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1.  INTRODUCTION

Atlantic salmon Salmo salar L. is an important spe-
cies in terms of wild, farmed and hatchery-reared
populations (Hindar et al. 2011). While the ecology of
the freshwater life cycle is well studied, the marine
phase is less understood (Webb et al. 2006). Despite
the reduction or closure of many marine fisheries,
Atlantic salmon populations in some areas have
exhibited declines in survival and growth in recent

decades, leading to a further reduction in stock
abundances (Hansen & Quinn 1998, Rikardsen &
Dempson 2011, Todd et al. 2011, Chaput 2012). Evi-
dence of a link between Atlantic salmon recruitment
and survival in the Northwest Atlantic with changes
in climate, particularly warmer ocean temperatures,
has been demonstrated (Friedland & Reddin 2000,
Friedland et al. 2003, 2005). An indirect effect of cli-
mate change on Atlantic salmon survival via associ-
ated changes to the prey items on which they feed
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has also been suggested (e.g. Dempson et al. 2010,
Todd et al. 2011, Mills et al. 2013). For example,
Beaugrand & Reid (2003, 2012) demonstrated a cor-
relation between changes in the plankton commu-
nity and the abundance of European Atlantic salmon,
while Todd et al. (2008, 2011, 2012) suggested links
between climate-driven changes in the Northeast
Atlantic pelagic food web and the poor condition of
returning European Atlantic salmon.

North American Atlantic salmon differ from Euro-
pean Atlantic salmon in the specifics of their marine
ecology, including feeding and migration phenolo-
gies (e.g. Dempson et al. 2010, Rikardsen & Dempson
2011, Friedland et al. 2014). Atlantic salmon from
both continents that are destined to return as multi-
sea-winter fish migrate to, and feed along the coast
of West Greenland in late summer (Reddin & Short
1991, Friedland et al. 1993, Reddin & Friedland
1999). Despite the importance of this area, the
trophic ecology of Atlantic salmon feeding here is not
well studied. Most of the Atlantic salmon feeding
studies in the Northwest Atlantic were performed in
the 1960s and 1970s (Templeman 1967, 1968, Lear
1972, 1980), although several recent investigations
have suggested shifts in the use of prey (Renkawitz
et al. 2015, Dixon et al. 2017). Over the past 50 yr, a
number of climate-induced events have affected the
marine food web (Beaugrand & Reid 2012). Of partic-
ular importance to Atlantic salmon are the environ-
mental changes linked with reductions and alter-
ations in the distribution of capelin Mallotus villosus
(Bundy et al. 2009, Dwyer et al. 2010, Buren et al.
2014), previously found to be an important prey item
for Atlantic salmon on the West Greenland coast
(Lear 1972, 1980).

Atlantic salmon demonstrate opportunistic feeding
in marine and freshwater environments (Lear 1972,
Jacobsen & Hansen 2001, Dixon et al. 2012, 2017). As
such, Atlantic salmon diet will vary according to prey
availability and habitat. Along the coast of West
Greenland, habitat is variable in terms of bathymetry
and physical oceanographic conditions, with Atlantic
salmon found in both inshore and offshore areas
(Lear 1972, 1980, Renkawitz et al. 2015). Offshore on
the continental shelf and in the Davis Strait, water
masses dictate the local physical oceanographic con-
ditions (particularly temperature and salinity), and,
alongside bathymetric features, such as the Fylla
Bank, can affect the distribution of species inhabiting
or migrating along the coast (Mortensen et al. 2011,
Ribergaard 2011, Swalethorp et al. 2015). Inshore
areas are shallower (typically <100 m) and consist of
a number of large fjords, the ecosystems of which are

influenced by strong tides, glacial meltwater and the
input of different oceanic water masses at the sills to
fjord entrances (Mortensen et al. 2011, Ribergaard
2011, Holst Hansen et al. 2012). Within the fjords,
glacial meltwaters create temperature and salinity
gradients, with oceanic waters entering fjords over
sill entrances having the greatest impact near fjord
mouths (Mortensen et al. 2011, Meire et al. 2015,
Swalethorp et al. 2015).

Physical differences between inshore and offshore
environments may influence the distribution of
potential Atlantic salmon prey, with differences in
inshore versus offshore feeding having been noted in
other salmonid species. Dempson et al. (2002) dem -
onstrated dietary differences between the inshore
and offshore components of the Nain stock complex
of Arctic charr Salvelinus alpinus, noting greater
reliance on capelin among inshore captures. Differ-
ences in inshore/offshore feeding in chinook Onco-
rhynchus tshawytscha, pink O. gorbuscha and sock-
eye O. nerka salmon have also been noted, with
invertebrate and juvenile fish consumption dominat-
ing in coastal areas, and fish, squid and amphipod
consumption dominating in oceanic waters (Brodeur
1990). While Atlantic salmon have been caught in
both inshore and offshore waters off West Green-
land, most historic adult Atlantic salmon dietary
information deals only with offshore feeding based
on examined gut contents, with limited data avail-
able on inshore feeding (Templeman 1967, 1968,
Lear 1972, 1980). Recent studies have provided more
information on inshore feeding and suggest that
inshore diet comprises large quantities of forage fish
species and boreoatlantic armhook squid (Renkawitz
et al. 2015, Dixon et al. 2017). As these prey have a
relatively high energy density (Lawson et al. 1998),
inshore feeding by Atlantic salmon may be energeti-
cally beneficial.

Hutchinson (1957, 1978) defined modern niche
theory by describing an organism’s fundamental
niche as an n-dimensional hypervolume. Trophic
niche is thought to be closely aligned with the
 fundamental niche (Pianka 1988, Bearhop et al.
2004, Newsome et al. 2007), and can be assessed
using stable isotope analysis (SIA). The ‘δ-space’ of
SIA biplots is comparable to the n-dimensional
space in which the fundamental niche hypervolume
exists, as the isotopic composition of an animal
reflects both the physical structures (i.e. habitat)
and the biotic structures (i.e. diet) of its environ-
ment (Newsome et al. 2007). Furthermore, isotope
data may be summarized using a series of metrics
to examine trophic structure (e.g. Layman et al.
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2007, Jackson et al. 2011). Thus studies have used
stable isotope metrics to examine intra- and inter-
population trophic dynamics within a single species,
and can be used to assess variations in trophic
niche across the inshore to offshore gradient (e.g.
Cherel et al. 2011), as examined here. Recent
 studies examining Atlantic salmon gut contents
have found inshore diet to be quite variable
(Renkawitz et al. 2015, Dixon et al. 2017), such that
trophic niche attributes including niche size and
degree of omni vory might be expected to demon-
strate differences between the inshore and offshore
environments.

Here, monthly data on West Greenland Atlantic
salmon prey resource use derived from SIA were
used to determine reliance on inshore and offshore
prey resources, and the resulting consequences for
fish condition and trophic niche. Specifically, we tested
the hypotheses that: (1) Atlantic salmon exploit both
inshore and offshore foraging areas during summer,
with the degree of reliance on inshore feeding in -
creasing as a function of time; (2) Atlantic salmon
demonstrating a more inshore feeding strategy will
be both larger and in better condition, as the highest
concentration of their preferred prey (capelin) is
found inshore; and (3) Atlantic salmon demonstrating
a more inshore feeding strategy will also exhibit a
larger trophic niche width and a greater degree of
omnivory.

2.  MATERIALS AND METHODS

2.1.  Sampling 

Atlantic salmon were caught by local fishers using
gillnets (minimum mesh size of 70 mm) in 3 commu-
nities (Qaqortoq, Nuuk and Sisimiut), located along a
~875 km section of the West Greenland coast (Fig. 1).
Sampling occurred during the inshore fishing season
(1 August to 31 October; Ministry of Fisheries, Hunt-
ing and Agriculture 2015) in 2009−2011. The fish
were sampled as part of the Salmon at Sea (SALSEA)
Greenland initiative, and were dissected on location.
A sample of adipose fin was removed for genetic
analysis to assign samples to their North American or
European continent of origin (King et al. 2001, Shee-
han et al. 2010) such that only North American  origin
Atlantic sal mon were used in this study. In addition,
only 1-sea-winter (1SW) Atlantic salmon were used
in this analysis, to prevent any confounding effects
of age on the analyses. Sea age was determined via
scale reading (Power 1987).

2.2.  SIA

Samples of dorsal muscle tissue were collected
from the Atlantic salmon posterior to the dorsal fin
on-site, frozen at −20°C and shipped to the University
of Waterloo (Ontario, Canada) for further laboratory-
based analysis. In the laboratory, samples were
dried, with either a standard laboratory drying oven
(Yamato DX 600, Yamato Scientific) or a benchtop
freeze dryer (Freezone Plus 2.5 l Cascade Benchtop
Freeze Dry Systems, Labconco) for 48 h and then
homogenised with the use of a mortar and pestle.
Approximately 0.3 mg of homogenised material was
then analysed at the University of Waterloo Environ-
mental Isotope Laboratory, using a Delta Plus Con-
tinuous Flow Stable Isotope Ratio Mass Spectrometer
(Thermo Finnigan) coupled to a Carlo Erba elemental
analyser (CHNS-O EA1108). Machine ana lytical pre-
cision was in the range of ±0.2‰ (δ13C) and ±0.3‰
(δ15N) and was established by repeat ana lysis of inter-
nal laboratory standards cross-calibrated against
International Atomic Energy Agency standards CH6
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munities where Atlantic salmon were sampled in 2009−2011
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for carbon and N1 and N2 for nitrogen. Obtained
results are expressed in delta notation (δ) relative to
the international standards of Vienna Pee Dee
Belemnite for δ13C (Craig 1957) and atmospheric
nitrogen for δ15N (Mariotti 1983). For further method-
ological details, see Dixon et al. (2012, 2017).
As tissue lipid content has the potential to increase
among-individual variability in carbon isotope val-
ues, all SIA data were screened for lipid content
using the C:N ratio (Post et al. 2007). A significant
percentage (72.2%) of values were associated with
a C:N ratio >4, indicative of high lipid content
 (Jardine et al. 2013). Lipid correction of the δ13C
data was therefore completed following methods
described by Fry (2002) and recommended by
Abrantes et al. (2012), and the lipid-corrected δ13C
data (δ13CLC) were used in all subsequent statisti-
cal analyses. All statistical analysis was completed
using SPSS version 17. All data were assessed for
conformance with the assumptions of normality and
homogeneity of variance using the Shapiro-Wilk
and Levene’s tests, respectively (Zar 2010). Maxi-
mal Type I error for all statistical testing was set at
α = 0.05.

2.3.  Reliance on inshore prey resources

Offshore and inshore areas were defined by differ-
ences in depth (Malek et al. 2014) and proximity to
the coastline (Mullowney & Rose 2014) to include
areas <100 m in depth and/or within fjord systems
where anadromous salmonids are known to feed
(Dempson & Kristofferson 1987), while the offshore
was defined to include the continental shelf >100 m
depth and the Davis Strait. The proportion of Atlantic
salmon feeding occurring inshore (PIF) was deter-
mined using a standard 2-source mixing model (Fry
2006) as  follows:

(1)

where δ13CLC, δ13CI, δ13CO and Δ, respectively, are
the lipid-corrected δ13C values for the Atlantic sal -
mon, the inshore carbon end-member, the offshore
carbon end-member and the trophic enrichment
factor (TEF) for the food web. Values for the inshore
and offshore end-members were taken from Holst
Hansen et al. (2012), who comparatively measured
inshore and offshore SIA values for multiple crus-
tacean and fish species along the southeastern and
western coasts of Greenland during the summer,
a period coincident with Atlantic salmon feeding

along the coast. Only data for the West Greenland
portion of the coast encompassing the area from
 Sismiut to Qaqortoq were used. Means as reported
by Holst Hansen et al. (2012) were adjusted by the
reported standard deviation (±2 SD) to account for
data variability with the resulting δ13C extremes of
−19.2 and −21.8‰ used as model end members. It
should be noted that end members were derived
from spatial and temporal averages and may there-
fore fail to capture the range of isotopic variability
within the prey base at any given location. Atlantic
salmon and capelin were assumed to be one trophic
level apart (secondary and primary consumers,
respectively), and 0.66‰ was used for the TEF, the
average TEF for Arctic marine pelagic food webs
reported by Søreide et al. (2006).

Variation among individuals in use of inshore/off-
shore feeding was assessed by examining the vari-
ance of PIF. While short-term temporal variation in
PIF may be related to patterns of inshore and off-
shore feeding, over time it may also be caused by
tissue turnover and the equilibrating of tissue stable
isotope values with prey items (Trueman et al.
2005). Consistently large variations in PIF suggest
continued differential use of inshore and offshore
feeding tactics by Atlantic salmon, whereas equili-
bration of tissue with inshore prey sources would
tend to reduce variation in PIF with time. To assess
whether PIF variation was consistent with differ-
ences in inshore and offshore feeding, tissue turn-
over or a combination of the two, Bartlett’s test for
homogeneity of variance (Zar 2010) was used to
assess significant monthly differences. If significant
differences were found, multiple comparisons of
the monthly variance of PIF were examined follow-
ing procedures de scribed by Levy (1975), as recom-
mended by Zar (2010).

ANOVAs were used with month as the fixed factor,
to test for significant differences in PIF over the 3
months in which Atlantic salmon were sampled off
West Greenland. ANOVAs were followed by Tukey’s
post hoc HSD tests adjusted for unequal sample sizes
(Spjotvoll & Stoline 1973, Zar 2010). If significant
 differences among months were found, linear re -
gressions were used to assess whether there was a
positive or negative relationship between PIF and
time, with mean PIF plotted against the International
Organization for Standardization (ISO) standard
week number. Differences among years were as -
sessed by repeating the regression analyses for each
year (2009, 2010, 2011) and testing for significant dif-
ferences among annualized regression models using
ANCOVA (Zar 2010).
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2.4.  Variations in condition and size related to time
and reliance on inshore prey

Differences among condition factor and fork length
and the month of capture off West Greenland were
assessed using ANOVAs with month as the fixed fac-
tor, followed by Tukey’s post hoc HSD tests adjusted
for unequal sample sizes. To assess the trends in
these variables over time, linear regressions were
used, with the variables plotted against standard
week number. Condition was assessed using Fulton’s
K (Fulton 1904), given the predominance of isometric
growth as determined by the slope of the weight−
length relationship (3.04) and it not being signifi-
cantly different from 3 (t-test, p = 0.702). Similar to
PIF, significant differences among annual regression
models were tested using ANCOVA.

To assess whether Atlantic salmon more depend-
ent on inshore feeding were larger and in better con-
dition, fish from the lower and upper quartiles of the
PIF distribution (designated as low and high PIF)
were compared. An ANCOVA was used to compare
weight-at-length (condition) between the 2 quartiles,
with log10 transformed gutted weight as the response
variable, PIF group as the independent variable and
log10 transformed fork length as the covariate (Patter-
son 1992, Winters & Wheeler 1994, Pope & Kruse
2007). The ANCOVA was initially used to assess
whether the slopes of the low and high PIF groups
were significantly different, by assessing the signifi-
cance of the interaction between PIF group and
length (Pope & Kruse 2007). If the interaction was not
significant, the model was rerun without the inter -
action, and the difference in the intercepts of the 2
regressions for the 2 groups was assessed (Pope &
Kruse 2007).

2.5.  Stable isotope trophic niche metrics

The effects of variable inshore and offshore feed-
ing on isotope niche width and omnivory were inves-
tigated using the metrics proposed by Jackson et al.
(2011) and Layman et al. (2007): standard ellipse area
corrected for small sample size (SEAC), which is used
to measure isotopic niche width, and nitrogen range
(NR), which provides information on trophic diversity
and the extent of omnivory (Bearhop et al. 2004).
SEAC computations were completed in R version 3.1.0
(R Core Team 2014) using Stable Isotope Bayesian
Ellipses in R (SIBER), part of the Stable Isotope
Analysis in R (SIAR) package (Parnell et al. 2010,
 Parnell & Jackson 2013).

The fish were grouped by their PIF values, in
groups with a 0.05 class-interval width. Small
groups (n < 10) in the tails of the PIF distribution
were collated for further analysis due to their small
sample size. NR and SEAC were then calculated
from the  stable isotope data for each group, and
regressed against the mid-point of the group
class-interval to test for a significant trend in niche
width and omnivory as reliance on inshore feeding
increased. The analyses were repeated for each
year, and among-year significant differences were
determined using either ANCOVA or an F-test
based on an analysis of the residual sum of squares
(e.g. Rat kowsky 1983, Chen et al. 1992). If models
were not significant overall but had significant
intercepts, differences among years were tested
using ANOVA. Given the restrictions on the compu-
tation of SEAC (Jackson et al. 2011), annual SEAC

and NR values were not computable for every PIF
bin.

3.  RESULTS

3.1.  Summary sample data

In 2009−2011, 1034 Atlantic salmon of North Amer-
ican origin were sampled as part of the SALSEA
 programme, of which 922 were 1SW fish. Of the
1SW fish, 202 were caught in August, 662 were
caught in September, and 58 were caught in October
(Table 1).

195

Year        Month                         n            Fork length (mm)

2009        August                       66                   646 ± 27
               September               227                  659 ± 32
               October                     22                   663 ± 31
               Total                         315                  656 ± 31

2010        August                       66                   665 ± 42
               September               171                  663 ± 32
               October                     36                   679 ± 36
               Total                         273                  666 ± 35

2011        August                       70                   668 ± 35
               September               264                  664 ± 32
               October                      0
               Total                         334                  665 ± 33

Table 1. Total number and mean ± SD fork length of 1-sea-
winter Atlantic salmon of North American origin caught
along the coast of West Greenland in August, September 

and October from 2009 to 2011
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3.2.  Reliance on inshore prey resources

Atlantic salmon demonstrated reliance on both
inshore and offshore prey resources. The overall
mean ± SD of PIF was 0.38 ± 0.13 (Table 2), and
ranged from 0.00 to 0.84. Bartlett’s test for homo-
geneity of variance indicated significant differences
in the variance of PIF among the 3 months (K(2) =
7.427, p = 0.024, Fig. 2). Multiple comparison of
 variance tests revealed that August
had a significantly lower variance
than September (p < 0.05), while
October did not have a significantly
different variance from August or
Septem ber. PIF varied significantly
over the sampling period in West
Greenland (ANOVA F2,919 = 14.152,
p < 0.001, Table 3). Atlantic salmon
caught in the earliest sample week
(ISO standard Week 33) had an
anomalous PIF value relative to other

weeks (Fig. 3). The sample was comprised entirely of
fish captured at Qaqortoq in 2010 that were large
and in poor condition (K < 1). High PIF values may
be related to lipid catabolism prior to the start of
the feeding season, with the associated changes in
δ13C biasing PIF (Doucett et al. 1999). Therefore, the
Week 33 datum was removed from the analysis as an
outlier. When PIF was regressed against standard
week there was a significant relationship (regression
R2 = 0.712, F1,7 = 17.286, p = 0.004, Fig. 3). ANCOVA
indicated no significant differences (F2,18 = 0.676, p =
0.521) among the year-specific regressions of PIF on
standard week.

3.3.  Variations in condition and size related to
sample date and reliance on inshore prey

Atlantic salmon were in good condition (K ≥ 1)
(Table 2). Mean condition factor and fork length both
differed significantly between August and October
(ANOVA F2,879 = 55.345, p < 0.001 and F2,916 = 3.408,
p = 0.034 respectively, Table 3). When condition and
fork length were regressed against standard week,
only condition was significant (condition: R2 = 0.739,
F1,8 = 22.672, p = 0.001; fork length R2 = 0.252, F1,8 =
2.700, p = 0.139, Fig. 3), but with the removal of the
anomalous standard Week 33, both condition and
fork length were significant (condition R2 = 0.697,
F1,7 = 16.098, p = 0.005; fork length R2 = 0.529, F1,7 =
8.195, p = 0.024 respectively, Fig. 3). ANCOVA test-
ing indicated no significant differences among years
for the regressions of fork length (F2,18 = 1.128, p =
0.345) or condition (F2,18 = 1.343, p = 0.286) on stan-
dard week.

Fish in the lowest PIF quartile had a mean condi-
tion factor and fork length of 1.03 ± 0.10 and 660 ±
32.0 mm, respectively, while the fish in the highest
PIF quartile demonstrated a mean condition factor
and fork length of 1.06 ± 0.10 and 671 ± 35 mm,
respectively. When the ANCOVA was run with the
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Month n PIF K Fork length 
(mm)

August 202 0.33 ± 0.12A 0.99 ± 0.10A 660 ± 36A

September 662 0.38 ± 0.13B 1.06 ± 0.10B 662 ± 32A

October 58 0.42 ± 0.11C 1.15 ± 0.18C 673 ± 35B

TOTAL 922 0.38 ± 0.13 1.05 ± 0.11 662 ± 33

Table 2. Mean ± SD of the proportion of inshore feeding
(PIF), Fulton’s condition factor (K) and fork length of 1-sea-
winter Atlantic salmon of North American origin caught in
August−October off the coast of West Greenland from
2009−2011. Tukey’s HSD post hoc test results from an
ANOVA using month as the fixed factor are shown as super-

scripts, with letters indicating the different subgroups

Fig. 2. Frequency of inshore feeding reliance (PIF) in August
(grey), September (white) and October (black) of  1-sea-
winter Atlantic salmon of North American origin feeding off 

the coast of West Greenland

Variable R2 Effect df Error df Effect MS F p

PIF 0.030 2 919 0.23 14.152 <0.001
K 0.112 2 879 0.607 55.345 <0.001
Fork length 0.007 2 916 3733.248 3.408 0.034

Table 3. ANOVA of the proportion of inshore feeding (PIF), Fulton’s condition
factor (K) and fork length (mm) from 1-sea-winter Atlantic salmon of North
American origin caught off the coast of West Greenland, using month (August,
September and October) as the fixed factor. Significant (p > 0.05) values are 

shown in bold
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interaction effect between length and PIF group, the
effect was not significant (F1,1 = 0.542, p = 0.462),
indicating that the slopes of the regressions for the
low and high PIF fish did not differ sig nificantly (Fig.
4). Thus, the interaction effect was removed from the
model, and the ANCOVA was rerun. The intercepts
of the regressions of the low and high PIF groups
were significantly different (F1,1 = 266.076, p < 0.001;
Fig. 4).

3.4.  Short-term trophic niche metrics and
changing diet

There was no significant relationship between
SEAC and PIF (Fig. 5) when all data were aggregated

(R2 = 0.131, F1,12 = 1.807, p = 0.204) or for any of the
years when considered alone (maximum R2 = 0.281,
minimum p = 0.094). ANOVA further indicated no
significant differences among annual means (F2,31

=1.471, p = 0.245), with Levene’s homogeneity of
variance test further indicating no significant differ-
ences in variation (F2,31 = 2.805, p = 0.076). NR varied
significantly with reliance on inshore feeding (Fig. 6),
with NR demonstrating a quadratic relationship with
PIF (R2 = 0.667, F2,11 = 11.304, p = 0.002) when the
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Fig. 3. International Organization for Standardization (ISO)
standard week versus mean (A) proportion of inshore feed-
ing (PIF), (B) Fulton’s condition factor and (C) fork length
for 1-sea-winter Atlantic salmon of North American origin
caught off the coast of West Greenland. The data point for
Week 33 is shown as a grey circle. Where a significant linear
relationship exists, the estimated regression line is plotted as
a solid line for regressions not including Week 33, and a
dashed line for regressions including Week 33. Error bars 

depict ±1 SD

Fig. 4. Data used in the analysis of covariance assessing dif-
ferences in condition between low (d) and high (s) propor-
tion of inshore feeding reliance (PIF) groupings for 1-sea-
winter Atlantic salmon of North American origin caught off
the coast of West Greenland. Regression lines for each
group are shown as dashed and solid lines for the low and 

high PIF groupings, respectively

2009 2010 2011
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Fig. 5. Mean standard ellipse area (SEAC) for 1-sea-winter
Atlantic salmon of North American origin caught along the
coast of West Greenland, by year. SEAC values were com-
puted from proportion of inshore feeding reliance (PIF) class
intervals. No significant differences existed among years
(p = 0.245). Whiskers denote mean 95% confidence intervals
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data for all years were aggregated, and for 2010 (R2 =
0.550, F2,8 = 4.893, p = 0.041) when data were ana-
lysed individually by year. Residuals testing for the
2010 model, however, indicated violation of the nor-
mality assumption. For 2009 and 2011, there was no
significant relationship with PIF (R2 = 0.020, F1,10 =
0.206, p = 0.660 and R2 = 0.001, F1,10 = 0.007, p =
0.935, respectively). Residual sum of squares testing
indicated no significant among-year differences (F6,28 =
2.287, p = 0.064).

4.  DISCUSSION

Investigations into Atlantic salmon feeding in the
coastal environment of West Greenland demon-
strated varying reliance on inshore carbon resources
and differences in condition, fork length and trophic
niche metrics. Consistent with the first hypothesis,
Atlantic salmon feeding along the West Greenland
coast demonstrated a variable use of inshore re -
sources that increased over the feeding season, with
the pattern remaining invariant among years. As pre-
dicted by the second hypothesis, Atlantic salmon
which exhibited a greater reliance on inshore feed-
ing were in better condition and larger than those
that fed more offshore. Contrary to the third hypo -
thesis, Atlantic salmon with a higher reliance on
inshore prey did not exhibit a larger trophic niche
width or greater omnivory than their more offshore
counterparts.

4.1.  Inshore and offshore foraging

While 38% of West Greenland Atlantic salmon
diets are derived from inshore resources, the large
degree of variation observed in inshore feeding de -
pendence suggests widely different strategies among
individuals. Offshore areas of the continental shelf
and the inner areas of the fjords differ in salinity and
temperature, with differences reflected in the phyto-
plankton and fish species present in each habitat
(Munk et al. 2003, Arendt et al. 2010, Tang et al.
2011, Swalethorp et al. 2015). Prior to feeding along
the West Greenland coast, Atlantic salmon would
have been feeding as post-smolts or adults in the off-
shore environments of the Labrador Sea, or on the
Grand Banks (Reddin 1988, Reddin & Short 1991). As
such, the bias would be towards a more offshore
 stable isotope signature at the beginning of feeding
in West Greenland, and increasing equilibration to
signatures more reflective of inshore feeding with
time would be expected if Atlantic salmon as a group
were temporally consistent in using only inshore
prey resources.

Continued temporal variability in PIF may be re -
lated to habitat switching, i.e. movement between
inshore and offshore areas, variable prey use over a
feeding season, or differences in available prey, as
has been noted for other salmonid species. Rikardsen
et al. (2007) found that the comparative feeding
intensity of Arctic charr in a Norwegian fjord varied
within season, with insects and amphipods favoured
early in the feeding season and fish later. Dempson et
al. (2002) demonstrated feeding differences between
inshore and offshore stocks of Arctic charr at Nain in
the Labrador Sea, with inshore fish feeding predomi-
nantly on prey fish (87.5% of prey weight), of which
the majority (52.0%) was capelin (Dempson et al.
2002). In the offshore area, amphipods (38.2%) con-
stituted the main prey item, with capelin accounting
for only 12.6% of the diet (Dempson et al. 2002).
Anadromous cutthroat trout Oncorhynchus clarkii
clarkii have also shown a diverse range of move-
ments related to foraging in coastal environments,
as have anadromous brown trout (Davidsen et al.
2017), with different groups of fish demonstrating
different habitat use when compared to others within
the same population (Middlemas et al. 2009, Goetz et
al. 2013).

Increased reliance on inshore resources over the
feeding season may be associated with the highly
productive nature of nearshore areas, as they are
influenced by interactions between complex envi-
ronmental variables such as coastal upwelling and
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terrestrial input that favours production and attract
large numbers of spawning fishes (Ryther 1969,
Lundin & Lindén 1993). For example, during the
West Greenland feeding season, capelin are present
in high numbers in the inshore area while being
largely absent over offshore banks (Heide-Jørgensen
& Laidre 2007, Laidre et al. 2010, Grønkjær et al.
2019). Large numbers of capelin have been found in
many West Greenland nearshore areas and coastal
fjords between 60° and 70° N, where they spawn in
shallow, sheltered waters during late summer and
early autumn (Heide-Jørgensen & Laidre 2007,
Laidre et al. 2010, Grønkjær et al. 2019). Concur-
rently, capelin are more scarce offshore and prima-
rily found only in deeper water at depths below
Atlantic salmon surface feeding habitats  (Heide-
Jørgensen & Laidre 2007, Laidre et al. 2010, Grøn -
kjær et al. 2019). The majority of the Atlantic salmon
caught during the SALSEA Greenland programme
are likely using inshore resources to some degree, as
the West Greenland salmon fishery occurs inshore. In
that regard, the prevalence of August and September
captured fish with low reliance on inshore prey
resources (e.g. Fig. 2) suggests that Atlantic salmon
continue to forage over a broad spatial range when
feeding along the West Greenland coast. Indeed,
Atlantic salmon have been caught feeding offshore
in the Davis Strait. Lear (1972, 1980) found that those
fish feeding inshore were consuming capelin, sand
lance (Ammodytes spp.), amphipods and euphausi-
ids, while those in the Davis Strait consumed sharp -
chin barracudinas Paralepis coregonoides. While dif-
ferences between current and historical diets have
been noted (Renkawitz et al. 2015), it is likely that
differences in prey items in the inshore versus the
offshore remain, given the variations in PIF reported
here.

4.2.  Variations in inshore prey use, condition and
size with sample date

Fish in the high PIF group demonstrated higher
weight-at-length than fish in the low PIF group, indi-
cating an increase in condition with increasing PIF
(Pope & Kruse 2007). PIF-related increases in condi-
tion and size may be associated with changes in the
presence of key inshore prey species. A link between
capelin presence in the diet and differences in the
growth and condition of inshore and offshore for-
agers has been noted in Atlantic cod Gadus morhua
(Mullowney & Rose 2014). While Atlantic cod caught
offshore and inshore demonstrated similar growth

rates and condition when kept in captivity, fish
caught offshore were smaller, in poorer condition
and had elevated mortality compared to fish caught
inshore (Mullowney & Rose 2014). Differences were
linked to a suboptimal offshore diet, with inshore fish
having a greater proportion of capelin in the diet
(Mullowney & Rose 2014). Similar to cod, the result-
ing decrease in the energy density of available prey
offshore may contribute to the poorer condition
observed in predominantly offshore feeding Atlantic
salmon. Consuming larger amounts of capelin while
feeding inshore would increase Atlantic salmon con-
dition, as capelin are a keystone, energy-dense prey
species (Lawson et al. 1998), and similar to other
large predator species, Atlantic salmon would shift
foraging to more inshore areas where capelin are
more abundant (e.g. Rose 2005, Laidre et al. 2010,
Buren et al. 2014). Thus mean Atlantic salmon carbon
stable isotope values (δ13CLC) increased from −20.33
to −20.10‰ over time, moving closer to the mean
value of −19.77‰ for West Greenland capelin (Møller
2006, Holst Hansen et al. 2012)

Additionally, hydrographical gradients from the
continental shelf through to the inner fjords and asso-
ciated frontal structures caused by the effects of
 glacial plumes, interactions between water masses
and strong tides (Arendt et al. 2010, Mortensen et
al. 2011, Swalethorp et al. 2015) may make inshore
waters more favourable in terms of temperature for
Atlantic salmon foraging because of their impacts on
prey ecology. An increase during summer of glacial
run-off in the inshore area provides added nutrients
to the fjords, encouraging the growth of primary pro-
ducers and increasing the biomass at the base of the
food web on which the Atlantic salmon rely (Arendt
et al. 2010, Mortensen et al. 2011). Along with affect-
ing the food web, temperature may also influence
Atlantic salmon movement via physiological con-
straints, e.g. Atlantic salmon choosing to forage in
areas with temperatures that may aid prey digestion,
as has been suggested for Arctic charr (Spares et al.
2012), or in coastal areas where temperatures more
typically fall within the preferred thermal envelope
(e.g. Minke-Martin et al. 2015).

While differences in both size (1.6%) and condition
(2.9%) from use of inshore versus offshore prey re -
sources may appear small, the gains imply a larger
(approximate 7%) increase in weight likely to be
important in the context of the harsh northern envi-
ronments in which West Greenland Atlantic salmon
forage (Dempson et al. 2010). The limited fecundity−
length relationships published for Atlantic salmon of
North American origin (e.g. O’Connell et al. 2008)
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suggest that increases of 11 cm can result in average
fecundity gains of 2.3% (or approximately an addi-
tional 5058 ova at spawning). Furthermore, Atlantic
salmon lipid stores reflected in changes in condition
are thought to be the primary energy reserves upon
which fish draw for the energetic costs of reproduc-
tion, with minor differences in condition shown to
have significant consequences for maturation rates in
male parr (Rowe & Thorpe 1990). Similarly, the sig-
moidal relationship between %lipids and condition
linked to declines in reproductive fitness in European
Atlantic salmon indicates that abrupt declines in
lipids and reproductive success are associated with
small changes in condition (Todd et al. 2008). In -
vestigations have shown that Atlantic sal mon may
lose 60−70% of their overall body energy reserves
through migration and spawning (Jonsson et al. 1997),
suggesting minor gains associated with inshore feed-
ing may have significant biological im plications in
terms of condition at spawning and eventual spawn-
ing success (e.g. Jonsson & Jonsson 2005).

4.3.  Trophic niche metrics and inshore feeding

The degree of omnivory (NR) demonstrated a
quadratic relationship with increasing PIF, suggest-
ing that Atlantic salmon feeding more exclusively on
inshore or offshore prey use fewer prey species than
fish that feed on a mixture of inshore and offshore
prey. The consistency of the pattern among years
accords with food web theory predicting that food
chain length, and by analogy opportunities for omni -
vory as represented by NR, should increase with
increasing resource availability (e.g. Elton 1927,
Hutchinson 1959). Evidence from empirical studies in
lakes (Vander Zanden et al. 1999, Post et al. 2000)
also supports the notion that that food chain length
and habitat area are positively correlated (Cohen &
Newman 1988). Thus, differences in local food webs
along the inshore to offshore gradient (e.g. Hansen et
al. 2012) imply that individuals with intermediate PIF
values both increase foraging habitat area and the
potential to consume a greater variety of prey species
than those with more extreme PIF values. For exam-
ple, Munk et al. (2003) found differences in phyto-
plankton and larval fish species across depth gradi-
ent transects along the West Greenland continental
shelf, while within fjords, Swalethorp et al. (2015)
identified a series of distinct prey communities linked
to water mass characteristics likely to have isotopic
implications for higher consumers such as Atlantic
salmon.

4.4.  CONCLUSIONS

Atlantic salmon feeding off the West Greenland
coast use both inshore and offshore resources to
varying degrees and exhibit large trophic niche
width and diversity, especially among those that use
inshore and offshore food webs. The proportion of
inshore prey increases throughout the feeding sea-
son, with the trend likely related to the increasing
abundances of capelin found in the West Greenland
fjords. Increasing reliance on inshore feeding influ-
ences both Atlantic salmon condition and size, sug-
gesting that the strategy may have implications for
Atlantic salmon fitness (e.g. growth survival, and
ultimately reproduction). Gains made as a result of
inshore feeding may have high biological signifi-
cance given the implications of gains in size and con-
dition for migration and spawning success. Accord-
ingly, further work is needed to investigate the
complex interactions Atlantic salmon have with the
different habitats they encounter while undertaking
their marine migrations.
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