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1.  INTRODUCTION

Myctophid fishes (family Myctophidae) are a criti-
cal component of the Southern Ocean pelagic food
web, owing to their large biomass and their inter -
mediate trophic position between primary consumers
and higher trophic levels (Collins et al. 2008, Cherel
et al. 2010, Saunders et al. 2015). Myctophids have
high lipid and nutrient content, making them an im -
portant energy resource for top predators, including
marine mammals, seabirds, and other fishes (Saito &

Murata 1996, Van de Putte et al. 2006, Catul et al.
2011). Despite their ecological importance, there is a
conspicuous lack of biological and population infor-
mation (e.g. lifespan, growth rate, recruitment, age
structure) for myctophid populations both globally
(Irigoien et al. 2014) and for the Southern Ocean
(Linkowski 1985, Greely et al. 1999, Kock et al. 2012,
Saunders et al. 2017). This is in striking contrast to
another important Southern Ocean prey item and
target of commercial fisheries, Antarctic krill Eu -
phau sia superba (hereafter ‘krill’), for which life his-
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tory and population dynamics are regularly docu-
mented (Siegel 2016).

The lack of data for myctophid life history exists
because these species are not commercially fished
and are challenging to sample using traditional
methods such as acoustic and trawl surveys. Acoustic
methods fail to provide the physical specimens nec-
essary to obtain biological information (e.g. species,
age, and size) and trawl-based sampling introduces
biases related to net avoidance and escapement
(Gjø  saeter & Kawaguchi 1980, Lancraft et al. 1989,
Kaart vedt et al. 2012). Thus, in contrast to krill or
commercially fished species, there are no time series
from which to examine trends in the population
dynamics, distribution, or relative abundance of
mesopelagic fish populations.

Limited data from occasional trawl surveys suggest
that Gymnoscopelus nicholsi (Gilbert, 1911) (here-
after ‘Gn’) is one of the most abundant myctophid
species in the Southern Ocean. Analysis of trawl-
caught specimens indicates that Gn lives approxi-
mately 7 yr (Linkowski 1985), has a maximum re -
corded standard length (SL) of 174 mm (Williams &
McEldowney 1990), and is a broadly Antarctic spe-
cies with a circumpolar distribution between the Ant -
arctic continent and 36° S (Duhamel et al. 2014). Gn
are thought to be most abundant between the Sub-
Tropical Front and Polar Front (PF) and to have a
pelagic association with Antarctic Intermediate Water
and Sub-Antarctic Mode Water (Duhamel et al. 2014).
Larvae and juveniles are found in the open ocean and
are mesopelagic; however, adults typically adopt a
benthopelagic lifestyle in slope regions further south
where the southern Antarctic Circumpolar Current
front approaches the continent (Hulley 1990, Duha -
mel et al. 2014; Fig. 1a).

The absence of Gn eggs or larvae south of the PF
(Linkowski 1985, Pakhomov et al. 1996, Pusch et al.
2004, Flores et al. 2008, Saunders et al. 2015) has led
to the hypothesis that Gn spawn in the western South
Atlantic and then migrate south to more polar waters
with age, length, or maturity (Saunders et al. 2015),
yet the mechanism of movement is unknown. A num-
ber of hypotheses exist to explain the population
structuring mechanisms in the Southern Ocean (Ash-
ford et al. 2008, Saunders et al. 2015, Caccavo et al.
2018, Zhu et al. 2018) including southward migration
(Saunders et al. 2015) and advection around the
Antarctic continent (Ashford et al. 2008). There is
merit to the southward migration hypothesis in that it
is the most direct path from the northern spawning
area and the slope regions around Antarctica where
adult Gn are found. However, the hypothesis does

not explain how larvae and young fishes can be
trans ported south without also being advected in the
eastward circulation of the Antarctic Circumpolar
Current (ACC). Eastward advection of larvae and
juveniles around the Antarctic continent in the ACC
has been observed for similar Southern Ocean meso-
pelagic fishes (Ashford et al. 2008, Zhu et al. 2018),
and it is reasonable to hypothesize that Gn may use a
similar method of transport to arrive in Antarctic slope
regions. Testing these hypotheses is difficult be cause
of the paucity of time series of Gn age and length dis-
tributions from which to infer how patterns of distribu-
tion are related to the transport pathway. Thus, al -
though there is a basic understanding of Gn eco logy,
there is poor understanding of their distribution and
migration patterns, population dynamics, and links to
other components of the pelagic ecosystem.

Piscivorous marine predators, such as pinnipeds,
can be effective samplers of fish populations and can
provide information for assessing population dynam-
ics of fish prey (Lowry & Carretta 1999, Reid & Crox-
all 2001, Field et al. 2007). While indigestible prey
parts (e.g. fish otoliths and crustacean carapaces) are
frequently used to infer predator foraging habits
(Davis et al. 2006), they can also be useful in provid-
ing information about age and length distributions
for fish and zooplankton species (Campana 1999,
Begg et al. 2005, Goebel et al. 2007). Similar to trawl
sampling, there are inherent biases associated with
using marine mammals to sample prey because of
their size selectivities. For example, it is unlikely that
predators sample the entire age or size distribution of
prey populations; however, examining remains of
prey from piscivorous marine predators can provide
valuable data describing poorly sampled prey spe-
cies, like mesopelagic fishes.

Antarctic fur seals Arctocephalus gazella (family
Otariidae; hereafter ‘fur seals’) are particularly useful
biological samplers of mesopelagic taxa because they
are numerous in the Southern Ocean (Davis et al.
2006), are significant predators of mesopelagic fishes
including myctophids (Cherel et al. 1997, Os man et al.
2004, Polito & Goebel 2010) such as Gn, and females
are central-place foragers during their perinatal pe-
riod of December through March, allowing consistent
collection of regional prey (Davis et al. 2006). Also, fur
seals reliably return to the same colo nies annually
where they can be easily monitored (Hucke-Gaete et
al. 2004). Fur seals are an important indicator species
for the CCAMLR Ecosystem Monitoring Program
(Agnew 1997), and multiple long-term monitoring
programs regularly collect fur seal scats and forag-
ing data in the Antarctic and Sub-Antarctic islands
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 (Agnew 1997). Myctophids comprise the second most
abundant prey item by mass, after krill, in the diets of
fur seals around the South Shetland Islands (Osman et
al. 2004, Polito & Goebel 2010) and Gn is the most
dominant myctophid in terms of biomass and abun-
dance among myctophids collected in fur seal diets in
this region (Daneri 1996, Casaux et al. 2003, Osman et
al. 2004, Polito & Goebel 2010). Owing to these bio-
logical characteristics of fur seals, they may be an ef-
fective sampler that can provide information on Gn
population characteristics.

The purpose of this study is to use otoliths derived
from fur seal scats to examine the utility of central-
place foragers for assessing populations of unfished,
and difficult to sample, but ecologically important
mesopelagic fishes. Specifically, we use
sagittal otoliths recovered from long-
term monitoring of fur seal diets con-
ducted at Cape Shirreff, South Shetland
Islands, Antarctica by the US Antarctic
Marine Living Resources (AMLR) Pro-
gram from 2000 to 2015 to examine pat-
terns in the age structure and recon-
structed length distributions of Gn. We
then discuss the importance of central-
place foragers as a source of information
on changes in mesopelagic fish popula-
tion structure and recruitment variabil-
ity in relation to hypotheses about trans-
port and recruitment pathways.

2.  MATERIALS AND METHODS

2.1.  Study area

Cape Shirreff (62° 28’ S, 60° 46’ W) is
an ice-free peninsula (Osman et al. 2004)
on the north side of Livingston Island in
the South Shetland Islands separated
from the Antarctic Peninsula by the
Bransfield Strait (Fig. 1). Cape Shirreff
has the largest breeding colony of fur
seals in the Antarctic Peninsula region
(14 842 estimated in 2002; Hucke-Gaete
et al. 2004) and has been surveyed by the
US AMLR Pinniped Re search Program
each austral summer/ autumn (late Octo-
ber through early March) since 1997/98.

The continental shelf (<500 m depth) is
approximately 30 km wide around Cape
Shirreff (Goebel et al. 2000), and then the
shelf slope transitions quickly into deeper

water (1000 to 5000 m; Fig. 1b). The bathy metry near
Cape Shirreff includes 2 submarine canyons, one on
either side of the Cape (Fig. 1b), that may make meso-
pelagic species readily available to foraging fur seals
at Cape Shirreff. Over the last 20 yr, 95% of fur seal
foraging trips have occurred within ~60 km of the
colony (Hinke et al. 2017; Fig. 1b). Fur seals forage
both on the shelf and over the shelf slope region, and
occasionally offshore of the southern boundary of the
Antarctic Circumpolar Current front (Fig. 1b). Al-
though fur seal daytime foraging (40−75 m; Croxall et
al. 1985) is shallower than the typical depths meso-
pelagic species occupy during the day (>200 m;
Duhamel et al. 2014), the majority of fur seal dives
take place at night (Croxall et al. 1985) when meso-
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pelagic species make vertical migrations to the sur-
face. At night, the dive depth of fur seals (<30 m;
Croxall et al. 1985) overlaps with the nighttime depth
of myctophids (<20 m; Duhamel et al. 2014).

2.2.  Scat collection

Field work for the US AMLR fur seal monitoring
program began the third week of December (2000
through 2015) and lasted 10 to 11 wk each field sea-
son. Weekly surveys of female fur seal suckling sites
re sulted in the collection of up to 10 scats per week,
with approximately 100 scats collected annually
(Table 1). This sample size is greater than what Trites
& Joy (2005) report to be the required sample size of
scats to identify principal prey remains and to monitor
effects over time. The suckling sites were searched for
fresh (i.e. same day and not trampled or picked
through by seabirds) fur seal scats by walking in an
outward concentric pattern around female harem
groups. To avoid bias associated with more highly-
visible, brightly-colored krill scats, re searchers col-
lected all fresh scats (regardless of the contents; krill
or fish) immediately in front of them (~1 m on either
side) as they walked around each harem group and
across suckling sites. In order to collect 10 fresh scats,
surveys of the entire suckling area typically took 1 to
2 d, but on occasion, up to a full week.

In the field, each scat was washed through a 3-
tiered sieve (1 mm, 0.5 mm and 0.25 mm mesh size)
under running water and all otoliths and other prey
parts were removed. Fish otoliths of principal taxa are
sufficiently large that they are retained in one of the 3
mesh sieves, and Gn otoliths, which are greater than
1 mm regardless of age (Williams & McEldowney
1990), are easily collected with the mesh sizes used.
Otoliths and other hard parts (i.e. krill cara paces or
squid beaks) were cleaned and counted, and identi-

fied to species according to Hulley (1981) and Hecht
& Hecht (1987). Additionally, a reference otolith col-
lection created from locally-caught fish species dur -
ing offshore US AMLR oce ano graphic surveys facili-
tated identification of otoliths to species. Gn otoliths
were also characterized as left side or right side. The
present study is only concerned with the ageing of
archived Gn otoliths. All samples recovered from
scats, including otoliths from other species and other
prey parts, were archived at the NOAA Laboratory in
La Jolla, CA. For more detailed collection methodol-
ogy see Polito & Goebel (2010).

2.3.  Gn otolith analysis

2.3.1.  Scat selection

Otoliths were retrospectively subsampled from the
US AMLR archives to be analyzed for age and
length. To maximize temporal coverage, we selected
otoliths from 8 years spanning the 16 yr sampling
period. The samples were spaced approximately
every other year (Table 1) to quantify variability over
the span of the available time series. From these se -
lected years, we identified scats that had >30 Gn oto-
liths to ensure there were sufficient numbers of Gn
otoliths for analyses. Scats with only a few Gn otoliths
may not be representative of Gn in the region and
could reflect biases with individual seal foraging
preferences. Fur seals are thought to consume an in -
creased proportion of myctophids in the second half
of their breeding season (Polito & Goebel 2010), thus
for this study we focused our sampling on the second
half of the field season when high Gn contents were
more common. We randomly subsampled Gn otoliths
from 6 to 10 randomly sampled scats each sampling
year (approximately 2 scats per week; Table 1), over
the 6 wk between January and February.
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Year Collection dates             Scats (n)                                                    Gn otoliths (n)
                                                                                Collected         Sampled                Identified           Sampled           Analyzed

2000              26 Jan 00          2 Mar 00                     114                    10                         2160                   130                    109
2002              24 Jan 02          28 Feb 02                     115                    10                         1340                   130                    122
2004              26 Jan 04          1 Mar 04                     112                    10                         2066                   130                    127
2006              24 Jan 06          24 Feb 06                      95                      6                           565                    108                     97
2008              27 Jan 08          1 Mar 08                     111                    10                         1386                   130                    124
2010              30 Jan 10          1 Mar 10                     108                     8                           501                    112                     96
2012              21 Jan 12          19 Feb 12                      90                     10                         1449                   130                    127
2015              25 Jan 15          22 Feb 15                     100                    10                          778                    130                    120

Table 1. Summary of sampling information for Gymnoscopelus nicholsi (Gn) sagittal otoliths selected from Antarctic fur seal 
Arctocephalus gazella scats collected at Cape Shirreff
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2.3.2.  Otolith selection and preparation

Otoliths were randomly selected from the previously
identified scats with high fish content. All Gn otoliths
of each selected scat were arranged on a numbered
grid and randomly generated numbers (without re-
placement) identified otoliths to select. Sampling and
analyzing otoliths is a time and labor intensive pro-
cess, so it was necessary to limit sampling based on
our available resources. We selected between 108 and
130 Gn sagittal otoliths per sampling year using the
random selection procedure above (Table 1). A 1-way
ANOVA power calculation using α = 0.05, β = 0.9, k =
8, and a moderate effect size f = 0.25 produced a sam-
ple size of N = 37 for each year (R software; pwr pack-
age; Champely et al. 2018), thereby corroborating the
sample sizes used in this study.

Several quality control measures were performed
before analyzing the otolith ages. Only left sagittal
otoliths were analyzed to prevent double-counting
individual fish. It was assumed that there was no sys-
tematic bias in growth patterns between left and
right otoliths. Otoliths that were severely eroded
from digestion (i.e. otoliths with smooth ventral mar-
gins and no denticles) were excluded from analyses
be cause the poor condition reduced the ability to
withstand polishing or to yield accurate age esti-
mates as annuli were likely removed by erosion. A
numeric scale was developed to quantify erosion and
was used to categorize each otolith (1 = no erosion;
2 = mild erosion/pointed denticles; 3 = moderate
 erosion/  rounded denticles; 4 = high erosion/few den-
ticles present; 5 = severe erosion/smooth margin and
no denticles). We omitted erosion level-5 otoliths from
analysis. There may be biases associated with re -
moving eroded otoliths (i.e. if different sized/aged
otoliths erode at varying rates); however, it was impor-
tant for us to collect quality age estimates. The method
used to select otoliths was consistent through out the
time series; therefore, any biases should be systematic
and should not affect trends derived from the otolith
time series.

2.3.3.  Otolith analysis

Otoliths were randomly aged across years and with
no knowledge of collection date to minimize reader
bias. All otolith age-estimations were performed by a
single reader. To visualize annuli (i.e. growth rings),
otoliths were wet-polished on the proximal surface of
each otolith, by hand using 30 µm lapping film, until
the mid-sagittal plane was exposed and following the

protocol in Matta & Kimura (2012). Preliminary ex -
periments demonstrated that after polishing, all Gn
annuli were visible from the proximal surface and
outer annuli were not removed during polishing.
Otoliths were submerged in water atop a Sedgewick-
Rafter slide (1 mm grid size) using reflected light, and
a digital camera (Leica MC170 HD) attached to a dis-
secting microscope (Leica S6D) was used to capture
images using ImagePro Plus (version 6.2, Media
Cyber netics). A stage micrometer was used to cali-
brate the software before each imaging session and a
1 mm background grid was used to provide further
measurement confidence. Each image was assigned
an index so that sample information would be un -
known to the reader during analysis.

Otolith length (mm) and width (mm) along the
anterior-posterior axis and dorso-ventral axis was
measured, respectively, to the nearest 0.01 mm inter-
secting perpendicularly through the nucleus (Fig. 2).
This technique is consistent with previously pub-
lished studies of this species, making our results
more comparable to existing otolith−fish length re -
gressions (Williams & McEldowney 1990).
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Ages of fish in scats were determined from the
analysis of 922 Gn sagittal otoliths (Table 1) by enu-
merating continuous and concentric annuli along the
axis from the nucleus to the rostrum (Fig. 2). An
annulus was defined as an opaque zone followed by
a translucent (i.e. hyaline) zone. We regarded the
first, and often faint, translucent ring (~0.5 mm from
the nucleus; Fig. 2b) as an auxiliary larval ring and
did not count it as an annulus (Zurbrigg & Scott 1972,
Linkowski 1985, Gartner. 1991). The first annulus
counted was the translucent zone following the larval
zone. The outer annulus was only counted if com-
plete. Proper age validation (Stevenson & Campana
1992) has not been published for Gn, as this species
has not been reared in a laboratory or been the sub-
ject of any mark-recapture experiments. However,
ageing myctophids using otoliths has been well doc-
umented (Odate 1966, Smoker & Pearcy 1970, Halli-
day 1970, Gjøsaeter 1973, Hecht & Hecht 1981).

2.3.4.  Ageing reproducibility

To better quantify ageing consistency, 2 prelimi-
nary studies were conducted and age bias plots con-
structed following methods reported in Campana et
al. (1995). First, a subset of the Linkowski (1985) Gn
otoliths were aged and bias was analyzed between
different readers (Fig. 3a). Age estimates had 89%
agreement and a mean CV = 9.6% (N = 47; Fig. 3a).
Then, repeated age measurements were performed
for a random sample of the otoliths analyzed in this
study to evaluate precision and bias for an individual

reader (Fig. 3b). Our duplicated age estimates also
had 89% agreement and a mean CV = 22.6%, with
the second estimate of the same otolith (Estimate 2)
biased to under-estimate age-5 and age-6, and
slightly over-estimate age-2 (N = 100; Fig. 3b).

2.4.  Data analysis

2.4.1.  Fur seal diet

To examine whether fur seals exhibited any trends
in prey switching that could impact our interpretation
of the otolith data in fur seal scats, the percent occur-
rence of krill, fish, and cephalopods (indicated by the
presence of carapaces, otoliths, and beaks, respec-
tively) in fur seal scats were calculated for each year
between 2000 and 2015. The number of Gn otoliths
and other otoliths (i.e. remaining otoliths of other fish
species) in fur seal scats each year between 2000 and
2015 were normalized for 100 scats (to adjust for
varying sampling sizes among years) as an estimate
of relative fish availability. Ordinary least squares
(OLS) regressions with slopes significantly different
from zero at p < 0.05 were used to examine trends in
prey occurrence and the number of otoliths in fur seal
scats among years. A series of Durbin- Watson (DW)
tests suggested there was no temporal auto corre -
lation for krill occurrence (DW = 1.72, p = 0.19), fish
occurrence (DW = 1.69, p = 0.17), squid occurrence
(DW = 1.70, p = 0.18), or Gn otoliths (DW = 1.92, p =
0.32), while there was slight autocorrelation for oto-
liths of other species (DW = 1.22, p = 0.02).

2.4.2.  Gn age and length from
otoliths

Age data were grouped by sampling
year and age class to compare the pro-
portions of each age class among years
(see Table 2). To account for the possi-
bility of inaccurate age estimation,
ages were also grouped into ‘younger’
and ‘older’ groups (age-2 and -3, and
age-4, -5 and -6). To examine whether
relative proportions of age classes in
the population varied over time, an in-
dication of either increased relative re-
cruitment or decreased availability of
older age classes in the region, OLS
regressions of the proportions of each
age, and combined ages, were used.
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To test whether there were any significant tempo-
ral effects on estimated ages in this study, a linear
model was developed, based on the multi-stage sam-
pling of otoliths. Samples of otoliths were categorized
and analyzed by year and time of collection (i.e.
~every fortnight) within each sampling season, fol-
lowing the linear model:

yi,j = μ + αi + βj + (αβ)i,j + ei,j (1)

where yi,j was the mean age of Gn collected in year i
during collection period j, μ the mean age of the
observed fish population, αi the year effect with i
varying 1 to 8, βj the time of collection with j varying
from 1 to 3, (αβ)i,j the interaction between year and
time of collection, and ei,j the sampling error. The age
data was log-transformed to better approximate nor-
mality and equality of variance within year and time.

As only the year effect was significant in Eq. 1 (see
Table 3), we plotted the mean estimated age for each
sampling year with a 95% confidence interval (CI)
and fit a weighted least squares (WLS) regression to
the means. Weights were the inverse of the variance
and were used to account for different sample sizes
(and resulting variance) among years. Analysis of the
residuals of mean ages from the weighted linear
regression and a Durbin-Watson test (DW = 3.51, p =
0.99) suggested there was no sign of temporal auto-
correlation.

Fish lengths (mm, SL) were reconstructed from oto-
lith lengths (mm, OL; Fig. 2b), using the otolith−fish
length regression (SL = 28.6 OL − 20.8; R2 = 0.89; N =
140; from fish 31−174 mm SL) reported by Williams &
McEldowney (1990), and WLS regression analysis of
mean SL by sampling year was conducted to test for
a temporal trend in mean size from 2000 to 2015.

Statistical analyses were performed using the Sta-
tistical Analysis Software (SAS, version 9.1) and R
(version 3.5.1).

3.  RESULTS

3.1.  Diets of fur seals at Cape Shirreff

Fur seal diets inferred from analysis of scats at
Cape Shirreff showed presence of krill, fish, and
cepha lo pods each year of the study. When averaged
over the time series, krill, fish, and cephalopods oc -
curred in 93%, 41%, and 10% of scats, respectively
(Fig. 4). Although variable, there was no significant
trend in the occurrence of krill or cephalopods over
time (p = 0.38 and p = 0.21, respectively). In contrast,
fish, which made up a large component of fur seal

diet, exhibited a significant decline in the percent oc -
currence in fur seal scats over the time series (p =
0.01), suggesting that fish availability to fur seals
declined at Cape Shirreff.

The number of otoliths of the most abundant fish
taxa in the diets of fur seals declined over the study
period (Fig. 5). The number of Gn otoliths declined
(slope of linear regression: p = 0.01) from 2160 in
2000 to a minimum of 146 in 2015 (Fig. 5). For species
other than Gn (predominantly Electrona antarctica
and E. carlsbergi) a decline was also observed (slope
of linear regression: p = 0.08) and the number of oto -
liths decreased from 827 in 2000 to 126 in 2015, with
a minimum of 35 in 2011 (Fig. 5).
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3.2.  Changes in Gn age distribution

Age composition of Gn in diets of fur seals varied
over the 16-year time series (Table 2). Fur seals for-
aging around the South Shetland Islands consumed
Gn age-2 through -6 (Table 2). Fish age-2 through -5
were present in fur seal diets in all sampling years,

and fish aged 3 and 4 comprised 88% of the Gn con-
sumed. The 2 ages occurred in similar proportions to
each other throughout the study period, with age-3
and -4 making up on average 48% ± 6% SD and 40%
± 5% SD, respectively. There was a significant in -
crease in the proportion of age-3 (p = 0.03) and a sig-
nificant decrease in the proportion of age-5 (p = 0.02)
fish in fur seal diet during this time period. Age-6 Gn
were absent from 4 of the 8 sampling years (2006,
2010, 2012, 2015), including the 3 most recent sam-
pling years (Table 2). Although age-6 fish made up a
small proportion of the samples (0.5% of the oto liths
analyzed), their absence in recent years coincided
with the decline in the prevalence of age-5 Gn in fur
seal diets, and the combined proportion of age-5 and
age-6 fish declined significantly during the study
period (p = 0.02).

The mean age of Gn in the diets of fur seals de clined
between 2000 and 2015 (Fig. 6). Over the time series,
mean age declined from ~3.66 yr in 2004 to ~3.38 yr in
2015. A 2-way ANOVA (year × time of collection) of
age showed no significant effect of time of collection
(i.e. intra-annual variation in sampling dates) or of the
interaction between year and time of collection
(Table 3). There was, however, a significant effect of
year of collection on the age of Gn from fur seal scats
at Cape Shirreff between 2000 and 2015 (p = 0.04).

3.3.  Variability in reconstructed length distribution

Although there was a decline in Gn mean age over
the course of this study, there was no significant
change in reconstructed lengths (p = 0.77). Over
the time series, otolith lengths ranged from 4.13 to
6.19 mm, and reconstructed lengths of Gn based on
Williams & McEldowney (1990) ranged from 97 to
156 mm SL (Fig. 7).

4.  DISCUSSION

The lack of directed studies on many ecologically
important taxa means that alternative methods are
required to provide data on the status and trends of
these critical components of the pelagic ecosystem.
In this study, we developed a time series of age and
reconstructed length for an important Southern
Ocean myctophid, Gymnoscopelus nicholsi, using
oto liths collected as part of long-term monitoring of
fur seal diets at a site in the Antarctic Peninsula
region, among the fastest changing environments on
the planet (Gille 2008, Whitehouse et al. 2008). Al -
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Year     Age-2       Age-3       Age-4       Age-5       Age-6

2000       0.06           0.40           0.41           0.12           0.01
2002       0.07           0.49           0.37           0.07           0.01
2004       0.02           0.39           0.50           0.08           0.01
2006       0.06           0.47           0.41           0.05           0.00
2008       0.04           0.48           0.40           0.07           0.02
2010       0.02           0.55           0.36           0.06           0.00
2012       0.06           0.50           0.41           0.04           0.00
2015       0.06           0.55           0.35           0.04           0.00

Table 2. Proportions of Gymnoscopelus nicholsi ages in
Antarctic fur seal Arctocephalus gazella scats collected at 

Cape Shirreff
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              df         Type-III SS      MS             F               p

α             7                0.64            0.09           2.14           0.04
β             2                0.07            0.04           0.83           0.43
αβ          13               0.88            0.07           1.59           0.08

Table 3. Two-way ANOVA comparing the effects of year (α)
and week (β) of collection on log age of Gymnoscopelus
nicholsi otoliths collected from Antarctic fur seal Arctocepha -
lus gazella scats at Cape Shirreff between 2000 and 2015
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though there are caveats and biases to any sampling
strategy (i.e. fishing, acoustics, diets), we show that
substantial information can be recovered about cer-
tain population features of difficult to sample taxa
using analysis of diets of their predators. Our results
indicate that scats are an effective source of otoliths,
which can be used to examine Gn population struc-
ture fluctuations around the Antarctic Peninsula
when data from traditional sampling methods are not
readily available.

The presence and/or quantity of specific prey re -
mains (i.e. otoliths, carapaces, and beaks) provides
relative availability information for principal prey
taxa (Agnew 1997, Davis et al. 2006) and the analy-
sis of otoliths from scats provides high quality infor-
mation on the age distributions of fish available to
fur seals foraging at Cape Shirreff. During this
study period, a decline was observed in the number
of oto liths (of all species and of Gn) and in the
occurrence of fish in fur seal scats. Over the same
time period, a decline was also observed in the
mean age of Gn, represented by fewer older indi-
viduals in the second half of the study period. The
concurrent declines of Gn age and Gn in diets, com-
bined with the consistent presence of younger age
groups, suggests continual recruitment of Gn to the

South Shetland Island slope region
during the study period (i.e. 2000
through 2015) but local declines after
recruitment.

4.1.  Variability in Gn age

The mean age of Gn in diets of fur
seals showed considerable interannual
variability, with a negative trend over
time, suggesting a change in the age of
Gn consumed by fur seals in the slope
region during this time. The propor-
tions of older Gn (age-4, -5, and -6) all
decreased, while the proportions of
younger Gn increased (age-3) or stayed
the same (age-2). Although the ab-
solute decline in mean age was small
(0.28 yr), this is a large change for a
short-lived species. Assuming the max-
imum age of Gn is 6 yr, this decline in
mean age represents ~5% of their life-
span. Other studies of fish population
structure have found similar declines
in mean age along with age truncation
for depleted or exploited populations

(Berkeley et al. 2004, Hsieh et al. 2006, Charbonneau
et al. 2019), suggesting changes comparable to fishing
effects are occurring for Gn in the South Shetland Is-
land slope region.

The negative trend in mean age appears robust
considering the efforts and analyses made to mini-
mize and quantify ageing bias. Firstly, otoliths were
randomized across years for age analysis and a con-
sistent ageing method was used. Second, when ages
were grouped to account for the possibility of inaccu-
rate age estimates, a decrease in the proportion of
older (i.e. age-4, -5, and -6 combined) Gn was ob -
served. Finally, the reproducibility between readers
and precision were high, further strengthening our
conclusion that mean age declined.

4.2.  Decoupled Gn age and length

It is interesting that the observed decline in mean
age was decoupled from the trend of mean recon-
structed fish length. The absence of a significant
change in mean length may be explained by sev-
eral factors including foraging selectivity, variability
in the allometric relationship, sexual dimorphism,
and a change in the growth of Gn over time. First,
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fur seals have been found to select for larger krill
(Reid & Arnould 1996), and it is reasonable to
assume they have some size-selectivity for other
available prey items, such as fish. Regardless of
any size-selectivity that may exist, fur seals are not
able to select for fish age. Second, the lack of a sig-
nal in changes in lengths during a period when
mean age declined could result from the inherent
variability in the relationship between otolith
lengths and fish lengths. Due to variability in
growth among individuals, variability exists within
allometric equations. Length differences among
adult Gn may be too small to detect given the vari-
ability in the reconstruction of SLs from otolith
lengths. Third, there is some evidence of size-
related sexual dimorphism in Gn, with females
generally growing larger than males, especially in
older age classes (Linkowski 1985, Saunders et al.
2015). Variability in sex ratios among years might
also ex plain some of the difference between trends
in mean age and reconstructed length. However,
since sex information was not available for our
 specimens, it was not possible for us to determine
whether changes in sex composition occurred during
the study period and whether such changes might
ex plain the lack of variability in the reconstructed
length-frequency distributions. Finally, fish growth
has high plasticity (Conover et al. 2005, Ward et al.
2017) and changes in size-at-age are common for
populations exposed to size-selective fishing (Sulli-
van et al. 2018). Young Gn might grow faster as a
density-dependent response to increased mortality
of older/ larger Gn, thereby explaining the decou-
pled trends of mean age and SL. Detailed size-at-
age analyses and otolith increment data would con-
tribute to our understanding of temporal Gn growth
patterns. Consequently, the explanation for the
decoupled age and reconstructed SL trends is
unknown but may be a product of the factors listed
above.

4.3.  Biases from using predators to
sample fish populations

There are inevitably biases involved with using
oto liths collected from predator diets to understand
whether changes in ages and lengths reflect the pop-
ulation dynamics of the prey. For example, otoliths
may be partially or completely eroded from digestion
(Pierce & Boyle 1991), thus causing inaccurate age
estimates or length reconstructions. We accounted
for potential bias owing to erosion by omitting se -

verely eroded otoliths from analysis, but we as sumed
that the age distributions of omitted otoliths ap -
peared in the scats in the same relative proportions
as those retained for analysis. We have no evidence
that this is not the case, and the relatively few otoliths
that were rejected from the analysis suggests that
any biases would be small.

Another concern is that predators may not feed on
the entire prey population; in other words, their feed-
ing behavior may introduce availability and selectiv-
ity biases. Similar types of biases exist for all other
sampling strategies. For example, mesopelagic fishes
are known to avoid nets (Kaartvedt et al. 2012) and
spatially restricted surveys (e.g. Pusch et al. 2004) are
unlikely to sample the entire population if the life
history of the animal has a spatial component (Saun-
ders et al. 2017). Fur seals forage continuously along
a path over multiple-day trips (Davis et al. 2006) and
are not limited to sampling at a designated location
(as is the case for net sampling), suggesting availabil-
ity bias from location selectivity is minimal. As cen-
tral-place foragers, fur seals are effective samplers of
fish populations in the vicinity of their sampled
breeding sites; thus, our study is useful for following
trends in the portion of the Gn population available
to (i.e. residing within the spatial range of) and con-
sumed by fur seals at Cape Shirreff.

4.4.  Local processes affecting myctophid
 consumption by fur seals

The temporal patterns in the occurrence of prey
items and the declines in fish in the diets of fur seals
suggest that Gn and other myctophids (i.e. E. antarc-
tica and E. carlsbergi) have become less available to
fur seals foraging in the South Shetland Islands. Over
time, the occurrence of krill and cephalopods in scats
did not show any significant trends; however, during
the same time period otoliths were found in fewer
scats and in lower quantities. There are a number of
hypotheses that may explain the observed decline in
Gn otoliths in fur seal scats and variability of Gn ages
consumed by fur seals over the study period. Some
hypo theses include changes to fur seal behavior,
predator abundance, krill availability, and Gn life
history.

4.4.1.  Changes to fur seal behavior

Changes in fur seal behavior like changing forag-
ing location or prey switching could explain the de -
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cline of fish in fur seal diets. However, there is no evi-
dence that foraging location changed significantly
among years during our study. As for prey switching,
female fur seals appear to increase the distance of
foraging trips during lactation periods in order to
feed on energy-rich myctophids, thereby maximizing
the energy delivered upon returning to their pups
(Ichii et al. 2007, Staniland et al. 2007). Prey switch-
ing during lactation likely was not responsible for
fewer fish in fur seal diet unless decreased pup pro-
duction (Hinke et al. 2017) caused fur seals to return
to feeding predominantly on krill sooner. However,
we are not able to test that hypothesis with the exist-
ing data.

4.4.2.  Changes to predator abundance

Another factor that may explain the observed de -
cline in Gn otoliths in fur seal scats, and also the vari-
ability of Gn ages consumed by fur seals over the
study period, is predator abundance. Predator popu-
lations have changed dramatically over the last cen-
tury (Trivelpiece et al. 2011). Southern Ocean ceta -
cean (Zerbini et al. 2010) and pinniped (Davis et al.
2006) populations have recovered from near-extinc-
tions that resulted from commercial exploitation in
the 19th century. The population of fur seals at Cape
Shirreff has also increased rapidly since the 1950s
(Hucke-Gaete et al. 2004), potentially increasing
 predation pressure on fishes and krill in this region
during the summer season. Increased predation pres-
sure can decrease prey availability and af fect popu -
lation demography (Crozier & Hutchings 2014). Fur
seals presumably consume the largest (and likely
oldest) prey available, which could lead to a decline
in mean SL and age over time, as evident in our age
data. This would be more likely with mesopelagic
fish like Gn that exhibit a benthopelagic life history
as adults (Duhamel et al. 2014) and may be less likely
to move long distances after recruiting to this area.
Increased predation pressure from increasing preda-
tor abundances provides a plausible explanation for
the observed demographic changes to the Gn con-
sumed by fur seals at Cape Shirreff.

4.4.3.  Changes to krill availability

Decreasing krill availability may be another cause
for the observed decline of otoliths in fur seal scats
and variability in ages of Gn consumed by fur seals
over the study period. In the Southern Ocean and the

Antarctic Peninsula region, krill are major prey items
for fur seals (Casaux et al. 2003, Osman et al. 2004;
this study). Decreases in the abundance, biomass, or
availability of this important trophic link could result
in increased predation pressure on alternative tro -
phic pathways, including myctophids, as predators
consume larger numbers of fishes when krill avail-
ability is lower (Murphy et al. 2007, Collins et al.
2008, Iwami et al. 2011). Changes in krill abundance
are not reflected in our diet data, because the relative
occurrence of krill carapaces cannot be accurately
quantified from scats. However, fluctuations (Reiss et
al. 2008, Cox et al. 2018) and declines in krill abun-
dance have been reported in recent decades (Atkin-
son et al. 2004, 2019), and declines in the mean size
of krill (Atkinson et al. 2019), all may contribute to
increased predation on myctophids and other meso-
pelagic fishes.

4.4.4.  Changes to Gn life history

Increased recruitment of younger age groups and/
or increased mortality of older age groups may also
provide an explanation for the declining trend in
mean age. The overall decline in the fish portion of
fur seal diets suggests that increased recruitment of
younger fish is not occurring, otherwise percent
occurrence of fish, and/or number of otoliths would
increase or remain constant. The absence of age-6
fish from the 3 most recent sampling years, despite
in creased sampling effort (fewer otoliths available
from scats and consistent sample size of ~100 otoliths
per sampling year), supports the hypothesis that
fewer older Gn were consumed by fur seals in recent
years. Our results provide evidence for a change to
the population of Gn that coincides with the de -
creased numbers of Gn otoliths in fur seal scats col-
lected in this region. The combination of declining
mean age and declining numbers of otoliths in scats
suggests reduced availability of Gn to fur seals in the
South Shetland Island region. If the decline in Gn
otoliths is related to the decline in older Gn, we might
expect that the faster-growing young fish would be a
larger proportion of the diets. The increased growth
rates of younger fishes is an outcome of predation
removing the larger/older individuals and allowing
the younger individuals greater access to resources
that facilitate more rapid growth. Consequently, exa -
mining growth rate changes using size-at-age data
would be helpful for understanding trends in mycto -
phid growth rates, especially given the consistent
size selectivity of fur seals on Gn.
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4.5.  Southern migration hypothesis

The age range of Gn in this study corroborates pre-
vious studies that suggest Gn move from the north-
ern reproductive populations in the western South
Atlantic to the Antarctic slope south of the Antarctic
Polar Front between 3 and 5 yr of age (Linkowski
1985). The Gn available to fur seals at Cape Shirreff
were age-2 to age-6, but were predominately age-3
and age-4. This is the same age range of fish found in
trawl surveys (Linkowski 1985, Pusch et al. 2004).
The consistency of the younger ages of animals
found in this study allows us to begin to compare
hypo theses regarding recruitment pathways from
northern spawning areas to southern areas around
the Peninsula.

Hulley (1981), McGinnis (1982), and Linkowski
(1985) observed different size-groups of Gn had dif-
ferent distribution patterns. Saunders et al. (2015,
2017) built on these previous observations and sug-
gested most Southern Ocean myctophids, including
Gn, are expatriates and adults migrate from their re -
productive populations for higher latitudes, where
spawning does not take place. If this is the mecha-
nism of recruitment to the slope region, it suggests a
relatively consistent southward movement of life
stages that would take ~3 yr. Barring a direct south-
ward migration, such recruitment would likely be
epi sodic because there is no known direct southward
transport mechanism. A consequence of the episodic
nature of such a mechanism might result in highly
variable ages in diets among years as cohorts are
recruited to the region. The consistent presence of
younger ages in fur seal diets suggests that this
southward migration hypothesis for Gn and other
myctophids is incomplete.

In contrast to the southward direct migration hypo -
thesis, Ashford et al. (2008, 2012), Caccavo et al.
(2018), and Zhu et al. (2018) have shown the impor-
tance of longitudinal transport to explain the popula-
tion structuring of fish species in the Southern
Ocean. These studies highlight the potential trans-
port of life stages with the prevailing circulation as a
principal mechanism. The relatively continuous oc -
cur rence of animals ~3 yr of age in our study area,
regardless of the number of fish in diet, suggests age
at recruitment to the slope region is fairly constant,
and suggests that transport around the Antarctic in
the ACC could be an alternative mechanism to ex -
plain recruitment of animals. The current within the
ACC is between 20 and 50 cm s−1 (Hofmann 1985)
and the distance around the Antarctic at a latitude of
60° S is ~40 000 km. Given this speed and distance, it

might take between 2.5 and 5 yr to be transported
around the Antarctic, which is roughly equal to the
age of occurrence at the South Shetland Islands.

With the direct southward migration hypothesis,
we should expect much more variability in ages.
While our data are not a direct test of this hypothesis,
the differences between these models are certainly
testable in the future. For example, stable isotope
chemistry on otoliths can reveal the temporal scale at
which fish experience changes in ocean environment
(Ashford et al. 2008, Zhu et al. 2018). Such results
would provide evidence for the timing of fish being
exposed to strong gradients in the environment
(especially temperature), and might clarify the tim-
ing and pathway of their movement. Similarly, otolith
increment analysis among cohorts could be used to
provide evidence of growth rate variability, therefore
reflecting changing environments with age.

4.6.  Conclusions

Although we have not identified a clear cause for
the change in the availability of myctophids to pred-
ators and the observed variability in mean age of
Gn among years, these changes appear robust and
suggest variability within the mesopelagic fish com-
munity, indicating a significant trend between 2000
and 2015. The combination of a decline in the num-
ber of Gn in fur seal scats with a decline in mean
age of Gn consumed by fur seals suggests there are
fewer Gn available to fur seals near the South Shet-
land Islands than in the past. The consistent pres-
ence of younger Gn in our samples suggests con -
tinual recruitment to the Antarctic slope region,
which may result from transport mechanisms involv-
ing the ACC, instead of episodic migration events.
Once age-2 and age-3 have recruited to the slope,
various local processes likely contributed to the
decline in the overall availability of Gn, particularly
older individuals.

Obtaining age and length data for the intervening
years in this time series will serve as an excellent
next step and could facilitate an examination of cor-
relations between observed age trends and environ-
mental drivers. Another approach will be to employ
ad ditional analytical methods, including otolith in -
crement analysis, to understand changes in somatic
growth (Jones 1992), and stable isotope analysis, to
understand water mass association (Campana 1999,
Dorval et al. 2011) and transport rates. Employing
these methods will increase our knowledge of myc-
tophid life history, growth rates, and transport/
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migrations. Given the important ecological role of
myctophids, especially as a krill alternative in the
changing Southern Ocean pelagic food web (Murphy
et al. 2007), priority should be placed on studies that
in crease our comprehension of myctophid population
dyna mics (Hill et al. 2007, Watters et al. 2013).

This study demonstrates the power of using
archived otoliths, collected by long-term ecological
monitoring programs that study predator diets, to
investigate temporal trends in unfished populations.
This method of monitoring produces large sample
sizes and can be sustained inexpensively over the
long term, compared to ship-based surveys, which
are expensive and infrequent. For the South Shet-
land Islands, there is an ongoing multi-decadal
archive of fur seal scats, but no equivalent time series
from net samples, making fur seals the most avail-
able sampler of mesopelagic fishes in the region.
Other diet studies already exist in many locations
where myctophids comprise a large proportion of
predator diets (Casaux et al. 2003), including the
South Shetland (Osman et al. 2004, Davis et al. 2006,
Daneri et al. 2008, Polito & Goebel 2010), South Ork -
ney (Daneri & Coria 1993), South Sandwich (Reid &
Arnould 1996), Kerguelen (Cherel et al. 1997),
McDonald (Green et al. 1991), and Prince Edward
Islands (Klages & Bester 1998), suggesting that stud-
ies similar to ours can be expanded across the Ant -
arctic, and to other areas where large predator mon-
itoring studies occur (Lowry & Carretta 1999,
Syde man et al. 2001). Such studies can help to eluci-
date the status of myctophids and other fishes over
large temporal and spatial scales, thereby expanding
our understanding of the Southern Ocean pelagic
ecosystem.
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