe 2009, Diggles et al.
2011) as well as the social and wider ecosystem wel-
fare (Lam & Pitcher 2012). A much debated question
in this context is whether or not fish can feel pain
(Braith waite 2010, Rose et al. 2014). The answer to
this question determines acceptable human behaviour
in particular from a consequentialist ethical point of
view (consequentialism argues that the moral value of
an action derives entirely from the value of its out-
come). A discussion of ethics with respect to fisheries
monitoring has not yet taken place.

Monitoring of living marine resources is an integral
part of sustainable fisheries and ecosystem-based man -
agement. While the biodiversity, biomass extraction
and sea floor impacts of many monitoring methods
are, arguably, relatively minor compared to commer-
cial fisheries, we need to consider whether the poten-
tial impacts are justified and unavoidable. We fully
agree with Costello et al. (2016, p. 268) that ‘scientific
methods should minimise disturbance and stress to
biodiversity, and any impacts should be explicitly jus-
tified’. Thus while from a consequentialist ethical
point of view the ends, i.e. fisheries management and
assessment of how environmental change impacts
marine shelf communities, might justify the means,
i.e. trawl surveys, we argue that we should reduce
monitoring impacts, if we can, without compromising
the aims. The issue becomes acute if we acknowledge
intrinsic rights (wellbeing, autonomy, justice) for all
living beings, including animals.
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2.  MONITORING METHODS: 
TRAWLING AND ALTERNATIVES

Regular, large-scale scientific bottom trawl surveys
underpin both stock assessments and the monitoring
of the effects of fishing and environmental change on
marine shelf communities worldwide (Fig. 1). Simi-
larly, many acoustic surveys use midwater trawling
for species identification and size measurements.
While certain species can survive hauling on board
and subsequent return to the sea, many do not sur-
vive this treatment. In addition to killing many indi-
viduals, scientific trawling has a number of other po -
tentially negative impacts on the marine ecosystem
(Table 1). Realised impacts will, of course, depend on
the actual survey protocol.

Recent scientific and technological progress has
provided methods and tools which might help to
make marine monitoring less harmful by reducing
the need for bottom and mid-water trawling or pro-
viding ways for modifying trawling protocols. Below
we review some of these alternative methods and
practices and highlight areas requiring further re -
search, but do not consider costs.

Visual methods are non-lethal and generally do not
damage the habitat (see review by Mallet & Pelletier

2014). They have proven useful for monitoring areas
with high population densities such as coral reefs,
mussel beds and Nephrops norvegicus burrows, or
habitats with sufficiently clear water. Recently, visual
methods have been successfully applied to monitor
midwater pelagic fish (Boldt et al. 2018). In shallow
waters, videos obtained from drones (unmanned
 aerial vehicles) have been used (Kiszka et al. 2016).
Aerial surveys are routinely used to count juvenile
Atlantic bluefin tuna (Bauer et al. 2015). However,
visual methods suffer from drawbacks compared to
trawl sampling, including lower taxonomic resolu-
tion, restriction to clear water and small sampling
volume, which makes the methods best suited for
sessile species or those with limited mobility, highly
dense species and relatively small survey areas
(Table 1). Recent progress applying automatic image
analysis for counting and classifying fish species
using deep learning techniques shows promise for
the increased, routine use of visual methods as auto-
matic analysis overcomes time-consuming manual
video analysis (Siddiqui et al. 2018).

Fisheries acoustics offer the advantage of sampling
a relatively large volume of water while generally re-
quiring a relatively modest amount of fish sampling to
ground truth species composition and fish length, and
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Fig. 1. Overview of locations and intensity of major regular ongoing scientific marine bottom trawl surveys for fisheries man-
agement. Yellow bubble diameter is proportional to the mean number of annual trawl stations (for details see Table S1 in the
Supplement at www. int-res. com/ articles/ suppl/ m609 p277_ supp. xlsx). Brown shading identifies coastline and areas of these
surveys instead of actual survey areas. Green shading identifies coastline and areas of other trawl surveys, stopped, discontin-
ued or data unavailable. The map background represents the world bathymetry extract from Etopo1 (Amante & Eakins 2009)

http://www.int-res.com/articles/suppl/m609p277_supp.xlsx
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no sampling for deriving a suite
of ecosystem indicators (Trenkel
et al. 2011). However, fisheries
acoustics are  often limited to the
pelagic realm as they still perform
poorly in de tecting fish close to the
sea floor. Species identification us-
ing only acoustic data without
trawling has been the focus of re-
search for many decades (Horne
2000). Recent advances in acoustic
methodology, in particular broad-
band techniques, are expected to
allow some level of species discrim-
ination without the need for trawl
sampling but are unlikely to re-
place identification hauls for spe-
cies which are acoustically identical
(Bassett et al. 2018). Thus further
research and de velopment are
needed before routine acoustic sur-
veys can circumvent identification
hauls (Table 1).

Other alternative, non-lethal
methods have been developed
to monitor marine species, but
these are not yet routinely used.
For example, open-cod-end trawls
equipped with video systems show
promise for counting and measur-
ing the size of mobile species (e.g.
DeCelles et al. 2017). However,
fine taxonomical determination of
individuals on images and videos is
not always possible due low system
resolution or the orientation of
 animals in video images. For some
species, the specific morphological
details needed for precise identifi-
cation are not visible. Thus, even
though there are restrictions on the
taxonomic resolution that can be
achieved, existing video-trawl sys-
tems effectively sample mobile in-
dividuals in the water column as
well as near the sea floor. Hence
open-cod-end trawls provide an
operational alternative to bottom or
midwater trawling for many mobile
species (Table 1).

For some rarer species where
bottom trawl data are used (de spite
many short comings) for providing
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management advice (e.g. elasmobranch species in
European waters), environmental DNA (eDNA)-
based methods analysing water samples or sediments
might be useful (Kelly et al. 2014). Recent applica-
tions of eDNA in aquatic habitats have confirmed the
usefulness of this technique for determining species
richness (Andruszkiewicz et al. 2017) including its
seasonal variation (Sigsgaard et al. 2017), and for
obtaining abundance proxies (Thomsen et al. 2016,
Klobucar et al. 2017). There are many methodologi-
cal pitfalls and challenges for eDNA related to sam-
pling (contamination between samples), biomolecu-
lar analyses and bioinformatics (species resolution,
genotyping errors, inhibition) and temporal and spa-
tial scales (persistence and transport of DNA). How-
ever, the field is rapidly advancing, and many issues
will continue to be resolved, paving the way for
eDNA to replace trawling in certain cases (Table 1).
Similarly, DNA barcode analysis is a non-impacting
method for estimating diet diversity from faeces
(Guillerault et al. 2017).

As an alternative to abundance estimation based
on counting animals (trawling, video, etc.), mark−
recapture-based methods, notably the recently de -
veloped close-kin mark−recapture method using
genetic-based identification of related individuals,
are promising alternatives for certain commercial
species such as sharks, rays or tunas which can be
sampled efficiently (Bravington et al. 2016a). The
required sample size is proportional to 122N, where N
is the number of adult individuals (Bravington et al.
2016b). Hence the feasibility of the method depends
on sampling and genotyping costs. For this method,
tissue samples can be collected on-board fishing ves-
sels, or at fish auction markets, avoiding additional
mortality through monitoring. In the future, the sex of
individuals might also be determinable with appro-
priate DNA markers. The research needed for mak-
ing close-kin mark−recapture a viable routine moni-
toring method concerns primarily the development
of species-specific genetic markers, e.g. single-
nucleotide polymorphisms (SNPs), and, depending
on tissue sampling methods, ways to determine sex,
maturity and age (Table 1).

In many cases, dissecting individuals is the only
feasible method for determining sex and maturity
and, in these instances, non-lethal alternative meth-
ods are direly needed. Maturity and sex determina-
tion of these species based on blood sample analysis
as currently applied to aquaculture and species of
conservation concern (Mendoza et al. 2012) might be
an option. DNA analysis might also provide indica-
tions of animal age, although to date this has only

been tested for zebrafish (see review by De Paoli-
Iseppi et al. 2017). Applying such methods would
be a real step towards reducing trawl monitoring
impacts, namely for species of conservation concern
such as elasmobranchs or for other species which can
be released alive. Obviously, such an approach will
do nothing for trawled or otherwise sampled individ-
uals arriving dead or dying rapidly on board. To be
useable in a monitoring context where many individ-
uals might be sampled, inexpensive and rapid test
kits will need to be developed.

3.  REDUCING TRAWLING IMPACTS

To avoid disrupting long trawl survey time series
by a change in observation method, improvements in
survey design and deployment might exist which
could reduce impacts (Table 1). The number of sam-
pling stations (Fig. 1) and swept area/volume per sta-
tion directly determine the catch volume, hence the
potential impact. Higher catch volumes can increase
fish injury and subsequent mortality (Veldhuizen
et al. 2018). Optimising survey design to reduce
the number of hauls or trawl duration are potential
options, but before implementing any changes, it
would be wise to evaluate potential side effects.
Reducing haul duration entails the risk of reducing
species richness as well as modifying sampled length
and density estimates (Moriarty et al. 2018). The
importance of the so called ‘end effect’ (Battaglia et
al. 2006) consisting of individuals caught during
shooting and hauling will also be larger in shorter
hauls, while the potential for trawl clogging will be
reduced. Implementing handling methods that in -
crease survival, such as keeping protected or fragile
species in water while on board, should become stan-
dard practice on all surveys.

Reducing habitat impacts of scientific trawling is
another challenge. The physical impact of bottom
trawls depends on the weight and structure of the
trawl doors, as well as the use of chains, bobbins and
other rigging (Moran & Stephenson 2000). The
development of scientific trawl gear can benefit from
recent advances of commercial fishing gear (see
review by McHugh et al. 2017), as well as alternative
catching devices (Table 1). Furthermore, the use of a
cod-end closure system could ensure sampling only
the intended depth layer instead of the entire water
column, limiting the spatial scope of the impact while
also improving the precision of the collected data.

Gear drag impacts fuel consumption (McHugh et
al. 2017), hence the carbon footprint, of scientific
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monitoring. Overall, there is likely room for reducing
the carbon footprint by restructuring survey vessel
fleets. This might be achievable by replacing rela-
tively large multi-disciplinary vessels with a combi-
nation of smaller energy-efficient vessels operating
in tandem with autonomous platforms and remote
sensing. For example, information on school densi-
ties and distributions in the upper layers of the ocean
could be collected by airborne lidar (Churnside et al.
2011) or drones (Schaub et al. 2018). Optimal ways
for combining several monitoring platforms requires
further exploration.

Remains from fishing gears contribute significantly
to the plastic pollution of the worlds’ oceans (Eriksen
et al. 2014). To minimise the contribution of monitor-
ing gear to this pollution, the use of robust gear, less
prone to releasing plastic material into the environ-
ment, or, alternatively, the use of biodegradable gear
materiel is an area requiring research, with commer-
cial gear developments already underway (Kim et al.
2016). For example, recently the cod-end protection
of the French survey bottom trawl was replaced by a
rubber mat to reduce fibre pollution (Fig. 2).

4.  CONCLUSION

Ethical considerations led us to comment on poten-
tial ways to reduce the impacts of scientific trawling
as a method for monitoring living marine resources.
As discussed here, this might require large changes,
such as replacing survey vessels and observation
technology (eDNA, open-cod-end video trawl etc.),
but also small, incremental modifications of current
practices (reduced trawl duration, biodegradable
gear material etc.). The developments made to re -

duce the impacts of marine monitoring can be
expected to yield solutions applicable to fisheries and
other marine activities. Lastly, without needing new
methods or any changes, including trawl survey
catches systematically in total fishing quotas as al -
ready done in some countries (e.g. snow crab in Can-
ada) would acknowledge the similarity of scientific
and commercial fishing from an ethical point of view.
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