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1. INTRODUCTION

Habitat complexity is central for fundamental and
applied ecology (reviewed by Kovalenko et al. 2012).
This concept becomes even more relevant in the con-
text of species conservation and the current scenario
of global change. For example, habitat destruction
can be an important element in predicting local ex -
tinction probabilities (Fahrig 1997, Brooks et al.
2002). Habitat modification is a major cause of ex -

tinction of reptiles (Gibbons et al. 2000), mammals
(Schipper et al. 2008), and invertebrates (Parker &
Mac Nally 2002, Richman et al. 2015). In coastal en -
vironments, the alteration of biogenic habitats can
have significant repercussions on the life history of
asso ciated species (Castro 1993, Jennings et al. 2008,
Chapman et al. 2009). Egg-laying behavior is a life
history trait that might well be sensitive to alterations
of habitat structure (e.g. see Sheaves et al. 2015).
Thus, understanding how variations in the structural
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complexity of biogenic habitats relate to the develop-
ment of associated populations is necessary for con-
servation and management decisions.

Habitat complexity consists of different structural
dimensions or attributes (Tokeshi & Arakaki 2012).
Thus, the study of habitat complexity should consider
different structural attributes (complexity per se) in -
stead of just the number of structural components
(known as ‘heterogeneity’; McCoy & Bell 1991). Con-
sequently, 5 interrelated attributes have been sug-
gested to characterize habitat complexity: (1) scale of
complexity, (2) diversity of complexity-generating
elements, (3) spatial arrangement of elements, (4)
size of elements, and (5) abundance/density of ele-
ments (Tokeshi & Arakaki 2012). Considering these
criteria will provide a more accurate view of how
scale-dependent habitat complexity is related to rel-
evant biological processes of natural populations.

Kelp forests constitute a structurally complex type
of habitat that supports the assemblage of highly di-
verse communities (Mann 1973, Graham 2004). Kelp
canopies provide (1) protection against mechanical
stress produced by waves and currents, (2) proximity
to a food supply, (3) improved physical conditions
(e.g. reduction in temperature variation), and (4)
lower predation risk and competitive exclusion,
among other resources (Parsons & Hoffmayer 2007,
Rosman et al. 2013). For example, some vertebrate
and invertebrate species use complex biogenic habi-
tats as nursery areas where early life stages develop
until maturity (Springer 1967, Boehlert & Mundy
1988, Gruber et al. 1988, Bustos et al.
2008, Knip et al. 2010, Almanza et al.
2012, Carrasco & Pérez-Matus 2016).
In oviparous species (e.g. sharks),
these areas are categorized as primary
and secondary nursery areas. Primary
nursery areas are those where females
give birth or lay their eggs, while the
secondary areas are those used later
by juveniles until maturity (Bass 1978).
Kelp forest architecture provides pri-
mary nursery grounds for many pe -
lagic and benthic organisms (reviewed
by Steneck et al. 2002). Moreover,
structural complexity of kelps can be
scale dependent, such that spatial pat-
terns of complexity that are evident at
certain levels of resolution can disap-
pear at others (e.g. Davenport et al.
1996, Tokeshi & Arakaki 2012). Yet,
our understanding of how kelp com-
plexity determines the way in which

associated species use these habitats is still limited
(Loher & Armstrong 2000, Kovalenko et al. 2012).

Along the south-central coast of Chile, the red-
spotted catshark Schroederichthys chilensis (Guiche -
not 1848) uses fronds and stipes of the subtidal kelp
Lessonia trabeculata Villouta & Santelices 1986 as
anchoring structures for egg-capsule deposition
(Miranda Brandt 1980, Fariña & Ojeda 1993, Hernán-
dez et al. 2005, Reyes & Hüne 2012). Primarily during
summer, red-spotted catsharks anchor their egg
 capsules to vertical structures using tendrils and fila-
ments of the ovisac (Fig. 1). Egg capsules are de -
posited in an early stage of development (i.e. ex -
tended oviparity; Wourms et al. 1988, Compagno
1990), followed by an incubation period of around
7 mo (Castro et al. 1988, Fariña & Ojeda 1993, Her -
nández et al. 2005, J. E. Trujillo pers. obs.). Accord-
ingly, complex vertical physical structures (e.g.
fronds and stipes) are likely fundamental as anchor-
ing sites and as protection for S. chilensis egg cap-
sules. Therefore, increased occurrences of egg cap-
sules in taller and thicker kelps, as well as in areas
with greater densities and plant aggregations, could
be predicted. In addition, the selection of appropriate
physical structures should result in better protection,
and thus increased temporal persistence of eggs (Pihl
& Van der Veer 1992).

In this study, we tested the hypothesis that the
structural complexity of kelp habitats is positively
related with the abundance and persistence of S.
chilensis egg capsules. Hence, we predicted that (1)
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Fig. 1. (A) Lessonia trabeculata. (B) Morphology of a 1 d old Schroederichthys
chilensis egg capsule (alive). FO: filaments of the ovisac. YS: yolk sac, T: ten-
drils. Egg capsules are ca. 5 cm length. (C) Close-up of kelp anchorage zone, 

showing attached egg capsules (arrows)
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the number of stipes, percentage cover, and maxi-
mum frond length will be important attributes
accounting for the distribution pattern of egg deposi-
tions, and (2) a positive and saturating relationship
between egg count and these attributes will be ob -
served. Both predictions were tested through an
observational study in which the number of egg cap-
sules of the red-spotted catshark was monitored for
1 yr and modeled as a function of multiple structural
attributes of L. trabeculata.

2. MATERIALS AND METHODS

2.1. Study sites and sampling design

This work was conducted at 2 sites along the coast
of south-central Chile, Huiro (39° 57’ 24’’ S, 73° 38’
33’’ W) and Morro Gonzalo (39° 51’ 8’’ S, 73° 27’ 51’’ W),
characterized by a maximum depth of 12 m and a
substratum consisting of boulders and large rocks.
Both sites contain Lessonia trabeculata forests of
around 500 m2. Previous observations (J. E. Trujillo
pers. obs.) demonstrated Schroederichthys chilensis
egg capsule deposition at both sites.

At each site, SCUBA divers permanently moored
mid-water buoys randomly distributed within the
same kelp forest. Within a 7 m2 area around each
buoy (hereafter referred to as ‘patches’), we marked
and identified every individual of L. trabeculata (ca.
5 plants patch−1) with plastic fasteners (Codiplas
CP2318). Patch size was kept constant across all
buoys.

2.2. Estimation of kelp structural variables and
catshark egg counts

Measures of structural complexity were quantified
at 2 observational scales (i.e. centimeter and meter
scales, respectively): (1) Individual-scale variables
were number of stipes (NE, from its Spanish abbrevi-
ation), plant height (maximum frond length, MFL),
and holdfast diameter (HD). (2) Patch-scale variables
were percentage cover (PC), density (ind. m−2, p) and
aggregation (mean distance to nearest neighbor, R;
see Fig. S1 in the Supplement at www.int-res.com/
articles/ suppl/ m610 p125_ supp. pdf). The aggregation
index R is a measure of spatial relationships, with
values ranging from 0 to 2.1491, where 0 means
 maximal possible aggregation of patches, 1 indicates
a random distribution, and 2.1491 shows uniformity
(Clark & Evans 1954). Therefore, the lowest values of

R would indicate higher structural complexity. Per-
centage cover (PC) was calculated as:

(1)

where Ai is the individual area occupied by alga i, n
is the number of algae in each patch and Ap is the
total area of the patch (ca. 7 m2; see Fig. S1B).

For each plant in each patch and site, we registered
the number of complete egg capsules. Decaying (e.g.
incomplete, empty) egg capsules were not counted in
order to exclude old egg capsules remaining from
previous months and years. The same observer
counted the egg capsules at every sampling time
with the aid of 2 divers who searched for egg cap-
sules. The 3 divers looked at the same kelp plant
simultaneously. To estimate development of egg cap-
sules, we used in situ ovoscopy with a diving flash-
light of 400 lumens (Underwater Kinetics SL4 eLED
L1). Egg capsules were classified according to
Hernández et al. (2005) as follows: Stage 1 egg cap-
sules comprised those in which we observed an oval
yolk sac attached to a small translucent embryo with
gill filaments (equivalent to stages I, II, III, and IV in
Hernández et al. 2005); in stage 2 egg capsules, the
embryo was no longer translucent, but gill filaments
were still present and the embryo adopted the final
morphology of development with an evident yolk sac
(equivalent to stage V); finally, stage 3 egg capsules
included a developed embryo without gill filaments
and small yolk sac, an embryo with its tail flexed
180°, or egg capsules with the anterior margin
opened (indicative of hatching, see Smith & Griffiths
1997). Recently laid egg capsules with embryos in
the first stages of development presented opaque
green coloration, whereas advanced stages were
dark brown (see Fig. S2). Egg capsules in marked L.
trabeculata were monitored every 2 to 3 mo from
austral fall to late spring of 2016 (i.e. April, June−
July, September−October, and November− December).
Egg capsule developmental stages were reassessed
during each survey.

2.3. Statistical analysis

Separate, independent models were computed for
each survey and for the individual and patch scales,
respectively. This was done to deal with the repeated
measures in our data, and to prevent analytical issues
derived from auto-correlation of errors. Total egg
count was analyzed as the response variable, and the
structural variables measured at each scale were

PC [( )/ ) 100
1

A Ai p
i

n

∑= ×
=
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the predictors. Appropriate error distribution (either
Poisson or negative binomial) was determined through
visual inspection of errors, distribution of residuals,
and likelihood ratio tests (Harrison et al. 2018). For
the individual scale, negative binomial models
showed a better fit than Poisson models (Table S1).
At the patch scale, Poisson models showed better
 distributions of residuals than negative binomial
models (Fig. S3). We assessed zero-inflation by visu-
ally inspecting errors and using model selection pro-
cedures (Zuur et al. 2009; see the explanation of
model selection in the next paragraph). The individ-
ual scale showed an excess of zeros in egg counts
while the patch scale did not (Fig. S4). Hence, zero-
inflated negative binomial models (ZINBs) showed a
better fit at the individual scale compared to a nega-
tive binomial generalized linear model (ZINB Akaike
weight [ωi] = 0.83; difference of Akaike’s information
criterion corrected for small sample sizes with the
best model [ΔΑICc] = 3.21). Zeros were modeled as
coming from 2 processes, the binomial (false zeros
vs. the rest of the data) and the negative binomial
(counts vs. true zeros). False zeros would occur
when an egg capsule was present, but the observer
did not count it (observer error; we adjusted our
 sampling design to minimize this issue, see above)
or when there is no egg capsule even though the
habitat is appropriate (Zuur et al. 2009). This feature
lets us model the probability of underestimating egg
counts (i.e. probability of measuring a false zero
over the rest of the data; binomial process), inde-
pendently of the total number of egg capsules per
plant (negative binomial process). Conversely, as
we considered there was no zero-inflation at the
patch scale, we used a generalized linear model
(GLM) with a Poisson distribution of errors to analyze
this scale of observation. We assessed goodness-of-fit
of all models by visually inspecting partial resid -
ual and residuals vs. fitted plots (Zuur et al. 2009).
Parameter estimation was done through maximum
likelihood. Partial-residual plots showed a perfect
fit between each variable and the partial residuals
in the individual-scale models (Fig. S5). Equally
spread residuals in the patch-scale residuals vs. fitted
plots indicated a small proportion of unexplained
patterns in the data after fitting the model (see
Fig. S3).

We used a second-order AICc to test the first pre-
diction, i.e. that the number of stipes, percentage
cover, and maximum frond length account for the
variation in egg count. The highest value of Akaike
weight (ωi) was used as a decision rule for selecting
between 2 competing models (Burnham & Anderson

2002, Wagenmakers & Farrell 2004, Burnham et al.
2011). Therefore, all variables included in the opti-
mal model were considered to be significant and as
evidence supporting our first prediction. Positive
coefficients from the final models were then consid-
ered as supporting evidence for a positive relation-
ship between egg count and the selected physical
attributes (second prediction).

All analyses were conducted in the R statistical
environment version 3.4.0 (R Core Team 2017). We
used ‘zeroinfl’ and ‘glm’ functions in ‘pscl’ and ‘stats’
R-packages (Zeileis et al. 2008), respectively, to com-
pute the statistical models. The ‘model.sel’ function
in the ‘MuMIn’ R-package was used for the model
selection process (Barton 2009).

3. RESULTS

The total egg counts were 341, 193, 160, and 93
units in fall, winter, early spring, and late spring,
respectively. We estimated that 90.03, 69.43, 38.10,
and 48.39% of these counts were new de po si -
tions (i.e. stage 1 egg capsules) in fall, winter, early
spring, and late spring, respectively. Therefore, the
highest oviposition activity of Schroederichthys
chilensis likely occurred during summer. New egg
depositions observed across the 4 sampling periods
agreed with previous records in central Chile (Fariña
& Ojeda 1993). Advanced stages of development (i.e.
stage 2 and stage 3 egg capsules) increased from fall
to early spring (indicative of temporal persistence)
but decreased in late spring (Fig. 2). Hence, most
hatches occurred during early spring (i.e. September−
October).

Each plant housed between 0 and 35 eggs (1.68 ±
5.55, mean ± SD) in Huiro and between 0 and 38 eggs
(5.35 ± 8.69) in Morro Gonzalo. In addition, we
observed no egg capsules outside Lessonia trabecu-
lata kelp forests (i.e. in Macrocystis pyrifera forests or
on rocks). At Huiro, the tallest fronds were on aver-
age 85.37 ± 24.17 cm in length, the average number
of stipes was 14.00 ± 8.31 units ind.−1, and holdfast
diameters were on average 26.90 ± 8.18 cm. At Morro
Gonzalo, these averages were 131.59 ± 31.76 cm,
8.85 ± 6.86 units ind.−1, and 30.82 ± 6.51 cm, respec-
tively. The kelp forest at Huiro had an average den-
sity of 0.48 ± 0.17 ind. m−2, an average aggregation of
0.71 ± 0.23, and an average percentage cover of
25.49 ± 13.78%. The Morro Gonzalo kelp forest had
the same density of 0.48 ± 0.12 ind. m−2

, but an aver-
age aggregation of 0.46 ± 0.20 and an average per-
centage cover of 58.15 ± 18.71%.
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3.1. Model selection

Selected models differed between the 4 sampling
periods at both scales of observation (i.e. individual
and patch scales). In general, the first 2 models had a
ΔΑIC lower than 2 points. However, ωi values were
high for the first models in the 4 sampling periods
(Table 1). Hence, selected models had a high proba-
bility of being the models with greater contribution of
information despite their low ΔΑIC. In the individual
scale, we observed that maximum frond length was
included in the optimal models consistently over 3
sampling periods (i.e. fall, winter, and early spring).
Holdfast diameter (HD) was included once (i.e. late
spring), but the number of stipes (NE) was dropped
from the models across the 4 sampling periods. At the
patch scale, percentage cover (PC) was included in
the optimal models estimated across the 4 sampling
periods. However, plant density (p) and aggregation
(R) were included 3 times—the former was selected
in the optimal models of fall, winter, and early spring,
and the latter in fall, early spring, and late spring
(Table 1).

3.2. Relationships between attributes of habitat
complexity and egg counts

Zero-inflated Poisson models showed that the prob -
ability of measuring a false zero decreased by 2, 4.4,
and 1.1% per cm of maximum frond length in fall,
winter, and early spring, respectively. Similarly, there
was a decrease of 9% per cm of holdfast diameter in
late spring. In general, the sub-estimation of S. chilen-
sis egg capsules decreased in relation with increas-
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Model df logLik AICc ΔΑICc ωi

Individual scale
Fall
MFL 5 −137.58 285.81 0.00 0.49
MFL + NE 7 −136.09 287.4 1.59 0.22
Null 3 −141.62 289.49 3.68 0.08

Winter
MFL 5 −90.2 191.61 0.00 0.28
MFL + NE 7 −87.67 191.67 0.06 0.27
HD + MFL + NE 9 −85.22 192.35 0.74 0.19

Early spring
MFL 5 −69.19 150.10 0.00 0.50
MFL + NE 7 −66.84 151.08 0.98 0.31
HD + MFL + NE 7 −67.96 153.31 3.21 0.10

Late spring
HD 5 −59.39 130.44 0.00 0.41
MFL 5 −59.92 131.5 1.06 0.22
Null 3 −62.9 132.42 2.00 0.15

Patch scale
Fall
PC + p + R 4 −175.06 360.79 0.00 0.52
PC + p 3 −177.28 362.07 1.28 0.28
PC 2 −179.28 363.27 2.48 0.15

Winter
PC + p 3 −102.82 213.64 0.00 0.50
PC + p + R 4 −101.08 213.80 0.16 0.46
PC 2 −107.13 219.17 5.53 0.03

Early spring
PC + p + R 4 −66.78 145.56 0.00 0.82
PC + R 3 −70.20 148.58 3.02 0.18
PC 2 −77.76 160.51 14.96 0.00

Late spring
PC + R 3 −89.32 187.04 0.00 0.58
PC 2 −91.78 188.64 1.61 0.26
PC + p + R 4 −89.06 190.57 3.53 0.10

Table 1. Summary of model selection for 2 scales of observa-
tion (i.e. kelp individual and patch). Models are sorted ac-
cording to Akaike’s information criterion corrected for small
samples (AICc). The degrees of freedom (df), log-likelihood
function  (logLik), the difference of AICc with the best model
(ΔΑICc), and Akaike weights (ωi) are included for each model.
EC: egg capsule counts, MFL: maximum frond length, NE:
number of stipes, HD: holdfast diameter, PC: percentage 

cover, p: density, R: aggregation

Fig. 2. Mean counts of Schroederichthys chilensis egg cap-
sules for each developmental stage during 1 yr of monitoring
(2016). Bars represent 95% confidence intervals obtained by
bootstrapping. Stage 1: recently spawned egg capsules,
light green in color and very small embryo; Stage 2: small
translucent embryo, egg capsules dark brown in color; Stage
3: well developed embryo with small yolk sac and empty
egg capsules with anterior margin opened (indicative of 

successful hatching)
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ing values of the structural attributes of L. trabecu-
lata (see Fig. S6).

According to the zero-inflated models with Poisson
distribution, the number of egg capsules increased
by 1.2, 0.03, and 2% per cm of frond length in fall,
winter, and early spring, respectively (Fig. 2). On the
other hand, the number of egg depositions increased
by 19% per cm of holdfast diameter in late spring.
The relationships between egg count and individual-
scale physical attributes were positive and linear dur-
ing winter, but non-linear during fall, early spring,
and late spring (Fig. 3).

At the patch scale, we observed an increase in the
number of egg capsules by 2, 2.8, 2.5, and 1% per

unit of percentage cover in fall, winter, early spring,
and late spring, respectively. The number of eggs
increased by 342, 357, and 725% per unit of density
in fall, winter, and early spring, respectively. Egg
counts also increased per unit of aggregation by 44,
86, and 65% in fall, early spring, and late spring,
respectively (Fig. 4).

4. DISCUSSION

In this work, we determined positive relationships
between multiple components of kelp-forest habitat
complexity and the abundance of egg capsules of
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the red-spotted catshark at 2 sites in southern-cen-
tral Chile. Predictions of egg counts were consistent
over 4 sampling periods during 2016 (i.e. fall, win-
ter, early spring, and late spring). Specifically, the
models that included maximum frond length and
percentage cover consistently showed the best bal-
ance between fit and complexity (Burnham &
Anderson 2002), hinting at a significant effect of
these variables on egg count. The other variables,
i.e. holdfast diameter, density, and aggregation,

were included in the models on one or two occa-
sions, which implied a temporally variable contri-
bution of information to the models. In general,
our analyses showed a greater number of egg cap-
sules in kelp forests with higher values of meas-
ured attributes. Hence, attributes of kelp forests’
structural complexity (e.g. frond length), at indi-
vidual and patch scales, are of fundamental impor-
tance as a primary nursery ground for Schroed-
erichthys chilensis.
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4.1. Structural complexity: mechanisms involved 
in the use of kelps for oviposition by red-spotted

catsharks

The number of egg capsules of the red-spotted cat-
shark had a positive (but weak) relationship with kelp
frond length. Subtidal forests of Lessonia trabeculata
provide a 3-dimensional habitat (Villegas et al. 2008),
increasing substratum vertical dimension in the sense
of maximum frond length. The female  catshark circles
around vertical structures to anchor the tendrils of the
egg capsule (e.g. see Castro et al. 1988). This anchor-
ing technique may help to pull the egg capsules out of
the uterus. In contrast, laying the egg capsules on a
horizontal surface requires sudden movements and
contractions of the pelvic region to expel the capsules
(Luer & Gilbert 1985). In addition, an egg case hang-
ing vertically may experience in creased passive ven-
tilation, reducing the high metabolic cost of active
ventilation (i.e. continuous movements of embryos,
Tullis & Peterson 2000, Flammang et al. 2007). Con -
sequently, anchoring the egg capsules to a vertical
structure can have a high adaptive value in terms of
reproductive investment for the red-spotted catshark.

Besides reducing the energy costs, anchoring egg
capsules in taller kelps can decrease predation risk
by reducing the access of potential predators. In fact,
egg clusters were separated 36.2 ± 8.02 cm (mean ±
SD, n = 12) from the rocky bottom where a variety of
predators may be found. Moreover, predator avoid-
ance of eggs can be further enhanced by passive
ventilation (see above), as seen in other elasmo-
branchs (Sisneros et al. 1998, Kempster et al. 2013).
However, elasmobranch egg capsules are preyed on
by several species, including gastropods, echino-
derms, and elasmobranchs (Bor & Santos 2003, Luci-
fora & García 2004, Powter & Gladstone 2008, Hoff
2009). In addition, the majid crab Taliepus dentatus
(H. Milne Edwards 1834) could be a potential preda-
tor of S. chilensis eggs at the study sites (J. E. Trujillo
unpubl. data). Taliepus dentatus can climb the fronds
of L. trabeculata, and adults can be commonly seen
hanging from these subtidal kelps (J. E. Trujillo pers.
obs.). It is still necessary to determine more accu-
rately the predation pressure operating upon the red-
spotted catshark egg capsules. Nevertheless, the
results presented herein suggest that the vertical
dimension of kelp forests is an important characteris-
tic that reduces predation risk in this shark species.

Interestingly, there was also a positive relationship
between the holdfast diameter and the number of
eggs oviposited. The greater physical stability pro-
vided by larger holdfast diameter may facilitate

increased pulling force when entangling the cap-
sules. This could be provided by algae with broader
holdfasts (but see Friedland & Denny 1995, Milligan
& DeWreede 2000) and stiffer stipes (Villouta & San-
telices 1986), which may explain the higher occur-
rences of egg capsules in kelps with larger holdfasts
observed in our study. Moreover, shallow-water cur-
rents can be strong in the area in association with a
seasonal upwelling center located south of the sam-
pling sites (Letelier et al. 2009), which confers more
relevance to the physical stability of L. trabeculata
kelps. In contrast, Macrocystis pyrifera, which has
comparatively smaller holdfasts than L. trabeculata,
is not used by S. chilensis as an anchoring structure
(Dayton et al. 1984, Seymour et al. 1989, Hobday
2000), even though M. pyrifera provides an impor-
tant vertical dimension, and is significantly taller
than L. trabeculata (Kain 1982). A high stability of
anchoring structures will have long-term implica-
tions, since it guarantees the persistence of egg cap-
sules in a restricted area with adequate physical (e.g.
temperature and salinity; Ward-Paige et al. 2015)
and predator-sheltered conditions (Wharton & Mann
1981, Steele 1999, Hinojosa et al. 2015).

At the forest scale, kelps with high density and
 percentage cover will provide a greater number of
anchoring structures for the egg capsules of S. chi -
lensis, a species that forms aggregations nearshore
during oviposition (Miranda Brandt 1980). Egg cap-
sules are deposited in an early stage of development
(i.e. extended oviparity; Wourms et al. 1988, Com-
pagno 1990) and the incubation period is at least 7
mo before completing full development. During this
period, S. chilensis egg capsules undergo a tanning
process in contact with seawater (Krishnan 1959),
exhibiting similar colorations to kelps (see Fig. 1C
and Fig. S2). Therefore, kelp forests with high densi-
ties, percentage cover, and aggregations offer a suit-
able habitat to hide the egg capsules from visual
predators, as has been shown elsewhere (Nafus et al.
2015). In fact, we observed more egg capsules in an
advanced stage of development in the last sampling
periods (suggesting increased persistence) in patches
with high values of these attributes.

Despite the large amount of evidence suggesting
the importance of kelp forests, these ecosystems, and
their associated species, face a number of threats.
Worldwide, kelp deforestation can result from local
factors such as excessive herbivory by sea urchins,
coastline urbanization, or direct harvesting of canopies
(Steneck et al. 2002, Connell et al. 2008, Krumhansl et
al. 2016), and from global factors like the El Niño
Southern Oscillation (Fernández et al. 1999, Vásquez
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et al. 2008). According to this scenario, there is an evi-
dent need to  improve our ability to predict the ecolog-
ical consequences of the multiple stressors that threaten
kelp forests.

4.2. Kelp forests fulfill the role of nursery ground
for sharks

Early studies have recognized the use of certain
habitats for oviposition or parturition by a variety of
organisms, and most have assumed that protection of
early developmental stages was the primary determi-
nant in the selection of these habitats (e.g. Springer
1967, Bass 1978, Branstetter 1990). Nevertheless, the
majority of these studies fail to provide evidence that
such areas have a nursery role, which is problematic
when making conservation decisions about these
habitats (Heupel et al. 2007). Proximity to an appro-
priate food supply, physical conditions (e.g. tempera-
ture and salinity) that support individual growth and
development, and reduced biological interactions
(e.g. predation and competition) have been used as
criteria to classify an area as a nursery ground (sensu
Parsons & Hoffmayer 2007). Furthermore, Beck et al.
(2001) established that one should encounter greater
(1) densities, (2) growth, (3) survival of juveniles, and
(4) movement to adult habitats within a nursery
ground. In the case of S. chilensis, although the egg
capsule protects the embryo (Knight et al. 1996), the
fact that these capsules are vulnerable to predation
(e.g. Bor & Santos 2003) underscores the importance
of the oviposition habitat to ensure survival of the de-
veloping embryo. In this study, we highlighted the
adaptive value of various habitat physical attributes
(i.e. second criterion of Parsons & Hoffmayer 2007) in
determining the occurrence of a greater number of
egg capsules in general (i.e. first criterion of Beck et
al. 2001) and in determining the occurrences of egg
capsules in advanced stages of development (i.e. sec-
ond criterion of Beck et al. 2001). Thereby, forests of
the subtidal kelp L. trabeculata would be an important
refuge for the early stages of development of S.
chilensis, guaranteeing a contribution of juveniles to
the environment (i.e. hatched egg capsules). The evi-
dence presented here supports the idea of a nursery
role by complex kelp forests.

5. CONCLUSIONS

In summary, physical attributes of kelp that ac -
count for vertical anchoring structures and temporal

stability of red-spotted catshark egg capsules were
relevant elements of the structural complexity of
these foundation species. These attributes, and their
patterns of variation across spatial scales, would
therefore be key for the establishment of kelp forests
as nursery grounds of S. chilensis. Future manipula-
tive and observational studies are needed to deter-
mine the strength of predation pressure in relation to
the structural complexity of kelps. Besides identify-
ing L. trabeculata forests as important shark nursery
grounds, our results give practical nursery-value in -
formation to managers on how to protect these eco-
systems. Habitat complexity should therefore be in -
cluded in future models and criteria defining nursery
grounds, in order to improve our ability to manage
and conserve natural ecosystems facing multiple
anthropogenic threats.
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