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1.  INTRODUCTION

The projected speed and magnitude of warming
temperatures and rising sea levels associated with
climate change vary widely based on model selec-
tion, input data, and geographic region (Flato et al.
2013, Rummukainen 2016). It is clear, however, that
environmental change will persist globally in the
immediate future, and some ecosystems and species
are better suited to changing landscapes and sea-
scapes than others (Grimm et al. 2013, Butt et al. 2016).

Indeed, changing environments have led to respon-
sive shifts in species abundances, distributions, be -
haviors, and physiologies, which have been associ-
ated with both positive and negative changes in
fitness and survival (Lytle & Poff 2004, Jentsch et
al. 2007, Grimm et al. 2013). The properties of resist-
ance and resilience mitigate some of these effects
and aid in the functional maintenance of ecological
communities (Holling 1973). These qualities, how-
ever, are often context-dependent, and vary with
the severity of environmental change and species-
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specific traits (Jentsch et al. 2007, Butt et al. 2016,
van de Pol et al. 2017).

Environmental disturbances vary in their effects on
ecological systems and processes based on their
frequency, duration, and intensity, as well as the
properties of ecosystems (Jentsch et al. 2007, Miller
et al. 2011). Slow, chronic shifts in abiotic factors
have been a primary focus of climate scientists,
because of the predicted global scale of their effects
on ecological and economic systems (IPCC 2014,
2018, Butt et al. 2016). Yet, acute disturbance events,
such as hurricanes, floods, droughts, cold snaps, and
heat waves are also of great interest due to their
rapid and forceful nature, and the limited ability of
humans and other species to predict such events
(Bailey & Secor 2016, Moran-Ordonez et al. 2018).
Furthermore, climate models predict that these
events are likely to change in their frequency of
occurrence and severity in the near future (reviewed
in IPCC 2012, Ummenhofer & Meehl 2017, Maxwell
et al. 2019).

Long-term monitoring used to study chronic envi-
ronmental change can provide data and insight into
the effects of acute events before, during, and after a
disturbance (Thibault & Brown 2008, Scheele et al.
2012). As such, advancing our understanding of
acute disturbance effects is an important facet of cli-
mate science, and fits within the framework of pre-
dicting the long-term effects of warming tempera-
tures and rising seas (IPCC 2012, Maxwell et al.
2019). Identifying species traits (e.g. physiology and
life history) and the properties of communities (e.g.
biodiversity) that promote or limit resilience to such
disturbance also broadens the scope of such
research, and enables more flexible management
strategies to promote timely recovery of species
and ecosystems, and minimize the effects of these
perturbations.

Ecosystems with disturbance regimes of significant
frequency, duration, and/or intensity can serve as
model systems in which to test hypotheses of
 resistance/resilience. South Florida experiences pre-
dictable chronic disturbances as well as unpre-
dictable acute perturbations, which shape its eco -
systems and ecological communities (Duever et al.
1994, Boucek & Rehage 2014, Nungesser et al. 2015).
Seasonal and annual fluctuations in precipitation and
temperature coupled with discrete events such as
 hurricanes and flooding alter species abundances,
behaviors, and biodiversity across a predictable
spectrum for both migrant and residential south
Florida fauna (Roman et al. 1994, Lytle & Poff 2004,
Pirhalla et al. 2015).

In January 2010, south Florida experienced an
extreme cold event, with temperatures more than
5°C below average winter temperatures, that was of
a magnitude unobserved over the previous century
(NOAA 2010, Rehage et al. 2010). The cold snap had
wide-ranging impacts on agriculture, fisheries, eco-
tourism, and ecological communities. In response to
the rapid and extended decline in temperatures,
Florida’s citrus crop crashed (Cave 2010), recre-
ational fisheries were closed for several years (e.g.
Albula vulpes, Centropomus undecimalus; Frezza &
Clem 2015, Santos et al. 2016), reef-building corals
experienced mass mortality (Kemp et al. 2011,
Schopmeyer et al. 2012), and many other tropical and
subtropical fauna died in large numbers (e.g. Stith et
al. 2012, Rehage et al. 2016, Scharer et al. 2017).

Long-term ecological research in the region, par-
ticularly in the coastal Everglades, has provided the
opportunity to study the long-term effects of this
event, and further develop the science of disturbance
ecology and climate change using study species for
which we have a comprehensive understanding of
their biology and ecology both from the region, and
across their geographic ranges (Childers et al. 2019).
Here, we investigate the long-term impacts of the
2010 cold snap on juvenile bull sharks Carcharhinus
leucas in a natal nursery within the Florida coastal
Everglades — the Shark River Estuary. Matich &
 Heithaus (2012) showed that the magnitude and/or
duration of the event exceeded the thermal resistive
capacity of juvenile bull sharks within the Shark
River Estuary, and resulted in behavioral changes
among all sharks, along with mass mortality. How-
ever, a new cohort of bull sharks repopulated the
nursery within 6−8 mo of the event. While definitive
differences in recovery to disturbance between r-
and k-selected species provide a framework for
hypothesis testing (reviewed by Timpane-Padgham
et al. 2017), the resilience of juvenile segments of
populations of long-lived and late-maturing species
with relatively low fecundity is less evident. There-
fore, predicting the magnitude of effects and times
for full recovery of abundance, age structure and pat-
terns of space use and species interactions in nurs-
eries is unclear. As such, we aim to test 4 separate
hypotheses with the present study:

• H1: Recruitment of bull sharks was not affected
by the 2010 cold snap, because adult bull sharks that
inhabit coastal and shelf waters were likely able to
find thermal refuges, and able to give birth in the
estuary in 2010 and thereafter (Castro 2011).

• H2: Repopulation of bull sharks after the 2010
cold snap was driven primarily by the arrival of



newborn pups rather than recolonization by ani-
mals alive before the cold snap (Matich & Heithaus
2012).

• H3: Due to rapid return of typical environmental
conditions (Matich & Heithaus 2012), pre- and post-
cold snap (a) growth rates, (b) size at birth, and (c)
habitat use and distribution of bull sharks were
 similar.

• H4: After the mass mortality observed from imme-
diate cold shock, survival rates of newly recruited
juvenile bull sharks were similar to those observed
before the event, because environmental conditions
normalized shortly after the cold snap (Matich &
 Heithaus 2012).

2.  MATERIALS AND METHODS

2.1.  Study site

The braided river system of the Shark River
 Estuary serves as the main drainage basin of the
Florida Everglades, connecting oligotrophic fresh-
water marshes with productive marine waters of the
Gulf of Mexico (Fig. 1; Childers et al. 2019). Variabil-
ity in environmental conditions attributed to fresh-
water and tidal flow provide a matrix of habitats for
species within the estuary (Williams & Trexler 2006,

Matich et al. 2017), including juvenile bull sharks,
which use the estuary as a nursery for their first
2−5 yr, after which they disperse to coastal marine
waters (Wiley & Simpfendorfer 2007, Heithaus et al.
2009, Matich & Heithaus 2015).

Phosphorous limitation and outwelling produce a
productivity gradient tied to salinity in the estuary,
and allochthonous biomass accumulates in upstream
habitats when marsh water levels recede during the
dry season, and teleosts are forced into deeper
upstream channels (Rehage & Loftus 2007, Childers
et al. 2019). Consequently, there is a bimodal distri-
bution of food availability for juvenile bull sharks
during marsh dry-down, with peaks in upstream and
downstream habitats (Rehage & Loftus 2007, Matich
& Heithaus 2014). Food-risk trade-offs shape the
behavior of juvenile bull sharks, and predation risk
posed by larger sharks is higher in waters adjacent to
the Gulf of Mexico (Matich & Heithaus 2015). To
quantify general patterns in shark distribution, we
divided the estuary into 4 regions based on spatial
differences in abiotic (e.g. salinity) and biotic factors
(e.g. risk, prey abundance) documented during long-
term sampling (i.e. Florida Coastal Everglades Long-
Term Ecological Research Project [LTER]; our Fig. 1;
see Matich & Heithaus 2012, 2015 for details): Down-
river (DR), Shark River (SR), Tarpon Bay (TB), and
Rookery Branch (RB).
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Fig. 1. Acoustic telemetry sampling regions (DR: Downriver; SR: Shark River; TB: Tarpon Bay; RB: Rookery Branch) within the
Shark River Estuary (inset: Florida). White dots: locations of acoustic receivers. Catch data are quantified from longline 

sampling conducted in TB
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2.2.  Field sampling

Juvenile bull sharks were sampled in TB using ca.
500 m bottom-set longlines fitted with 40−55 Mustad
tuna circle hooks (sizes 14/0 and 15/0) baited with
mullet (Mugil sp.) from March 2006 to August 2017
(see Heithaus et al. 2009 for further details on sam-
pling equipment). Shark total length (TL) was meas-
ured to the nearest centimeter, the presence of an
umbilical scar was noted to identify neonates, sex
was determined by the presence or absence of
claspers, and sharks were externally tagged using a
numbered roto tag affixed through the first dorsal fin.

A subset of sharks (n = 105) were surgically fitted
with a Vemco V16-4H transmitter. Transmitters emit-
ted a unique series of pulses for each shark at a ran-
dom interval between 30 and 90 s, with a battery life
of 2−5 yr. Movements of acoustically tagged sharks
were tracked within an array of 43 Vemco VR2 and
VR2W acoustic receivers placed throughout the estu-
ary to detect the location and direction of movements
of tagged sharks into and out of each region (DR, SR,
TB, and RB; Fig. 1). Each receiver had a detection
range of ca. 500 m (see Rosenblatt & Heithaus 2011
for further details of the sampling array). Data were
downloaded every 3−4 mo and batteries were re -
placed as needed.

2.3.  Quantitative analysis

2.3.1.  Catch data

Catch per unit effort (CPUE) was measured as
sharks caught per longline set, and was used as an
estimate of juvenile bull shark densities. CPUE was
quantified for each age class from 0 to 3 yr old, as
well as all sharks within this age range (i.e. total
juvenile shark CPUE). Because of the limited number
of sharks caught with open umbilical scars during the
study, shark ages were estimated using size and time
of birth, and growth rates. Based on minimum sizes
and the presence of umbilical scars, bull sharks in the
Shark River Estuary are likely born at 60−70 cm TL
between May and August (see also Curtis et al.
2011). Recaptures of tagged individuals in our study
and data from other locations (e.g. Neer et al. 2005,
Natanson et al. 2014) indicate growth rates of 10−
20 cm yr−1. Broadly, sharks ≤85 cm TL were classified
as age 0 (including individuals with umbilical scars),
sharks 86−100 cm TL were age 1, sharks 101−115 cm
TL were age 2, and sharks 116−130 cm TL were age
3; although smaller sharks may have been classified

into older age classes based on maximum monthly
sizes for each age class (see Matich & Heithaus 2015
for more details on monthly determinations of shark
age). Sharks were reassigned into the next oldest age
class on 1 July each year for age-specific analyses
based on tracking data (see our Section 2.3.2 below;
Matich & Heithaus 2015).

To assess differences in the CPUE of sharks attrib-
uted to the 2010 cold snap and recovery thereafter,
we used a general linear model (GLM) from March
2006 to August 2017. We used post hoc Tukey tests to
detect significant differences across years. No signif-
icant differences were found between years prior to
the cold snap (2006−2009) in CPUE (F3,148 = 0.79, p =
0.50), or CPUE of sharks in any age class (age 0:
F3,148 = 0.50, p = 0.78; age 1: F3,148 = 1.16, p = 0.33; age
2: F3,148 = 2.04, p = 0.11, age 3: F3,148 = 0.48, p = 0.70).
Thus, pre-cold snap data were pooled for 2006−2009
for hypothesis testing (see H1, H2, and H3 in Section 1
above).

We used logistic regression to examine (1) differ-
ences across sampling years in sex ratios of juvenile
bull sharks from age 0 to 3, and (2) differences in size
structure (proportion of individuals in age classes
0−3) across years. We observed no difference in size
structure prior to the 2010 cold snap (chi-squared
test; χ2 = 15.50, p = 0.08); thus 2006−2009 data were
pooled for hypothesis testing (see H1 and H2).

Linear regression was used to assess differences in
predicted growth rates and size at birth among
cohorts based on age estimates (see H3). Slopes of
best-fit lines were used as estimates of growth rates,
and y-intercepts were used as estimates of birth size
annually on 1 July (see Matich & Heithaus 2015). We
used t-tests to determine differences in growth rates
across cohorts by testing pairwise differences in
regression slopes, with Hochberg’s step-up proce-
dure to correct for multiple comparisons (Hochberg &
Tamhane 1987).

2.3.2.  Acoustic telemetry data

Using the methodology of Heupel et al. (2012), sur-
vival rates of acoustically tagged bull sharks were
estimated based on telemetry data (see H4 in Section
1 above) — individuals that ceased movement within
the study site or showed movement patterns incon-
sistent with previous or typical movements were con-
sidered dead. All mortality events were identified
during the study by the lack of movement of tagged
sharks. A z-test was used to quantify differences in
survival rates of tracked sharks before (2008−2009)

172



Matich et al.: Top predator resilience following extreme weather

and after (2012−2014) the cold snap when mortalities
were identified with telemetry data.

The monthly proportions of time acoustically
tagged sharks spent in each sampling region (DR,
SR, TB, and RB) were calculated. We used these pro-
portions to assess annual differences in shark distri-
bution patterns relative to the 2010 cold snap until
Hurricane Irma in August 2017 (see H3). During the
late dry season (March−May), bull sharks exhibit
 significant changes in their movement patterns in
response to influxes of potential prey from adjacent
freshwater marshes (Matich & Heithaus 2014). To
investigate juvenile bull shark movements outside of
this 3 mo period, we removed movement data from
March to May annually (see Matich & Heithaus
2015). In addition, data were only analyzed for sharks
that were tracked within the estuary for at least 4 mo.
Using this subset of data, we performed a GLM to
individually investigate annual differences in the dis-
tribution of sharks in each age class within the estu-
ary (2009, 2012−2017). We used post hoc Tukey tests
to detect significant differences in habitat use across
years.

Movement data were also used to assess inter-
annual variability in residency patterns of sharks in
response to the 2010 cold snap. A Kruskal-Wallis 1-
way ANOVA was used to quantify annual differ-
ences in estimated age at emigration from the estu-
ary, with post hoc Mann-Whitney tests used to

identify differences among years. Among the sharks
tracked in 2017, 3 individuals permanently emi-
grated from the estuary prior to September when
Hurricane Irma passed over south Florida (Strickland
et al. 2019); 1 bull shark emigrated in July, and 2 emi-
grated in August. Nine additional bull sharks left the
estuary in 2017 in response to Hurricane Irma, but
returned after conditions in the estuary normalized,
and were thus not included in the analysis. All statis-
tical analyses were conducted in IBM SPSS 22. We
evaluated significance at α = 0.05, and report means
with ±1 SD.

3.  RESULTS

3.1.  Catch data

From 2006 to 2017, we sampled 251 bull sharks in
TB (2006: 36, 2007: 11, 2008: 12, 2009: 35, 2010: 9,
2011: 16, 2012: 15, 2013: 32, 2014: 12, 2015: 6, 2016:
36, 2017: 31), ranging from 66 to 178 cm TL (mean:
94.1 ± 18.7 cm).

When data were pooled, no significant differences
in shark CPUE were detected before and after the
event (F1,429 = 0.01, p = 0.91). However, differences
were apparent across years, with higher CPUE in
2016 and 2017 than 2010 (F7,281 = 2.69, p = 0.01;
Fig. 2). Neither age 0 nor age 1 sharks exhibited
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Fig. 2. Longline catch per unit effort (CPUE) of juvenile bull sharks age 0−3 in Tarpon Bay, 2006−2017. Data collected before
the 2010 cold snap were not significantly different (F3,148 = 0.79, p = 0.50), and were pooled. Error bars are ±SE, and bars with 

different letters are significantly different within ages / across totals (p < 0.05, post hoc Tukey tests)
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 differences in CPUE across sampling years, support-
ing H1 and H2 (Fage 0,8,429 = 1.02, p = 0.42; Fage 1,8,429 =
1.81, p = 0.07; Fig. 2). However, there were temporal
differences in age 2 and age 3 CPUE (Fage 2,7,281 =
2.92, p < 0.01; Fage 3,7,281 = 3.14, p < 0.01; Fig. 2). CPUE
of age 2 sharks were lower in 2010−2012 than prior to
the 2010 cold snap, with increasing CPUE of age 2
sharks from 2010 to 2017 (Fig. 2). Age 3 sharks were
only caught prior to the 2010 cold snap and in 2017
(Fig. 2).

There was no differences in the sex ratio (M:F)
of juvenile bull sharks before (55:45) or after
(48:52) the 2010 cold snap (χ2 = 2.49, p = 0.29);
however, there was a temporal shift in the age
structure within the nursery (χ2 = 37.99, p = 0.04;
Fig. 3, Table 1). No sharks older than age 1 were

caught in 2010 and 2011, with a significantly
higher proportion of age 1 sharks caught in 2011
than prior to the 2010 cold snap. A smaller propor-
tion of age 2 sharks were caught in 2012 than
prior to 2010. Age structure did not resemble
2006−2009 until 2017.

Estimated growth rates and estimated sizes at birth
for each cohort varied annually, ranging from 9.4 to
23.0 cm TL yr−1 (growth rate) and 66.3−80.9 cm TL
(birth size; Table 2, Fig. 4). There was a significant
negative correlation between growth rate and birth
size estimates (r = −0.72, t9 = 3.13, p = 0.01). Growth
rates varied across years (Table 3, Fig. 4), with faster
growth rates among the 2005, 2006, and 2011
cohorts, and slower growth rates among the 2014,
2015, and 2016 cohorts. However, no direct effects

from the cold snap were apparent,
supporting H3a and H3b. Data were
insufficient to produce a best-fit line
for the 2008 cohort.

3.2.  Acoustic telemetry data

Among the 105 sharks that were
surgically implanted with acoustic
transmitters, 86 individuals were
tracked within the acoustic array for
at least 4 mo (Table A1 in the Appen-
dix), with an average tracking dura-
tion of 15.3 ± 8.5 mo (maximum:
27 mo), and a total tracking time of
1315 mo among the 86 sharks.

Mortality rates of acoustically
tagged sharks did not differ before
(8% of all acoustically tagged sharks
from 2008 to 2009) versus after (10%
of acoustically tagged sharks from
2012 to 2017) the 2010 cold snap (z =
0.29, p = 0.77), excluding the acute
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Fig. 3. Annual variability in the proportion of juvenile bull sharks in each age
class, with sample sizes. Data collected before the 2010 cold snap were not
 significantly different (χ2 = 15.50, p = 0.08), and were pooled. Letters within bars
indicate significant interannual differences (p < 0.05, post hoc chi-squared test)

2006−2009 2010 2011 2012 2013 2014 2015 2016

2010 4.29, 0.23
2011 9.45, 0.02 1.21, 0.27
2012 5.17, 0.16 1.26, 0.53 1.22, 0.54
2013 8.60, 0.04 1.89, 0.39 1.69, 0.43 0.11, 0.95
2014 2.99, 0.39 2.01, 0.37 2.56, 0.28 2.15, 0.34 0.25, 0.88
2015 0.85, 0.84 3.54, 0.17 6.88, 0.03 6.19, 0.04 3.34, 0.19 1.63, 0.44
2016 4.21, 0.24 1.86, 0.40 6.28, 0.04 4.93, 0.09 1.99, 0.37 0.58, 0.75 1.07, 0.59
2017 5.06, 0.17 9.27, 0.03 11.11, 0.01 10.49, 0.02 9.70, 0.02 3.51, 0.32 3.26, 0.35 8.87, 0.03

Table 1. Chi-squared and p-values for post hoc test of temporal differences in bull shark age structure. Bold: significant 
(α = 0.05)
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effects of the event itself (in January 2010), support-
ing H4. The spatial distributions of juvenile bull
sharks did, however, vary across the study period,
counter to H3c. Age 0 sharks exhibited limited differ-
ences in spatial distributions, with greater use of
upstream waters (RB) in 2014, and greater use of
more saline waters (SR) in 2016 and 2017 (Fig. 5).

Age 1 sharks exhibited greater temporal differences
in distributions, with significantly greater use of
downstream (DR) habitats and lower use of upstream
habitats (TB and RB) in 2012, with subsequently less
time spent in higher-salinity waters (DR and SR) and
increased time spent in lower-salinity waters (TB and
RB) until 2016. Age 2 and age 3 sharks exhibited sim-
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Fig. 4. Body size upon capture date used to quantify growth rate and size at birth estimates of juvenile bull shark cohorts based 
on age estimates of captured sharks (Matich & Heithaus 2015). Lines are best fit lines from linear regressions

Cohort Best-fit line R2 F p Growth rate Birth size
(cm TL yr−1) (cm TL)

2005 y = 0.055x + 69.33 0.96 393.5 <0.01 20.2 (18.0−22.4) 69.3 (64.3−74.3)
2006 y = 0.063x + 63.28 0.94 246.6 <0.01 23.0 (19.8−26.2) 63.3 (56.8−69.8)
2007 y = 0.050x + 75.61 0.70 28.0 <0.01 18.1 (10.6−25.6) 75.6 (64.3−86.9)
2009 y = 0.043x + 66.76 0.92 252.4 <0.01 15.6 (13.6−17.7) 66.3 (63.7−69.9)
2010 y = 0.036x + 70.02 0.94 185.1 <0.01 13.2 (11.1−15.3) 70.0 (67.0−73.1)
2011 y = 0.047x + 70.31 0.92 223.3 <0.01 17.3 (14.9−19.7) 70.3 (66.1−74.5)
2012 y = 0.037x + 78.98 0.90 96.0 <0.01 13.4 (10.4−16.4) 79.0 (76.2−81.8)
2013 y = 0.031x + 80.88 0.91 290.4 <0.01 11.4 (10.0−12.7) 80.9 (78.3−83.5)
2014 y = 0.026x + 76.28 0.91 87.5 <0.01 9.6 (7.6−11.6) 76.3 (72.6−80.0)
2015 y = 0.026x + 79.04 0.70 32.4 <0.01 9.4 (5.7−13.1) 79.0 (73.9−84.3)
2016 y = 0.028x + 73.93 0.44 22.9 <0.01 10.0 (5.8−14.2) 73.9 (70.9−76.9)

Table 2. Equations, test statistics, and p-values of linear regression estimates of growth rates and size at birth for each cohort
based on age estimates of captured bull sharks (Matich & Heithaus 2015). Growth rates are based on the slopes of best-fit 

lines, and birth sizes are based on y-intercepts at 1 July per annum. Values in parentheses: 95% CI. TL: total length



Mar Ecol Prog Ser 639: 169–183, 2020

ilar, but more pronounced changes in distribution
patterns. Age 2 and age 3 sharks significantly
increased their use of DR after 2010 (i.e. 2012), with
markedly decreased use thereafter aligned with
increasing use of TB.

In addition to the 8 bull sharks that emigrated from
the Shark River Estuary during the 2010 cold snap,

acoustic tracking showed that 44 individuals perma-
nently emigrated from the estuary before (n = 13) and
after (n = 31) the event (batteries on acoustic trans-
mitters died before emigration for the remaining
individuals being tracked). Estimated age at emigra-
tion varied considerably among individuals (0−5 yr);
however, inter-annual differences were apparent

176

Fig. 5. Proportion of time spent in each sampling region (see Fig. 1 for abbreviations) for juvenile bull sharks age classes 0−3
from 2009 to 2017 (nage0 = 7, 11, 19, 9, 0, 7, 4; nage1 = 13, 8, 22, 19, 10, 8, 7; nage2 = 14, 2, 15, 21, 19, 13, 7; nage3 = 7, 0, 3, 12, 10,
6, 8 sharks tracked for each sampling year, respectively). Data are unavailable for 2010 and 2011, because no sharks were
tracked during this period. Error bars are ±SE, and bars with different letters are significantly different (p < 0.05, post hoc 

Tukey tests)

2006 2007 2009 2010 2011 2012 2013 2014 2015 2016

2005 −1.64, 0.118 0.51, 0.617 3.09, 0.006 4.93, <0.001 1.90, 0.072 3.85, 0.002 7.20, <0.001 7.77, <0.001 5.24, <0.001 4.22, <0.001
2006 1.27, 0.223 4.15, <0.001 5.62, <0.001 3.14, 0.006 4.74, <0.001 7.27, <0.001 7.86, <0.001 5.93, <0.001 4.99, <0.001
2007 0.72, 0.485 1.44, 0.173 0.30, 0.766 1.29, 0.221 1.99, 0.067 2.47, 0.029 2.28, 0.039 2.00, 0.066
2009 1.85, 0.086 −0.96, 0.353 1.30, 0.216 3.68, 0.002 4.64, <0.001 3.09, 0.008 2.36, 0.033
2010 −2.66, 0.019 −0.22, 0.832 1.55, 0.144 2.75, 0.018 7.83, 0.089 1.26, 0.228
2011 2.04, 0.062 4.37, <0.001 5.22, <0.001 3.66, 0.002 2.89, 0.009
2012 1.44, 0.176 2.45, 0.031 1.81, 0.095 1.31, 0.215
2013 1.62, 0.131 0.98, 0.344 0.5, 0.623
2014 0.00, 0.999 −0.32, 0.755
2015 −0.27, 0.793

Table 3. t-values and p-values for pairwise cohort slope comparisons of estimated juvenile bull shark growth rates. Bold: significant 
based on adjusted α-value (0.003) using Hochberg’s step-up procedure
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(Kolmogorov-Smirnov test statistic H3 = 12.6, p = 0.05;
Fig. 6). Estimated age at emigration was significantly
younger in 2013 (1.5 ± 0.58 yr) than 2009 (2.9 ± 1.14
yr), 2015 (3.3 ± 1.21 yr), and 2017 (3.3 ± 0.58 yr), and
the single individual that emigrated from the estuary
in 2012 was only 1 yr of age. Movement data do not
suggest predation events occurred, based on criteria
of Heupel et al. (2012).

4.  DISCUSSION

Extreme disturbance events provide challenges for
both ecological communities and resource managers
due to their unpredictable nature, high intensity, and
often rapid onset (Jentsch et al. 2007, Maxwell et al.
2019). These challenges combined with our limited
understanding of resilience across contexts make
predicting recovery periods for populations and
 ecosystems difficult (Allen et al. 2010, Butt et al.
2016). In south Florida, unprecedented weather
 during the 2010 cold snap caused extensive mortality
of juvenile bull sharks (Matich & Heithaus 2012);
however,  several months after the event, the Shark
River  Estuary nursery began to recover, with survival
and birth rates consistent with other bull shark nurs-
eries in the region (Curtis et al. 2011, Natanson et al.
2014, Matich & Heithaus 2015). Yet using traditional

indices (i.e. CPUE and age structure), we
found that recovery of multiple characteristics
of the bull shark population required a longer
duration of time (≥7 yr) than expected based
on our hypotheses (ca. 4 yr). Furthermore, the
system was perturbed again with another ex -
treme event in September 2017 (Hurricane
Irma; Strickland et al. 2019), challenging our
descriptions of stable states in highly dis-
turbed systems (Holling 1973, Pimm 1984).

Across south Florida, natural and anthro-
pogenic perturbations shape ecosystems, with
many residential species well suited to acute
disturbance events nested within chronic en-
vironmental variability (Duever et al. 1994,
Pirhalla et al. 2015, Childers et al. 2019). The
ecosystems of the Florida Everglades experi-
ence extreme environmental events every ca.
5−10 yr (Duever et al. 1994, Pirhalla et al.
2015), and sharks are adapted to  handle such
disturbances, with an array of sensory systems
and high levels of mobility that enable them to
detect and avoid most unsuitable conditions
(Carrier et al. 2012, Klimley 2013). For in-
stance, sharks respond to hurricanes by mi-

grating to safer, deeper waters, and returning to shal-
lower coastal ecosystems soon after such events (i.e.
within days to weeks; Heupel et al. 2003, Simpfendor-
fer & Wiley 2006, Strickland et al. 2019). However, the
rapid onset of the 2010 cold snap may not have of-
fered environmental cues early enough for juvenile
bull sharks to respond effectively. The 2010 event in
south Florida was similar to many other cold weather
events defined by rapid declines in temperatures that
can have severe short-term (e.g. Lea et al. 2009,
Moreno et al. 2015) and long-term effects (e.g. Chan
et al. 2005, Tyler 2010, Scharer et al. 2017). Even
iteroparous species that are morphologically and
physiologically suited to tolerate cold temperatures
can be impacted by extreme events through de-
creased survival and reproduction (e.g. Davidson &
Evans 1982, Joly et al. 2011, Deville et al. 2014), with
lasting effects for several years after the events (e.g.
Post et al. 1997, Chan et al. 2005, Maxwell et al.
2019).

Bull sharks are found in low water tem peratures
within some estuaries (e.g. 14°C in Caloosahatchee
River, FL, Heupel & Simpfendorfer 2008; 15°C in
Matagorda Bay, TX, Froeschke et al. 2010; 18°C in
Sydney Harbour, Smoothey et al. 2016), but occur-
rence in colder waters is uncommon (e.g. Curtis et al.
2011, Drymon et al. 2014, Bangley et al. 2018). In
most North American nurseries, juvenile bull sharks
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Fig. 6. Estimated age of juvenile bull sharks upon permanent emigra-
tion from the Shark River Estuary based on acoustic tracking data.
Sharks acoustically tagged after the 2010 cold snap did not begin
 emigrating from the estuary until 2012. Boxes: 25th–75th percentiles;
lines within boxes: medians; ×: means; whiskers: max./min. Different
letters indicate sig nificantly different (p < 0.05, post hoc Mann-Whit-
ney tests). All sharks that permanently emigrated from the estuary in 

July and August 2017 are included



Mar Ecol Prog Ser 639: 169–183, 2020178

make annual winter migrations into more southern
waters of the Gulf of Mexico, Caribbean Sea,
or Atlantic Ocean to avoid cooling winter waters
(McCandless et al. 2007, Curtis et al. 2011, Bangley
et al. 2018). Relatively warm average winter temper-
atures of the subtropical Shark River Estuary enable
juvenile bull sharks to remain within the nursery
year-round, alleviating the energetic ex pense of
migration, as well as the risk juvenile bull sharks
face from large predatory sharks in coastal waters
(Wiley & Simpfen dorfer 2007, Matich & Heithaus
2012, 2015). However, year-round residency in this
shallow estuarine bay makes them more susceptible
to cold shock from extreme winter weather events,
like that experienced in 2010 (Matich & Heithaus
2012).

Fecundity, recruitment, and juvenile survival rates
often determine the speed at which populations
recover after extreme disturbance that can be driven
by environmental conditions and food availability
after events (e.g. Davidson & Evans 1982, Tyler 2010,
Moreno et al. 2015). Based on the CPUE of young-of-
the-year individuals (i.e. age 0), it appears that
recruitment (H1 and H2), litter sizes (H1), and size at
birth (H3b) of bull sharks were similar before and
after the 2010 cold snap. Mortality rates of juvenile
bull sharks also were not affected in the long-term by
the 2010 cold snap (8 and 10% of acoustically tagged
sharks before and after the event, respectively; H4)
despite the initial ca. 90% estimated mortality attrib-
uted the event. Similarities in recruitment and mor-
tality rates were likely re sultant from normalized
environmental conditions, which would encourage
relatively rapid recovery of the nursery (Matich &
Heithaus 2012). However,  preferred prey availability
within the estuary may have changed, including
declines in many tropical euryhaline fishes (e.g.
Cichlidae, Gerreidae), and replacement by temper-
ate, freshwater species that may be less accessible in
brackish and marine habitats (e.g. Centrarchidae,
Mugilidae; Boucek & Rehage 2014). In addition to
surpassing physiological tolerances, food limitations
attributed to adverse conditions often slow recovery
rates after extreme events (e.g. Woodward et al.
2016, Sidorovich et al. 2017). Indeed, many species
may survive prolonged periods of adverse weather;
however, malnutrition and starvation resulting from
lack of food resources can lead to high mortality rates
following such events (e.g. Deville et al. 2014,
Moreno et al. 2015). For example, harsh winter con-
ditions in Belarus led to declines in the primary prey
species (e.g. Capreolus capreolus, Sus scrofa) of
wolves Canis lupus, leading to increased predation

on large ungulates, small mammals, and domesti-
cated animals (Sidorovich et al. 2017). Similarly,
great egrets Casmerodius albus in the Florida Ever-
glades may abandon nests during cold periods due to
reduced foraging efficiency in shallow waters when
prey fishes increase hiding behavior in vegetation or
bury themselves in sediment to reduce thermal stress
(Frederick & Loftus 1993). Within the Shark River
Estuary, Eugerres plumieri and Mugil cephalus,
important prey items for bull sharks in other coastal
ecosystems (e.g. Snelson et al. 1984, Cliff &  Dudley
1991, Estupiñán-Montaño et al. 2017), were not
affected by the cold temperatures, and exhibited
similar abundances before and after the event
(Boucek & Rehage 2014). However, other prey taxa
(Mayaheros urophthalmus, Eucinostomus harengu-
lus, Oreochromis aureus) decreased significantly,
leading to prey communities dominated by temper-
ate freshwater fishes, which could have influenced
bull shark recovery based on their preference for
brackish habitats within the estuary (Heithaus et al.
2009, Rosenblatt et al. 2013).

Estimated growth rates did vary inter-annually
across the study period, but there was no apparent
relationship with the cold snap (H3a; Fig. 4). The
slowest estimated growth rates (9.6 and 9.4 cm yr−1)
were observed among cohorts born several years
after the event (2014 and 2015), which exhibited
some of the largest estimated sizes at birth (76.3 and
79.9 cm TL). The observed negative correlation
between estimated size at birth and growth rate may
have been driven by maternal meddling (Olin et al.
2011); however, testing this hypothesis is beyond the
scope of our study based on available data. Survival
rates were similarly unaffected by the cold snap (H4),
obscuring the mechanisms behind the delayed
recovery of the nursery.

Given what appear to be minimal effects of the cold
snap on juvenile bull shark recruitment (H1 and H2),
survival rates (H4), and growth rates (H3b), coupled
with a relatively rapid return of environmental condi-
tions, we hypothesized that habitat-use patterns of
juvenile bull sharks would be similar after the cold
snap (H3c). Habitat use of age 0 and age 1 bull sharks
were consistent with this hypothesis, but age 2 and 3
sharks significantly increased their use of down-
stream habitats after the 2010 event. By 2015−2017,
however, individuals in these age classes used habi-
tats similar to age 2 and 3 sharks present before the
cold snap. Reduced use of low-salinity waters by
older juvenile bull sharks likely reduced competitive
pressure on younger conspecifics (de Roos et al.
2002, Papastamatiou et al. 2006), and may have
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reduced cannibalistic encounters (Vorenberg 1962),
which could have led to a rapid recovery of young
sharks in the nursery after the event. As predicted,
age 0 and 1 sharks exhibited immediate recovery
from the cold snap based on CPUE in TB, and age
2 sharks recovered within 3 yr of the event, support-
ing our predictions. Yet, the apparent recovery of the
entire nursery was considerably slower than ex -
pected based on CPUE (ca. 7 yr instead of 4 yr) — fol-
lowing the cold snap, age 3 sharks were not caught
again until 2017. Recovery rates of slow-growing
species are often non-linear, thus our results are not
anomalous, and support previous studies investigat-
ing the long-term impacts of environmental change,
and the recovery of highly mobile, large-bodied spe-
cies (e.g. Chan et al. 2005, Tyler 2010, Elliser & Herz-
ing 2014). Inaccurate age estimation is possible, but it
is unlikely based on in situ similarities in growth rate
estimates among age classes and the extensive work
on age and growth of bull sharks within the Gulf of
Mexico (Neer et al. 2005, Curtis et al. 2011, Natanson
et al. 2014). Alternatively, changes in the behavior of
age 3 bull sharks attributed to the ecological condi-
tions of the estuary may be responsible for the ob -
served trends in CPUE.

The oligotrophic nature of the Shark River Estuary
leads to more productive food webs in its marine
habitats than its low-salinity, upstream waters for
much of the year (Rehage & Loftus 2007, Matich &
Heithaus 2015, Childers et al. 2019). Thus, despite
the protective qualities of brackish and freshwater
habitats in reducing encounter rates with marine
predators, prey availability is generally higher in
riskier, marine waters (Matich & Heithaus 2015).
Increased food availability is hypothesized as a
driver of ontogenetic niche shifts from estuarine to
marine environments for juvenile bull sharks across
their geographic range (e.g. Heithaus 2007, Curtis et
al. 2011, Werry et al. 2011). After extreme events,
some species exhibit changes in ontogenetic shifts in
order to improve foraging abilities and energetic
gains (e.g. Thorpe 1994, Jeglinski et al. 2012, Bran-
sky & Dorn 2013). Data from our study suggest that
bull sharks emigrated from the nursery into coastal
waters at a younger age for several years after the
event (until 2014) compared to 2009. Despite the
recovery of some prey species after the cold snap
(Eugerres plumieri and Mugil cephalus; Boucek &
Rehage 2014), other prey taxa were adversely
affected (Mayaheros urophthalmus, Eucinostomus
harengulus, Oreochromis aureus; Boucek & Rehage
2014), which may have reduced total food availability
within the oligotrophic estuary, particularly in brack-

ish waters, leading to changes in foraging behavior
of bull sharks, and hastening this niche shift (de Roos
et al. 2002). Trade-offs between safer, but less pro-
ductive upstream habitats and more productive, but
risky downstream habitats (Matich & Heithaus 2015)
may have intensified due to fewer euryhaline prey
species in brackish waters (Anholt & Werner 1995,
Heithaus & Dill 2002), and a drought in 2011 that led
to declines in allochthonous food inputs into the
Shark River Estuary also likely amplified the effects
of reduced prey populations (Boucek et al. 2016).
Habitat use of age 3 bull sharks supports the hypoth-
esis that the value of microhabitats changed within
the nursery — despite no captures of age 3 sharks in
TB until 2017, age 3 sharks were detected by acoustic
receivers in TB beginning in 2013, and resembled
pre-disturbance use patterns by 2015. It is unclear
why age 3 sharks were detected in TB for 4 yr prior to
the first capture of a shark in this age class after the
cold snap, but discrepancies could be attributed to
changes in foraging behaviors of age 3 sharks in TB.
Reduced prey availability in TB due to changes in
fish community structure, coupled with accelerated
ontogenetic shifts to downstream foraging locations
(Matich & Heithaus 2014), could be responsible for
the difference in recovery estimates based on CPUE
(ca. 7 yr) and telemetry data (ca. 5 yr). Future re -
search investigating fine-scale habitat use patterns
and trophic interactions will provide insight into this
hypothesis.

5.  CONCLUSIONS

Identifying the resilience of ecosystems and their
components (e.g. communities, populations, etc.) is
of great importance for predicting outcomes of cli-
mate change and associated extreme events (Oliver
et al. 2015). However, inherent inter- and intra-
annual variation in environmental conditions and
community structure in subtropical estuaries like
the Shark River Estuary (Duever et al. 1994,
Pirhalla et al. 2015, Childers et al. 2019) may mask
our ability to accurately identify recovery times
(Connell & Sousa 1983, Battisti et al. 2016). In light
of an increasing frequency of extreme events that
compound intra- and inter-annual environmental
variability (re viewed by IPCC 2012; Maxwell et al.
2019), classic definitions of recovery may be inap-
propriate for the Everglades and similar systems
(Holling 1973, Pimm 1984), particularly among spe-
cies that exhibit high levels of intraspecific variation
in behaviors, such as bull sharks (Matich et al.
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2011, 2019). Selection pressures in ecosystems prone
to acute and chronic disturbance likely lead to
greater variability among individuals than those in
more stable ecosystems, and in turn these popula-
tions may be better suited to handle disturbance
events (Moran 1992, Niemelä et al. 2013, Matich et
al. 2019). However, greater variability among indi-
viduals may lead to slower recovery in filling the
diversity of niches occupied before disturbance
events, if severity exceeds resistive capacity (Lieb-
sch et al. 2008, Dornelas 2010). Our results suggest
that changes in the size structure of juvenile bull
sharks within the Shark River Estuary have per-
sisted beyond predictions based on life history as a
result of the cold snap, with the nursery comprising
more sharks in younger age classes. Increased use
of marine habitats and accelerated ontogenetic
niche shifts appear responsible for the observed
changes in demography. With such long recovery
times and increasing frequencies of extreme events,
bull shark populations in nursery areas may never
reach an equilibrium state and remain in various
states of recovery. An important consideration with
respect to recovery then, is whether the ecological
role and importance of this predator has been re -
tained (Heithaus et al. 2008) — if so, our definition
of recovery and resilience should be adjusted to
account for inherent ecological and environmental
variation, and placed within a community-level con-
text, rather than using standards based on the abun-
dance and structure of populations in the future.
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Shark Capture Size at Tracking Shark Capture Size at Tracking
date capture (cm) duration (mo) date capture (cm) duration (mo)

4558 18 Dec 2007 90 14 52210 13 Jan 2013 86 27
4563 31 Jan 2008 77 14 34181 22 Mar 2013 90 13
49663 10 Oct 2008 105 7 34182 22 Mar 2013 127 7
49664 10 Oct 2008 124 8 52204 22 Mar 2013 105 10
49667 10 Oct 2008 110 11 34183 12 Apr 2013 97 5
49668 10 Oct 2008 123 10 34185 12 Apr 2013 106 24
49669 10 Oct 2008 131 14 34186 12 Apr 2013 99 17
4562 7 Nov 2008 105 13 34816 12 Apr 2013 99 5
49670 7 Nov 2008 83 5 34187 21 Apr 2013 100 6
49672 11 Jan 2009 93 8 34817 21 Apr 2013 100 7
49673 11 Jan 2009 82 3 34188 11 May 2013 93 24
49671 31 Jan 2009 116 6 34189 17 May 2013 108 13
54801 15 Feb 2009 75 7 33565 7 Jul 2013 75 26
54799 14 Mar 2009 75 5 33566 10 Jul 2013 73 26
54803 14 Mar 2009 75 7 33567 10 Jul 2013 83 26
54804 14 Mar 2009 105 9 33568 13 Aug 2013 79 26
54800 4 Apr 2009 110 6 33569 13 Aug 2013 81 26
54802 4 Apr 2009 112 7 33570 7 Sep 2013 117 19
54806 5 Apr 2009 125 8 33571 7 Sep 2013 76 26
54805 8 May 2009 129 7 33573 7 Sep 2013 77 26
58250 8 May 2009 86 4 33574 27 Oct 2013 86 25
58252 8 May 2009 81 7 33575 30 Oct 2013 80 26
58253 12 Jun 2009 125 6 33576 30 Oct 2013 89 26
58254 12 Jun 2009 75 6 33577 23 Nov 2013 104 18
59901 25 Jul 2009 79 4 33578 9 Mar 2014 96 21
58258 4 Aug 2009 115 4 56130 3 Feb 2016 111 17
52202 3 Mar 2012 92 29 56131 3 Feb 2016 88 19
52195 23 Mar 2012 109 19 56147 3 Feb 2016 103 17
52198 23 Mar 2012 114 29 56148 3 Feb 2016 80 4
52200 23 Mar 2012 92 30 56129 12 Feb 2016 94 11
52205 18 Apr 2012 95 29 56132 12 Feb 2016 98 19
52196 30 May 2012 96 18 56133 12 Feb 2016 93 4
52203 30 May 2012 98 24 56134 12 Feb 2016 105 17
52199 9 Sep 2012 101 26 56137 12 Feb 2016 87 19
52207 9 Sep 2012 81 26 56136 19 Feb 2016 88 19
52206 14 Sep 2012 76 26 56145 26 Feb 2016 105 13
52208 14 Sep 2012 81 25 56146 26 Feb 2016 84 19
52194 30 Sep 2012 84 26 56139 2 Sep 2016 95 12
52209 30 Sep 2012 84 6 56140 2 Sep 2016 70 12
52211 30 Sep 2012 83 29 56143 2 Sep 2016 100 12
34184 13 Jan 2013 87 16 56144 2 Sep 2016 79 12
34814 13 Jan 2013 87 5 56138 15 Sep 2016 79 12
52197 13 Jan 2013 93 27 56141 15 Sep 2016 73 12

Appendix

Table A1. Capture and tracking information for acoustically tagged bull sharks from 2008 to 2017 used for analyses
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