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1.  INTRODUCTION

Constructing food webs provides insight into the
flow of energy within an ecosystem, particularly the
routing of basal resources to higher-level consumers
(Fry & Sherr 1989, Krumins et al. 2013). The analysis
of food webs has been used to study structure and
functioning of aquatic ecosystems globally, by provid-
ing an understanding of energy-flow pathways and
the role of particular organisms within these habitats
(Pimm 1982, Cabana & Rasmussen 1994, 1996, Van -
der Zanden & Rasmussen 1999). A key aspect of food

web ecology is the characterisation of tro phic levels
(Vander Zanden et al. 1999, Post 2002a,b). The trophic
level of constituent consumers can be used to assess
the influence of natural or anthropogenic factors on
the structure of food webs, such as those of coral reefs
and kelp forests (Fredrik sen 2003, Jack & Wing 2011).
Therefore, accurate characterisation of the trophic in-
teractions within an ecosystem is paramount to the
understanding of its functioning (Pas quaud et al.
2010, Kadoya et al. 2012).

Stable isotope analysis, which has become an in -
creasingly versatile tool for studies relating to trophic
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ecology, provides a more time-integrated de piction
of complex interactions overlooked or under-repre-
sented by traditional methods (Peterson et al. 1985,
Peterson & Fry 1987, Vinagre et al. 2008, Layman et
al. 2012). Stable isotopes of carbon (δ13C) and nitro-
gen (δ15N) have been used to determine trophic
sources and trophic interactions in many different
ecosystems due to their reliable and predictable
changes during trophic interactions (DeNiro &
Epstein 1981, Fry 2006, Layman et al. 2012). Al -
though largely lacking in studies from South Africa,
stable  isotope analysis has been successfully applied
to numerous aspects of kelp forest ecology in other
re gions of the world (e.g. USA, Canada, Australia,
New Zealand, Japan, France and Norway). These
studies have focussed on various components of
these systems, including, but not limited to, carbon
acquisition by macroalgae (e.g. Raven et al. 1995,
2002, Raven & Giordano 2017), phytoplankton and
primary production (reviewed by Miller & Page 2012,
Ramshaw et al. 2017), the variability in macroalgal
values (e.g. Stephenson et al. 1984, Simen stad et al.
1993, Dethier et al. 2013, Hyndes et al. 2013, Vander -
klift & Bearham 2014, Mackey et al. 2015), producer–
consumer relationships (e.g. Van der  klift & Ponsard
2003, Vanderklift et al. 2006, Vander klift & Wernberg
2010, von Biela et al. 2016), and food web structure
and functioning (e.g. Kaehler et al. 2000, 2006,
Fredriksen 2003, Guest et al. 2010, Nadon & Himmel-
man 2010).

Traditionally, a key assumption of stable isotope
studies was the consistency of primary producer sta-
ble isotope values over space and time, which al -
lowed for traceability through the food web (Simen-
stad et al. 1993, Boon & Bunn 1994, Woodland et al.
2012, Dethier et al. 2013). For example, an estimate
of the trophic position of consumers can be calcu-
lated relative to the nitrogen isotope value of the
basal resource (i.e. primary producer) within the eco-
system (Post 2002a,b). However, variability in stable
isotope values has been shown to operate at different
spatial and temporal scales, both for basal resources
as well as for consumers (Page et al. 2008, Guest et al.
2010, Hansen et al. 2012, Hyndes et al. 2013), and has
been successfully used to trace animal migration
(Hobson 1999) and construct isoscapes (West et al.
2009). The variability within marine macro phytes has
been shown to be translated up the marine food web
(Simenstad et al. 1993, O’Reilly et al. 2002, Vander -
klift & Wernberg 2010, Hansen et al. 2012). However,
the variability decreases toward apex consumers as
the longer tissue-turnover rates in these organisms
counter the short-term variability in lower-level

organisms (Simenstad et al. 1993, Nordström et al.
2009, Hansen et al. 2012, Hyndes et al. 2013). Stable
isotope values of basal resources, such as marine
macrophytes and phytoplankton, are thus not consis-
tent and hence can create erroneous conclusions
when interpreting the flow of energy through the
food web (Boon & Bunn 1994, Wing & Jack 2012,
Dethier et al. 2013, Hyndes et al. 2013).

Kelp forest ecosystems provide an excellent case
study for the importance of understanding basal re -
source variability. Kelps are brown macroalgae
which form complex 3-dimensional habitats in near
shore habitats in temperate and Arctic regions of the
world (Steneck et al. 2002, Smale et al. 2013). Along
the west coast of southern Africa, Ecklonia maxima
(Osbeck) Papenfuss and Laminaria pallida Greville
are the 2 most common and abundant kelp species,
both forming dense and extensive kelp forests be -
tween Cape Agulhas (the southernmost point of
Africa) and Rocky Point in northern Namibia (Field et
al. 1980a, Field & Griffiths 1991, Bolton 2010). This
area provides the optimal growing environment for
kelps, as nutrient concentrations are high (due to
coastal upwelling), light intensities are high, and
there is continuous water movement (Andrews 1974,
Field et al. 1980b). E. maxima is a large, canopy-
forming species which extends to the surface in shal-
lower areas (<9 m), whereas L. pallida is a smaller
species, forming a sub-canopy subtidally (10 to 30 m)
in the area south of Jacobsbaai (Fig. 1) but occurring
with E. maxima in shallow inshore water northwards
on the west coast (Stegenga et al. 1997, Rothman et
al. 2017). Both species are typical aclonal macroalgae
(sensu Santelices 2004), having fronds which origi-
nate from a single stipe that is attached to the sub-
strate via a holdfast. The large sporophytes of both
kelps are perennial and have fronds which con-
stantly undergo erosion at the distal ends, matched
by continuous growth in the meristematic regions
(Dieckmann 1978, 1980, Mann et al. 1979).

The detrital fragments which are constantly dis-
lodged and eroded from the distal tips of the kelp
fronds enter the food web via the suspension-feeding
organisms which inhabit these systems (Newell et al.
1982, Newell & Field 1983, Mann 1988, Stegenga et
al. 1997). Phytoplankton is another important carbon
source for these systems; however, concentrations
are variable and depend greatly on the upwelling
cycle (Carter 1982, Wulff & Field 1983, Fielding &
Davis 1989). Together, these 2 sources represent the
pri mary carbon sources for kelp forest food webs
along the South African coastline. The relative im -
portance of detritus and phytoplankton along the
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South African coast depends on the frequency of
upwelling and on the rate of water movement in the
kelp forest (Wulff & Field 1983, Mann 1988, Dyer et
al. 2019).

Although stable isotope variability at the base of
the food web is not likely to be observed at the
same magnitude as in higher trophic organisms,
there is evidence to suggest that δ13C variability is
translated to these organisms and can be localised
to sites (Simen stad et al. 1993, O’Reilly et al.
2002). This is particularly evident in sessile or ter-
ritorial organisms which utilise local primary pro-
duction sources (Simen stad et al. 1993). As the
faunal biomass of many South African kelp forests
is dominated by sessile filter-feeders, such as mus-
sels, sponges and ascidians (Field & Griffiths
1991), there is a strong possibility this variability
will impact studies of kelp bed food webs. These
organisms are the key link which couples the
pelagic and benthic food webs together. Any vari-
ability in algal (or phytoplankton) stable isotope
values will be translated through the food web to
consumers, creating differences at each site. How-
ever, the magnitude and scale of this variability
need to be determined. Nevertheless, kelp forest

systems provide a bottom-up
con trolled tro phic system, where
changes in basal isotope values,
and the associated variability,
have the potential to be re -
flected in higher-level trophic
organisms.

This study therefore aims to
identify the variability in kelp
(Ecklonia maxima and Laminaria
pallida) stable isotope values
in order to better understand
the basal resource variation
with in these food webs. Specifi-
cally, the variability in stable
isotope values (δ13C and δ15N)
was evaluated among the dif-
ferent tissues of kelp plants, the
variability along the length of
individual kelp fronds was in -
vestigated, and finally the tem-
poral and spatial variability of
a representative tissue (frond
tip) was evaluated across geo-
graphic sampling lo calities and
sampling occasions (seasons).

2.  MATERIALS AND METHODS

Two aspects of variability in kelp stable isotope val-
ues were examined: (1) inter-tissue variability (tis-
sues and position on the frond) and (2) spatial and
temporal variability.

Because the morphology and modes of frond devel-
opment in Laminaria and Ecklonia are different
(Fig. 2), we defined them as follows for the purpose of
this study. Laminaria has a single flat frond with an
undivided basal region (the lamina) that more dis-
tally splits into multiple blades. Ecklonia has a pri-
mary blade that gives rise along its margins to multi-
ple secondary blades (Fig. 2).

2.1.  Tissue comparisons

Nine whole kelp plants from each species (Ecklonia
maxima and Laminaria pallida) were collected at
Oudekraal, on the west coast of South Africa (Fig. 1),
from a depth of 5 m by SCUBA divers. Each plant was
split into distinct sections (holdfast, stipe, fronds) be-
fore transport back to the laboratory for further pro-
cessing. Subsamples of the 4 primary tissues (holdfast,
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and Africa. (d) Sampling local-
ities where Ecklonia maxima
and Laminaria pallida material 
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stipe, primary blade [Ecklonia], lamina [Laminaria],
and frond) were collected from each plant after thor-
ough washing with distilled water. Tissue samples
were collected from the same location on each kelp
plant (Fig. 2). However, as L. pallida does not have a
primary blade, this sample was collected in the centre
of the main blade near the stipe (Fig. 2).

2.2.  Frond position

Three whole fronds (primary blade and secondary
blades for Ecklonia, lamina and blades for Laminaria)
were collected from each kelp species (E. maxima and
L. pallida) at Oudekraal from a depth of 5 m by
SCUBA divers. A single frond was collected from a
single plant; thus, each frond represents an individual
in the population. Three fronds were used for each
species of kelp, representing 3 individuals. The
longest frond on kelp plants of a similar size was col-
lected in order to rule out size-related bias. In E. max-
ima, this represents the longest secondary blade on
the plant, whereas for L. pallida, this was the longest
extension of the split digitate frond (lamina and
longest blade). Fronds were kept whole and trans-
ported back to the laboratory for further processing.
Each frond was thoroughly cleaned with distilled wa-
ter, and the total length was measured. Subsamples
were collected at pre-determined positions along the
frond, with each position coinciding with 10% inter-
vals of the total length (Fig. 2). At each position, a strip
of frond was excised across the width of the frond.

Therefore, frond position refers to these
different positions along the frond of both
E. maxima and L. pallida as defined above.

2.3.  Spatial and temporal sampling

Ten whole kelp blades were collected
from both E. maxima and L. pallida plants
at 8 sites from Port Nolloth on the west
coast to Betty’s Bay, east of False Bay (see
Fig. 1). Samples were collected at Port Nol-
loth, Kleinsee, Hondeklipbaai, Doringbaai,
Jacobsbaai, Kommetjie, Bordjiesrif and
Betty’s Bay during both the austral summer
and winter in 2015/16. Because the depth
distribution of L. pallida changes moving
northwards along the coast, it was not pos-
sible to keep the sampling depth constant
at all sites. Therefore, at some sites (Port
Nolloth, Kleinsee, Hondeklipbaai, Doring-

baai and Jacobsbaai), both E. maxima and L. pallida
samples were collected from plants at the surface in
shallow (2−3 m) water. At the other sites, E. maxima
samples were collected in the same position, but L.
pallida samples were collected from deeper (5−8 m)
water as they only occur there.

From each kelp frond, a portion of tissue was
excised closest to the blade tip (Fig. 2) and frozen
prior to laboratory processing. Once back at the lab-
oratory, each sample was thawed and washed with
distilled water.

2.4.  Laboratory processing and analysis

All kelp tissue samples were dried in an air-circu-
lated oven (60°C) for a period of 48 h. Once dried,
samples were homogenized into a fine powder using
a Retsch MM200 ball-mill. Powdered samples were
then individually weighed out into tin capsules. Each
capsule contained 1.2 mg of sample material, as
specified by the analysis facility.

Stable isotope samples were analysed at iThemba
LABS (Johannesburg) on a Flash HT Plus elemental
analyser coupled to a Delta V Advantage isotope
ratio mass spectrometer using a ConFlo IV interface
(all equipment supplied by ThermoFisher).

Isotope values were expressed as the parts per
mille deviation from the standard in delta (δ) notation
according to:

δX = [(Rsample/Rstandard) − 1] × 1000 (1)
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and geographic sampling
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where X is 13C or 15N, and R is the corresponding
ratio of 13C/12C or 15N/14N.

Carbon and nitrogen isotope values were corrected
against an in-house standard (Merck Gel) as well as
the Urea Working Standard (IVA Analysentechnik).
Laboratory standards and blanks were run after every
20 samples. The overall precision of Merck Gel for
nitro gen isotopes was 0.13‰, and 0.06‰ for carbon
iso tope measurements. For the urea standard, a pre-
cision of 0.12‰ was measured for carbon isotope
ratios and a precision of 0.22‰ for nitrogen isotope
standards. In-house standards were calibrated against
National Institute of Standards and Technology (NIST)
standard reference materials (1577, 2976 and 1547)
and ultimately referenced against Vienna Pee Dee Bel -
em nite (VPDB) and Air for δ13C and δ15N, respectively.

2.5.  Statistical analyses

Despite attempts at transforming the biomarker
data (δ15N, δ13C, C:N ratio, C content and N content),
it was not possible to satisfy the assumptions of nor-
mality and homoscedasticity of the analysis of vari-
ance (ANOVA) test. This was especially true for the
stable isotope (δ15N and δ13C) data. It was therefore
de cided to implement a permutational multivariate
analysis of variance (PERMANOVA; Anderson 2001)
to test for differences in biomarkers among the differ-
ent kelp tissues for each species as well as to investi-
gate differences among sites and between seasons
for each of the kelp species. PERMANOVA tests are
not constrained by the distribution of the data and
are very robust to heterogeneity of multivariate dis-
persions, provided the study design is balanced
(Anderson & Walsh 2013, Anderson 2017). These
models return a Pseudo-F statistic which can be
interpreted in the same way as the F statistic of a reg-
ular ANOVA. As part of the PERMANOVA test, vari-
ance components could also be determined, with R2

values providing an estimate of the proportion of
variance explained by each factor. Variance compo-
nent tests provide estimates of the contribution of
each factor to the variance observed in the response
variable (Graham & Edwards 2001).

Untransformed biomarker data (δ15N, δ13C, C:N
ratio, N content and C content) were used to con-
struct a similarity matrix for each variable based on
Euclidean distances. Tissue differences were ana-
lysed with tissue and species as factors using a 2-way
PERMANOVA test (npermutations = 9999). Post hoc com-
parisons were made using pairwise comparison tests.

The frond position data was not analysed statisti-

cally, primarily because the patterns along the frond
were not linear but also because sample sizes were
too low to warrant meaningful analyses.

For the spatial and temporal data, the primary
objective was to determine whether there is spatial
and temporal variability in the biomarker data of the
2 kelp species. Therefore, a 2-way PERMANOVA
test (npermutations = 9999) was conducted for each of the
5 biomarkers separately, with Site and Season being
the main effects and the interaction term of Site ×
Season. As differences among sites were of particu-
lar interest, data were then separated by species and
season, and post hoc pairwise comparisons were
made among sites (npermutations = 9999) for each vari-
able. Sites were then allocated to groups using the
outcome of the pairwise tests, and groupings were
displayed in the figures.

All statistical analyses were performed within R
v.3.5.2 (R Core Team 2018), with PERMANOVA
analyses performed using the vegan package (Oksanen
et al. 2019) and pairwise comparisons conducted with
the pairwiseAdonis package (Martinez Arbizu 2019).

3.  RESULTS

3.1.  Tissues

The δ15N value was significantly different (p < 0.05)
among the different tissues (Pseudo-F3,64 = 43.14, p <
0.001) and between the different kelp species
(Pseudo-F1,64 = 52.45, p < 0.001). However, the inter-
action of Tissue × Species was also significant
(Pseudo-F3,64 = 7.94, p <0.001), indicating that the
differences were not consistent for each species. The
majority of the variability in δ15N values was ac -
counted for by tissue differences (48%), with species-
level differences ac counting for 19%. Post hoc tests
revealed that holdfast values, for both species, were
different from the other tissue types. Frond, stipe and
primary blade values of Laminaria pallida were not
different. In contrast, Ecklonia maxima frond values
were the same as those of L. pallida but differed from
E. maxima stipe and primary blade values.

The δ13C values were significantly different among
tissues (Pseudo-F3,64 = 3.76, p < 0.05), but this only
accounted for 10% of the variance. Significant differ-
ences were also identified between species (Pseudo-
F1,64 = 34.52, p < 0.001), which accounted for 31% of
the variance in the data. The interaction term was not
significant and was removed from the model. Most of
the variance (59%) was thus explained by within-
 species measurements. Post hoc comparisons showed
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that within the 2 species, all 4 tissues were the same in
terms of their δ13C values. However, be tween species,
only the stipe values were the same, with the other 3
tissues being different from each other.

The δ13C values of E. maxima and L. pallida varied
(difference between minimum and maximum) by
1.7‰ and 1.5‰, respectively, among the 4 different
tissues. The δ15N values were more variable for both
species across tissues: 3.8‰ and 4.2‰ for E. maxima
and L. pallida, respectively (Table 1).

The C:N ratios were significantly different among
the 4 tissues (Pseudo-F3,64 = 37.28, p < 0.001), with
among-tissue differences accounting for the majority
(57%) of the variance in the data. Although there
were significant differences identified between spe-
cies (Pseudo-F1,64 = 4.76, p < 0.05), these only ac-
counted for 2% of the variance in the data. Similarly,
the interaction term was significant (Pseudo-F3,64 =
4.65, p < 0.01) but accounted for very little of the vari-
ance (7%). Thus, within-species variance accounted
for 33% of the total variance in C:N ratio measure-
ments. Post hoc testing showed that stipe values were
the most different for both species, but frond and pri-
mary blade values were the same for both species.

3.2.  Frond position

Consistent patterns emerged between frond posi-
tion and both stable isotopes, δ13C and δ15N, as well
for the C:N ratio for both E. maxima and L. pallida
(Fig. 3). Trends do not conform to linear patterns and

thus were not analysed using correlation or regres-
sion methods. However, the consistency of the results
across 3 replicate kelps, as evidenced by the error
bars, indicates clear and consistent trends.

The δ13C value for both species became enriched
with distance from the meristematic tissue at the
base of the frond until about mid-way along the frond
where it began to show depletion again toward the
frond tip. The δ15N values exhibit a similar trend for
E. maxima with the frond tip being more depleted
than the meristematic region at the base. The trend
in L. pallida was less clear, with more variability in
the data. The C:N ratio of both species was very con-
sistent across the 3 replicates. For E. maxima, the
C:N ratio dropped by almost 15 units along the
length of the frond. However, L. pallida exhibited a
different trend, with the C:N ratio rising towards the
middle of the frond and then dropping steeply
toward the tip, with the meristem and frond tip hav-
ing similar values. The trends in the C:N ratio of E.
maxima and L. pallida are better interpreted when
viewed with the carbon and nitrogen content of each
sampling point. Carbon and nitrogen content both
in creased along the E. maxima fronds, whereas an
in verse relationship occurred in the L. pallida fronds.

The variance of δ13C values within a single frond,
from meristem to tip, was 2.6‰ for E. maxima and
3.1‰ for L. pallida. The δ15N values showed a similar
variance in both species, 2.9‰ for E. maxima and
2.7‰ for L. pallida.

3.3.  Spatial and temporal variability

The δ15N values of E. maxima (Pseudo-F7,144 =
51.56, p < 0.001) and L. pallida (Pseudo-F7,144 = 63.66,
p < 0.001) were significantly different among the
sampling sites (Table 2). The differences among sites
accounted for the most variability in δ15N values of
both E. maxima (51%) and L. pallida (55%). The δ15N
values were significantly different between sampling
occasions for both species; however, sampling occa-
sion (season) accounted for very little of the variabil-
ity observed (Table 2). The interaction of site and
season was significant for both E. maxima and L. pal-
lida and accounted for ~25% of the variability in δ15N
values (Table 2). This indicates that the differences
among sites were not consistent in the 2 sampling
occasions. Within-population variability (residuals)
accounted for 20% of the δ15N variability of E. max-
ima and 18% in L. pallida (Table 2). The summer
δ15N values were most enriched at Jacobsbaai (7.7‰)
and Betty’s Bay (6.1‰) for L. pallida and E. maxima,

60

Source                      df        MS    Pseudo-F       p          R2

δ15N
Tissue                       3       48.41      43.14      <0.001   0.48
Species                     1       58.86      52.45      <0.001   0.19
Tissue × Species      3       8.91      7.94      <0.001   0.09
Residual                  64      1.12                                    0.24

δ13C
Tissue                       3       8.10      3.76        <0.05     0.10
Species                     1       74.26      34.52      <0.001   0.31
Residual                  67      2.15                                    0.59

C:N
Tissue                       3      372.07     37.28       <0.001   0.57
Species                     1      47.50     4.76        <0.05     0.02
Tissue × Species      3      46.36     4.65        <0.01     0.07
Residual                  64     9.98                                   0.33

Table 1. PERMANOVA analysis of stable isotope (δ13C and
δ15N) values and C:N ratio of the 4 selected tissues from
Ecklonia maxima and Laminaria pallida. MS: mean square.
p-values are all significant (bold) at p < 0.05. Proportion of
variance explained as indicated by magnitude of effect (R2),

with the largest value for each marker in italics
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Fig. 3. Mean (±1 SD) stable isotope values (δ13C and δ15N),
C:N ratio, carbon content (mg g−1 of dried tissue) and nitro-
gen content (mg g−1 of dried tissue) of Ecklonia maxima
(blue dots) and Laminaria pallida (green triangles) blades
measured at different positions, from primary blade (PB) to
frond tip (FT) for 3 replicate kelps collected at Oudekraal, 

South Africa
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respectively, and most depleted at Port Nolloth
(3.2‰) and Kleinsee (2.6‰) for L. pallida and E. max-
ima, respectively. In winter, δ15N was most enriched
at Betty’s Bay (7.4‰) for L. pallida and Kommetjie
(7.6‰) for E. maxima. The δ15N values were most
depleted at Doringbaai for both L. pallida (0.9‰) and
E. maxima (0.2‰). Post hoc comparisons indicated
that the δ15N values in summer could be generally
grouped into 2 groups, with northern sites (Port Nol-
loth to Jacobsbaai) more similar to each other, and
southern sites (Jacobsbaai to Betty’s Bay) forming
another group. There was some overlap among
groups (see Fig. 4); however, the trend was similar for
both species. The pattern during winter was substan-
tially different, with Doringbaai being the most dif-
ferent for both species. However, the comparisons
indicated that at all sites except Jacobsbaai and
Kommetjie, the groupings for E. maxima and L. pall-
ida were similar (see Fig. 5).

The δ13C values of E. maxima (Pseudo-F7,144 = 4.62,
p < 0.01) and L. pallida (Pseudo-F1,7 = 26.62, p <
0.001) were significantly different among sampling

sites (Table 2). However, the
variability explained by site
was only 13% for E. maxima
compared to 49% for L. pallida
(Table 2). Although differences
among sampling occasions (sea-
sons) were significant, the vari-
ability explained by this factor
was <2% for both species
(Table 2). The interaction term
(Site × Season) was statistically
significant for both E. maxima
and L. pallida, indicating the
dif ferences among sites were
dependent on sampling occa-
sion (Table 2). The residuals ac -
counted for a large proportion
of the variability explained for
both E. maxima (56%) and for
L. pallida (38%), indicating a
large intra-population variabil-
ity in δ13C values. For the sam-
ples collected during austral
summer (Fig. 4), L. pallida was
most depleted in δ13C at Jacob-
sbaai (−21.6‰) and most en -
riched in δ13C at Doringbaai
(−10.4‰). However, for the
samples collected in the winter
(Fig. 5), L. pallida was most
depleted in δ13C at Jacobsbaai

(−24.0‰) and most enriched in δ13C at Hondeklip-
baai (−11.6‰). E. maxima was most depleted in δ13C
at Port Nolloth (−19.5‰) and most enriched in δ13C at
Kommetjie (−10.2‰) during summer. Similarly, in
winter, E. maxima was most depleted in δ13C at
Kleinsee (−22.1‰) and most enriched in δ13C at
Jacobsbaai (−13.6‰). Post hoc comparisons revealed
that the most interesting trend in the data, which was
evident in both sampling occasions but more pro-
nounced in winter, was the break at Jacobsbaai in
the mean δ13C values of L. pallida creating 2 distinct
groups (Figs. 4 & 5). The northern group consisted of
the sites between Port Nolloth and Doringbaai,
whereas the southern group consisted of the 4 re -
maining sites. Interestingly, E. maxima data did not
follow this trend, with all sites generally grouping
together. At this point, E. maxima and L. pallida
mean values also diverge from each other, with L.
pallida being more depleted at all subsequent (south-
ward) sites.

Across the sampling localities, the variance of stable
carbon isotope values (δ13C) was higher in L. pallida
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Source               df       Ecklonia maxima                      Laminaria pallida
                                  MS   Pseudo-F     p          R2            MS    Pseudo-F    p          R2

δ15N
Site                     7   20.27     51.56   <0.001   0.51        18.94      63.66   <0.001   0.55
Season                1   8.87     22.56   <0.001   0.03         4.58       15.38   <0.001   0.02
Site × Season     7    9.84      25.03   <0.001   0.25         8.89       29.87   <0.001   0.26
Residual           144 0.39                                0.20         0.30                                 0.18

δ13C
Site                     7   12.28      4.62      <0.01    0.13        93.27      26.62   <0.001   0.49
Season                1   13.52      5.09      <0.05    0.02        18.38       5.25     <0.05    0.01
Site × Season     7   29.01     10.92   <0.001   0.30        23.65       6.75    <0.001   0.12
Residual           144 2.66                                0.56         3.50                                 0.38

C:N
Site                     7   43.07     16.21   <0.001   0.34       220.51     39.31   <0.001   0.61
Season                1   49.20     18.52   <0.001   0.06        54.67       9.75     <0.05    0.02
Site × Season     7   21.72     8.18    <0.001   0.17        16.06       2.86     <0.05    0.04
Residual           144 2.66                                0.43         5.61                                 0.32

%C
Site                     7  5922.5   23.26   <0.001   0.35     10764.30   25.45   <0.001   0.34
Season                1    4410     17.32   <0.001   0.04     29138.40   68.89   <0.001   0.13
Site × Season     7  5315.4   20.88   <0.001   0.31      7579.90    17.92   <0.001   0.24
Residual           144  254.6                               0.31       423.00                               0.28

%N
Site                     7  72.98    20.09   <0.001   0.34       110.51     44.60   <0.001   0.57
Season                1  128.88    35.48   <0.001   0.09        25.04      10.11    <0.05    0.02
Site × Season     7  48.00    13.21   <0.001   0.22        28.81      11.63   <0.001   0.15
Residual           144 3.63                               0.35         2.48                                 0.26

Table 2. Results of the PERMANOVA for Ecklonia maxima and Laminaria pallida for
the 2 stable isotope values, C:N ratio and carbon and nitrogen content (%), testing for
differences among sites and season. p-values are all significant (bold) at p < 0.05.
Proportion of variance explained as indicated by magnitude of effects (R2), with the

largest value for each marker in italics
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Fig. 4. Summer stable isotope (δ13C and δ15N) values, C:N ratio and nitrogen and carbon content (%) for kelps Ecklonia max-
ima (light grey circles) and Laminaria pallida (dark grey triangles) at 8 sampling localities (north to south from left to right).
Coloured points and error bars indicate mean and standard deviation. Light (E. maxima) and dark (L. pallida) grey letters indicate

post hoc groupings for each species. Note different scale to Fig. 5
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Fig. 5. Winter stable isotope (δ13C and δ15N) values, C:N ratio and nitrogen and carbon content (%) for kelps Ecklonia maxima
(light grey circles) and Laminaria pallida (dark grey triangles) at 8 sampling localities (north to south from left to right).
Coloured points and error bars indicate mean and standard deviation. Light (E. maxima) and dark (L. pallida) grey letters indicate

post hoc groupings for each species. Note different scale to Fig. 4
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(11.2‰) compared to E. maxima (9.4‰) for the sum-
mer sampling occasion. However, in winter, this pat-
tern was reversed: E. maxima (15.0‰) had a greater
variance compared to L. pallida (12.4‰). The nitrogen
isotope values (δ15N) also displayed the same pattern,
with L. pallida having a greater variance in values
(4.5‰) relative to E. maxima (3.4‰) in the summer,
and E. maxima having a greater variance in values
(6.5‰) relative to L. pallida (7.4‰) in the winter.

The C:N ratio of E. maxima (Pseudo-F7,144 = 16.21,
p < 0.001) and L. pallida (Pseudo-F7,144 = 39.31, p <
0.001) was significantly different among the sam-
pling sites (Table 2). The variability explained by
among site differences was, however, substantially
greater in L. pallida (61%) in comparison to E. max-
ima (34%). Sampling occasion (season) was statisti-
cally significant for both species; however, it only
accounted for a small proportion of the variability in
C:N ratios (E. maxima: 6% and L. pallida: 2%). The
interaction term was significant for both E. maxima
and L. pallida and accounted for 17 and 4% of the
variability in C:N ratio, respectively (Table 2). Intra-
population variability, as explained by the residual
values, accounted for a large proportion of the vari-
ability in C:N ratio of E. maxima (31%) and L. pallida
(32%). Post hoc comparisons also revealed a similar
pattern to the δ13C values, with sites south of Jacobs-
baai showing distinct differences between E. maxima
and L. pallida values, for both sampling occasions but
again more apparent during the winter sampling
occasion. Geographically, the general trend in the
data shows an increase in C:N ratio moving from
north to south, being more apparent in summer
months (Figs. 4 & 5).

The nitrogen content (%) of the tissue was signif-
icantly different among sites for both E. maxima
(Pseudo-F 7,144 = 20.09, p < 0.001) and L. pallida
(Pseudo-F 7,144 = 44.60, p < 0.001). However, the
variability explained by site was substantially
higher for L. pallida (57%) compared to E. maxima
(34%). Al though sampling occasion (season) was
significant for both species, the variability explained
by season was low for both E. maxima (9%) and L.
pallida (2%). The interaction term (Site × Season)
was significant for both E. maxima and L. pallida
(Table 2), indicating the among-site differences
were dependent on the season. The variability
explained by the interaction term was larger for E.
maxima (22%) than for L. pallida (15%). Intra-pop-
ulation variability, as explained by the residual val-
ues, accounted for a large proportion of the vari-
ability in tissue nitrogen content of E. maxima
(35%) and L. pallida (26%). The post hoc compar-

isons showed 2 distinct patterns in nitrogen content
for the 2 sampling occasions. In summer, tissue
nitrogen content of E. maxima was consistently
higher than that of L. pallida at all 8 sampling sites
(Fig. 4). Nitrogen content of L. pallida was lower in
the southern sites compared to the sites north of
Jacobsbaai. In contrast, E. maxima nitrogen content
was more similar across the sampling sites. How-
ever, in winter, the nitrogen content of the 2
species was more similar at a number of the sites,
with the 4 southern sites showing a different trend
to those north of Jacobsbaai (Fig. 5).

The tissue carbon content (%) of E. maxima
(Pseudo-F 7,144 = 23.26, p < 0.001) and L. pallida
(Pseudo-F7,144 = 25.45, p < 0.001) was significantly
different among sampling sites (Table 2). The vari-
ability explained by among-site differences was sim-
ilar for both species (35%). Sampling occasion (sea-
son) was significant for both species but only
ac counted for a small fraction of the variability in tis-
sue carbon content, particularly for E. maxima
(Table 2). The interaction of site and season was sig-
nificant for both species and accounted for a similar
proportion of the variability in tissue carbon content
of E. maxima (31%) and L. pallida (24%). The vari-
ability explained by intra-population differences
(among individuals collected at the same time)
accounted for 31% of the variability in E. maxima
and 28% of the variability in L. pallida (Table 2). Sim-
ilar to the nitrogen content, post hoc comparisons of
carbon content revealed 2 very different patterns in
summer and winter, with summer E. maxima values
being consistently higher than L. pallida values at all
sites (Fig. 4). Values for each species were more con-
sistent among the sampling sites, not showing any
geographical groupings. In winter, however, carbon
content of the 2 species was more similar at all sites
apart from Jacobs baai and Bordjiesrif (Fig. 5). For L.
pallida, the northern sites again grouped together,
but here Jacobs baai, Kommetjie and Bordjiesrif
group together, with Betty’s Bay being distinct from
the northern and southern groups.

The results in Table 2 indicate a similar pattern
across all the biomarkers for E. maxima, with the ex -
cep tion of δ15N values and carbon content. For all
other markers (δ13C, C:N ratio and %N) the largest
pro por tion of the variability was explained by intra-
population variability. This is the variability among
individuals collected at the same place within a sin-
gle sampling occasion. Laminaria pallida exhib ited a
different trend, with site explaining the largest pro-
portion of the variability in all 5 biomarkers used
(Table 2).
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4.  DISCUSSION

The results of the present study show that stable iso-
tope values of both Ecklonia maxima and Laminaria
pallida vary among different tissues of a single plant,
within a single lamina within each species, among
sampling occasions, and among sites across a broad
spatial scale. This was largely to be expected, as the
stable isotope signatures of kelps from elsewhere in
the world are variable over space and time (Stephen-
son et al. 1984, Simenstad et al. 1993, Fre drik sen
2003, Vanderklift & Bearham 2014, Mackey et al.
2015, Buchholz et al. 2019). However, no study has yet
revealed the scale and magnitude of the variability in
kelps along the South African coastline. Within-site
variability was a large contributor to the variance in
most of the biomarkers measured for E. maxima,
which is consistent with the findings of Mackey et al.
(2015) for E. radiata along the Australian coastline. In
contrast, the variance in L. pallida biomarkers could
predominantly be traced back to differences among
sampling sites, which is likely an artefact of the depth
distribution of this species along the coastline. These
findings highlight an im portant consideration which
needs to be made when designing ecological studies
that depend on stable isotope analysis.

4.1.  Scales of variability

The identification of variability in macrophyte
(macroalgae and seagrasses) stable isotope values
has become increasingly common in the literature,
but still remains poorly understood (Dethier et al.
2013). When looking at variability in stable isotope
values, the scale (spatial and temporal) becomes an
important consideration. Spatial variability of marine
macrophyte stable isotope values has been shown to
operate at different geographical scales, from among
sites separated by small distances (10s of km) (Raven
et al. 1995, Dethier et al. 2013) to larger regional dis-
tances of 100s of km (Simenstad et al. 1993, Vanderk-
lift & Wernberg 2010, Mackey et al. 2015, Stepien
2015). Additionally, Stephenson et al. (1984) identi-
fied the variability of δ13C within a single lamina of
the kelp Saccharina latissima (as L. longicruris; see
McDevit & Saunders 2010) and reported significant
variation between the meristem and distal portions of
the fronds, as well as among different tissues. Simi-
larly, Fredriksen (2003) found that the distal parts of
the fronds of the kelp, L. hyperborea (Gunnerus) Fos-
lie, were isotopically lighter, in 13C and 15N, than the
basal  sections.

Both L. pallida and E. maxima showed spatial vari-
ability over the scale of the west coast of South Africa
(a distance of ~700 km), with statistically different
δ13C and δ15N values among sites. Significant differ-
ences were also identified among the different tis-
sues of both kelps, particularly for δ15N. Even at the
smallest scale, within a single lamina, the results
for both E. maxima and L. pallida showed consider-
able variation along the length of the blade from
primary blade to frond tip. However, variability
among replicates was larger for L. pallida than E.
maxima, and thus these patterns could benefit from
further investigation.

Temporal variability has also been recorded for
marine and aquatic macrophytes in general (Boon &
Bunn 1994, Dethier et al. 2013) and specifically for
kelps such as E. radiata (Vanderklift & Bear ham 2014,
Mackey et al. 2015) and L. hyperborea (Fre drik sen
2003). The results of this study, however, indicate a
very different trend, as sampling occasion (season)
accounted for a very small fraction of the variability in
stable isotope values of both E. maxima and L. pallida.
As the interaction of site and season accounted for a
larger proportion of the variability, it is likely that this
is related to the seasonal nature of coastal upwelling
along the coastline (discussed in Sections 4.2 and 4.4).

4.2.  Variability in δ15N values

The variability of nitrogen stable isotope signa-
tures in marine macroalgae is primarily due to
changes in nitrogen source, with algal δ15N values
reflecting those of the sources (Dudley et al. 2010).
Marine dissolved inorganic nitrogen (DIN) is known
to range in δ15N between 6 and 8‰ (Miyake & Wada
1967, Liu & Kaplan 1989, Sigman et al. 1997, 2000),
and thus many temperate algae have δ15N values
within this range (Monteiro et al. 1997, Cornelisen et
al. 2007, Dudley & Shima 2010). Therefore, unsur-
prisingly, the δ15N values of both E. maxima and L.
pallida fall within the expected 6 to 8‰ range.

Seasonal differences in δ15N were also detected in
both E. maxima and L. pallida, which were collected
during summer and winter sampling occasions. How-
ever, season alone accounted for much less of the ob -
served variability compared to the interaction of site
and season. Nevertheless, the most likely explanation
for this variability is the seasonal nature of coastal up-
welling, which is a key factor controlling the influx of
nitrate into South African kelp forest systems. During
the summer months, upwelling intensity is at its high-
est, whereas winter months see a large reduction in
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both frequency and intensity (Andrews & Hutchings
1980). Additionally, a gradient in upwelling intensity
is known to exist along the west coast, with lower-in-
tensity upwelling cells in the southern regions (see
Lutjeharms & Meeuwis 1987). Therefore, the spatial
and temporal variability in upwelling intensity and
frequency is most likely influencing the observed pat-
terns in δ15N of the kelp tissue.

However, the magnitude of seasonal variability in
South African systems is much lower than those in
other regions, such as the North Atlantic. In the
northern hemisphere, where growth is often limited
by nutrient (C and N) or light availability, kelps have
adopted a mechanism to store nitrogen and carbon
(see Chapman & Craigie 1977, 1978, Chapman &
Lindley 1980). For example, S. latissima (as L. longi-
cruris) has been shown to accumulate nitrate (NO3

−)
during winter and supply this to meristematic tissue
for 6 to 8 wk during the growing season in spring
(Chapman & Craigie 1977). In contrast, South African
kelps, particularly E. maxima, do not store carbon or
nitrogen compounds to the same extent (Smith 2007).
However, short-term changes in tissue nitrogen con-
tent can be linked to changes in the nitrogen content
of the surrounding water (e.g. upwelling), as E. max-
ima is known to take up more nitrogen (as NO3

−)
under upwelling conditions (Pro byn & McQuaid
1985). Therefore, the seasonal trends observed in the
δ15N values, nitrogen content and C:N ratios could be
linked to upwelling, as the trends match the spatial
and temporal patterns in upwelling intensity. Addi-
tionally, although not within the scope of this study,
the influence of geographical variability in upwelling
intensity (see Lutjeharms & Meeuwis 1987) on kelp
stable isotope values needs further investigation
along the southern African coastline.

Vanderklift & Bearham (2014) also show that light
availability can be a contributor to variability in the
δ15N values of kelps, specifically for E. radiata. How-
ever, the results of this study did not provide any evi-
dence of this influence. Despite E. maxima and L. pal-
lida growing at different depths, and thus having
different light availability, their δ15N values were very
similar at the sites south of Jacobsbaai. Similarly,
Buchholz et al. (2019) show that light availability had
little effect on the δ15N values of Alaria esculenta.

4.3.  Variability in δ13C values

Variability in the δ13C values of marine macro-
phytes and in particular marine algae has received
the attention of several studies. Stephenson et al.

(1984) summarised the factors which influence δ13C
values into 5 main topics, viz. (1) the isotopic compo-
sition of source carbon, (2) the proportional utilisation
of bicarbonate (HCO3

−) and carbon dioxide (CO2), (3)
the photosynthetic pathway used (C3 vs. C4), (4) the
influence of isotopically distinct epibionts, and (5) the
differential storage of biochemical compounds.
These factors operate at different scales, both spatial
and temporal, and therefore create a complex land-
scape where variability is inevitable.

In the present study, the most interesting pattern
that emerged from the spatial analysis was the devia-
tion in δ13C values that occurred between the means
of E. maxima and L. pallida south of Jacobsbaai. This
is also the point where E. maxima and L. pallida be gin
to diverge in terms of depth habitat occupied (Field et
al. 1980a, Rothman et al. 2017). When L. pallida is re-
stricted to deeper water, the δ13C value be comes more
depleted than that of E. maxima. From the factors re-
viewed by Stephenson et al. (1984), the most likely
factor resulting in this trend is light availability.

Light availability has been identified as an impor-
tant factor which aids in the absorption of HCO3

− from
the water column, as this requires more energy via
carbon concentrating mechanisms (Simen stad et al.
1993, Stepien 2015, Drobnitch et al. 2017). E. radiata
is known to require more energy, gathered from irra-
diance, to assimilate HCO3

− preferentially over CO2

(Cornelisen et al. 2007). Consequently, light availabil-
ity was shown to be the primary cause of variability in
δ13C values of E. radiata along the Australian
coastline (Vanderklift & Bearham 2014). Similarly, the
δ13C of A. esculenta was greatly influenced by depth
(light availability) in Kongsfjorden, Svalbard (Buch-
holz et al. 2019). From our results, it is evident that
when L. pallida is found at the surface with E. maxima
(north of Jacobsbaai), the 2 species have more similar
δ13C values. This suggests that they use the same
source of carbon and the same carbon metabolism.
However, when the 2 species are separated by depth
(south of Jacobsbaai), with L. pallida in deeper water,
there is a marked difference in values, with L. pallida
being severely depleted in δ13C. Light availability
would certainly correlate with this pattern, and there-
fore, it is likely to have resulted in the observed differ-
ence in δ13C values.

4.4.  Variability in C:N ratio and tissue C
and N content

The C:N ratio and carbon and nitrogen content of
both species showed a predictable trend along the
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coastline, matching the geographical and seasonal
patterns of upwelling frequency and intensity. Kelps
in the northern sites (north of Jacobsbaai) had higher
tissue nitrogen content in both seasons which corre-
lates well to the increased upwelling frequency and
intensity along this part of the coastline (Andrews &
Hutchings 1980, Lutjeharms & Meeuwis 1987). Con-
sequently, the C:N ratio of both kelps was also lower
at these sites during both sampling occasions. Con-
versely, the general southward decrease in tissue
nitrogen and the increase in C:N ratio follows the de -
crease in upwelling intensity documented along the
coastline. The carbon content of both species was
fairly stable along the coastline during both seasons,
which corroborates the findings of Smith (2007) in
showing that South African kelps do not store carbon
compounds in their tissues.

4.5.  Implications for food web studies

Although poorly understood, stable isotope vari-
ability, such as that which has been identified in this
study, must be taken into account in order to gather
accurate information about the food web (Nordström
et al. 2009, Dethier et al. 2013, Hyndes et al. 2013).
This is especially pertinent when determining the
ultimate carbon sources of the food web in systems
which potentially rely on several plant or algal com-
ponents (Boon & Bunn 1994). Hadwen et al. (2010)
illustrated how temporal variability of algal δ13C val-
ues can lead to differences in source contributions of
up to 11% when determining the diet of stream con-
sumers. Additionally, if systems have overlapping
carbon sources, it becomes very difficult to distin-
guish which source is driving the food web.

The influence of temporal and spatial variability
can be mitigated through careful site- and time-
specific sample collection. However, intra-popula-
tion variability poses more of a problem and thus
needs further attention when designing ecological
studies. A common way of dealing with variability
involves isotopic baselining, where consumer iso-
tope signatures are corrected against those of
longer-lived species near the base of the food web
(see Post 2002a). Additionally, modern Bayesian
mixing models allow for the incorporation of vari-
ability in basal signatures when calculating the pro-
portion of sources within a mixture (e.g. diet)
(Woodland et al. 2012, Stock & Semmens 2016).
Therefore, it is possible to use the natural variability
in stable isotope signatures to add information to
stable isotope analyses, but doing so does require

some knowledge about the scale and magnitude of
this variability in the study system.

5.  CONCLUSIONS

The stable isotope values of South African kelp
species are highly variable across various scales of
space and time. Ecklonia maxima and Laminaria pal-
lida values are variable at the scale of centimetres
along the length of the frond as well as at the scale of
hundreds of kilometres among sampling sites. Sev-
eral authors have shown that using a single point
sample to assign a stable isotope value to a source of
production is fundamentally flawed, as it does not
take into account the variability which has been de -
monstrated to operate at different spatial and tempo-
ral scales (Fenton & Ritz 1989, Fry & Sherr 1989, Boon
& Bunn 1994, Dethier et al. 2013).

By highlighting the variability in stable isotope sig-
natures of the 2 kelp species along the South African
coastline, we hope to provide important information
to ecologists trying to understand the trophic impor-
tance of kelp. Incorporating this variability into sta-
ble isotope mixing models and designing studies
which take this variability into account is therefore
recommended. Using values from one site, one sam-
pling occasion or literature values and applying
these values to studies across temporal and/or spatial
scales is strongly discouraged. Instead, kelp stable
isotope values should be evaluated, with sufficient
replicates, for each species at each study site and
within different seasons in order to account for the
natural variability which may exist. The addition of
different stable isotope markers (e.g. δ34S) and/or
fatty acid composition could also provide useful infor-
mation when studying the trophic ecology of these
ecosystems.
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