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1.  INTRODUCTION

The likelihood of capturing or observing an individ-
ual or species with a particular sampling gear is a crit-
ical variable for most ecological studies because it
links the sampling process to site abundance (Williams
et al. 2002). Many terms have been used to describe
the likelihood of catching or observing an animal with
sampling gear, but detectability or detection probabil-
ity is mostly used to describe whether a species is en-
countered (i.e. presence− absence data), while catcha-
bility or capture probability is mostly used to describe
whether an individual is encountered (i.e. catch data).
In the fisheries literature, catchability has been de-

fined in slightly different but related ways: (1) the
likelihood of capturing an individual known to be
present at a site, (2) the proportion of available fish in
the population that would be caught by a unit of ef -
fort, or (3) the constant of proportionality between
catch rate and absolute abundance (Baranov 1918,
Gulland 1964, Ricker 1975, Caddy 1979, Arreguín-
Sánchez 1996).

Though not universal, it is often assumed that de -
tectability and catchability from traditional sampling
gears in ecological surveys are constant across space,
time, habitats, and environmental conditions. For
instance, animals are often surveyed across multiple
habitat types, and habitat use or selection is then
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inferred from variation in catch rates among habitats
(Manly et al. 2002, Bacheler et al. 2012, Livernois et
al. 2020). Moreover, changes in catch rates or sight-
ings over time are commonly assumed to reflect tem-
poral changes in abundance (Maunder & Punt 2004,
Moro et al. 2020), locations of high catch rates across
a landscape are often presumed to indicate biological
hotspots (Prendergast et al. 1993, Fredston-Hermann
et al. 2020), and species distribution models use the
relationship between temperature and catch rates to
predict how climate change will influence species
distributions (Monk 2014, Klippel et al. 2016, Morley
et al. 2018). Many of these studies depend on the crit-
ical assumption that either all individuals or species
available for capture are captured or that they are
captured at a constant rate (Arreguín-Sánchez 1996,
Moriarty et al. 2020).

There is increasing evidence that detectability or
catchability can vary (Issaris et al. 2012, Katsane -
vakis et al. 2012). Catchability of fish by fishing fleets
is known to vary and has almost universally in -
creased over time with equipment and technology
im prove ments (Robins et al. 1998, Wilberg et al.
2009). Catchability of fish has also been shown to
vary in standardized surveys using trawls (Sissen -
wine & Bowman 1978, Nielsen 1983, Fraser et al.
2007), longlines (Ward 2008), traps (Robichaud et al.
2000), electrofishing (Speas et al. 2004, Hangsleben
et al. 2013), hook-and-line (Arreguín-Sánchez &
Pitcher 1999), and video (Bacheler et al. 2014). There
is also recent recognition that many fishing gears
selectively harvest the most active or bold individuals
in a population, and given that these traits are herita-
ble, catchability may decline over time for these
evolving fish stocks (Askey et al. 2006, Biro & Post
2008, Alós et al. 2012).

Fish traps are a commonly used gear to index mar-
ine reef fish and invertebrate abundance in various
places around the world (e.g. Recksiek et al. 1991,
Jones et al. 2003, Wells et al. 2008, Rudershausen et
al. 2010, Shertzer et al. 2016, Bacheler & Ballenger
2018), despite the fact that trap catchability has
rarely been examined. Robichaud et al. (2000)
showed that catchability was positively correlated
with reef fish mobility and negatively correlated with
percent reef cover and substrate rugosity. Geraldi et
al. (2009) found that American lobsters Homarus
americanus had higher trap catchability on soft sedi-
ments compared to rocky substrate, which ultimately
obscured their strong preference for rocky substrate.
Similarly, Bacheler et al. (2014) showed that 3 species
of reef fish were more likely to be detected on soft
sediments compared to rocky reefs, but also that

water temperature strongly affected detectability for
some species. To account for variability in trap catch-
ability, Gwinn et al. (2019) used a Bayesian state-
space model with data from traps and attached video
cameras to show that vermilion snapper Rhombo-
plites aurorubens abundance declines were likely
stronger than previously recognized.

In this study, we used paired trap and video data
collected over a broad area along the southeast US
Atlantic coast to examine patterns in trap catchability
of various economically important reef fish species.
Previous work in the region used presence−absence
data (e.g. Bacheler et al. 2014), but here we exam-
ined paired trap catches and video counts to make
inferences about trap catchability on an individual
(not species) level. We were specifically interested in
how trap catchability of various reef fish species was
influenced by bottom water temperature and sub-
strate. Given that fish are ectothermic, many studies
have observed a positive relationship between catch-
ability in passive sampling gears and water tempera-
ture (Arreguín-Sánchez 1996), but feeding motiva-
tion and presumably catchability should eventually
decline when water temperature increases beyond
the thermal niche of the species (Hayward & Arnold
1996). In some instances, catchability of fish has also
been shown to be influenced by habitat or substrate,
although the mechanisms for this phenomenon are
not well understood (Green et al. 2013, Bacheler et
al. 2014). This study expands our mechanistic under-
standing of the strengths and drawbacks of passive
sampling gears, and improves our understanding of
the sampling used to index animal abundance.

2.  MATERIALS AND METHODS

2.1.  Study area

Sampling for this study occurred in temperate con-
tinental shelf and shelf break waters along the south-
east US Atlantic coast (hereafter, SEUS) between
North Carolina and Florida (Fig. 1). The continental
shelf in the SEUS is large (>100 000 km2) and varies
in width from approximately 10 km in southern
Florida to 130 km off Georgia. Substrate in the SEUS
mostly consists of sand and mud, but sampling in this
study targeted patches of hard (rocky) substrate that
are intermittently distributed throughout the SEUS
(Powles & Barans 1980, Schobernd & Sedberry 2009).
Hardbottom habitats in the SEUS (i.e. temperate
rocky reefs) range from flat limestone pavement,
sometimes covered in a sand veneer, to high-relief

180



Bacheler & Shertzer: Catchability of reef fish

rocky ledges (Kendall et al. 2008). These temperate
reefs often provide substrate for various species of
attached biota (e.g. sponges, soft corals, algae) and
critical habitat for a diverse assemblage of reef-
associated fish species (Bacheler & Smart 2016,
Bacheler et al. 2019).

2.2.  Sampling

We used fishery-independent trap and video data
collected by the Southeast Reef Fish Survey (SERFS)
in 2015−2018 for this study. SERFS consists of 3 fish-
ery-independent programs that work collaboratively
in the SEUS using identical methodologies (as
described below) to sample reef fishes: (1) the South-
east Fishery-Independent Survey, (2) the Marine
Resources Monitoring, Assessment, and Prediction
program of the South Carolina Department of Natu-

ral Resources, and (3) the Southeast Area Monitoring
and Assessment Program − South Atlantic. All pro-
grams are funded by the National Marine Fisheries
Service to sample reef fishes in the region. We used
SERFS data from 2015−2018 here, a time when trap
and video data were collected by SERFS in a consis-
tent manner.

Stations were selected for sampling using a simple
random sampling design. Out of approximately 4000
stations on or near hardbottom, 1500 were selected for
sampling each year. Most stations sampled in this
study (80%) were randomly selected stations. Some
stations (17%) were sampled even though they were
not randomly selected for sampling in a given year, pri-
marily to increase efficiency while on research cruises.
Some new hardbottom stations (3%) were sampled
each year based on information from fishermen,
charts, sonar mapping, or historical data, and included
in the analyses if hardbottom was detected. Sampling
occurred during daylight hours each year between
April and October on the RV ‘Savannah,’ RV ‘Palmetto,’
SRVx ‘Sand Tiger,’ and NOAA Ship ‘Pisces.’

We estimated catchability of reef fishes in chevron
fish traps by using a paired sampling design, specifi-
cally by attaching video cameras to fish traps. Chev -
ron traps used in our study were 1.7 m × 1.5 m × 0.6 m
in size, with a total volume of 0.91 m3 (Fig. 2). They
were constructed from plastic-coated galvanized
2 mm diameter wire mesh (mesh size = 3.4 × 3.4 cm),
and the trap mouth was shaped like a teardrop that
measured approximately 18 cm wide and 45 cm high
(Bacheler et al. 2013a). Each trap was baited with 24
menhaden (Brevoortia spp.). In our study, chevron
traps were deployed in groups of 6 or fewer, but each
trap was separated from other simultaneously soak-
ing traps by at least 200 m to provide independence
among traps (Bacheler et al. 2018). Traps soaked for
approximately 90 min, and any trap not fishing cor-
rectly (e.g. bouncing or dragging due to waves or
current, trap mouth obstructed) was excluded from
analysis. All fish caught in chevron traps were enu-
merated and measured for total length.

Two high-definition underwater cameras were at -
tached to each chevron trap deployed in our study.
GoPro Hero 3+/4 cameras were used, one being at -
tached over the mouth of the trap and one attached
over the nose of the trap, each looking outward away
from the trap (Fig. 2). The camera over the trap
mouth was always used to count fish as well as score
substrate, current, and water clarity, whereas the
camera over the trap nose was only used to score
substrate, current, and water clarity in the opposite
direction. Videos were excluded from analysis if they
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Fig. 1. Locations of chevron trap and video sampling on or
near hardbottom reefs by the Southeast Reef Fish Survey
along the southeast US Atlantic coast, 2015−2018. Each dot
represents a trap-video deployment included in the analy-
sis, and the darker the symbol, the greater overlap among 

sampling points
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were unable to be read for any reason (e.g. too dark,
video out of focus, files corrupt). Samples were only
included in our analyses if traps fished and video
cameras recorded without any problems; if either
was missing, that sample was excluded. Valid traps
with corresponding valid video samples are hereafter
referred to as ‘trap-video samples.’

Following Bacheler et al. (2014), characteristics of
the water and substrate were estimated at each site
using various approaches. Depth was estimated using
ship-board sonar, trap soak time (min) was calculated
as the trap retrieval time minus the trap deployment
time, and bottom temperature was measured for each
group of simultaneously deployed traps using a con-
ductivity-temperature-depth cast de  ployed within 2
m of the bottom. The remaining variables were visu-
ally estimated from both video cameras attached to
the trap at each site. Percent hardbottom was esti-
mated as the percent of the bottom substrate that con-
sisted of hard, consolidated sediment at least 10 cm in
diameter (hereafter used interchangeably with ‘sub-
strate’). For each station sampled, percent hardbottom
estimates were generated for each of the 2 cameras
and a mean value was calculated for the site. Particle

movement was used to estimate the di-
rection of the prevailing water current
relative to the camera positioned over
the trap mouth; current direction was
scored categorically as ‘away,’ ‘side-
ways,’ or ‘towards.’ Water clarity was
scored as ‘poor’ if the substrate could
not be seen, ‘fair’ if the substrate but
not the horizon could be seen, and
‘good’ if the horizon could be seen in
the distance. In our study, samples
with a water clarity score of ‘poor’
(<1% of all samples) were excluded
because percent hardbottom informa-
tion was not available. Samples with
soak times <50 min or >150 min rarely
occurred so they were excluded, as
were any samples that were missing
data for depth, bottom temperature,
soak time, percent hardbottom, current
direction, or water clarity.

Six species of reef fishes were pres-
ent in at least 10% of trap-video sam-
ples and examined in our study (here-
after, ‘focal species’). These focal
species were gray triggerfish Balistes
capriscus, red porgy Pagrus pagrus,
vermilion snapper Rhomboplites
aurorubens, black sea bass Centro-

pristis striata, red snapper Lutjanus campechanus,
and white grunt Haemulon plumierii. Each of these
focal species is economically important and the tar-
get of recreational and commercial fishing effort in
the SEUS.

2.3.  Estimating site abundance and 
trap catchability

Catchability of reef fish in chevron traps at each
site can be calculated as the trap catch of a particular
species divided by its known site abundance. Here,
we estimated site abundance of the 6 focal species as
the video SumCount of fish observed on video (Scho -
bernd et al. 2014). Video SumCount was specifically
calculated as the sum of all individuals of a particular
species over a series of frames in a video sample. We
began enumerating fish on video 10 min after the
trap landed on the bottom to allow time for the trap to
settle, and read snapshots every 30 s thereafter over
a 20 min time interval for a total of 41 snapshots.
SumCount was used because it has been shown to
track site abundance of reef fish linearly when the
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Fig. 2. Chevron trap outfitted with 2 outward-looking GoPro Hero 3+/4 cam-
eras deployed by the Southeast Reef Fish Survey, 2015−2018. Videos from Go-
Pro 1, attached over the trap mouth, were used to count fish and record habitat
information, while GoPro 2 was only used to record habitat information in the 

opposite direction
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number of video frames read is consistent (Scho bernd
et al. 2014).

Using video to estimate site abundance of reef
fishes, however, can be affected by the water current
direction relative to the camera view and water clar-
ity. For instance, current direction has been shown to
influence video counts because fish tend to aggre-
gate on the down-current side of baited traps; thus,
video cameras facing down-current (i.e. a current
direction of ‘away’) may be expected to have higher
video counts than cameras pointed up-current (i.e. a
current direction of ‘towards;’ Bacheler et al. 2014).
Moreover, fewer individuals may be expected to be
counted when water clarity is fair compared to good.
These 2 variables must be accounted for when using
video counts of fish around baited traps to make
inferences about true site abundance.

We accounted for the effects of current direction
and water clarity on video SumCounts of our focal
reef fish species using generalized additive models
(GAMs), which are a nonparametric regression ap-
proach that can relate response variables to predictor
variables using different error distributions (Hastie &
Tibshirani 1990, Wood 2006). In this case, the 2 pre-
dictor variables (current direction and water clarity)
were included in our GAMs as categorical variables:

y = f(currdir) + f(waterclarity) (1)

where y is the species-specific video SumCount at a
site, currdir is the current direction at the site, water -
clarity is the water clarity at the site, and f is a cate-
gorical function. One GAM was developed for each
of our focal species. All GAMs in this study were de -
veloped, coded, and analyzed using the ‘mgcv’
library 1.8-28 (Wood 2011) in R version 3.6.1 (R Core
Team 2019).

To assess model fit, we compared various data
transformations and error distributions using the
‘gam.check’ function in the ‘mgcv’ library. We evalu-
ated the nominal data and 2 data transformations
(fourth root, log) and 4 error distributions (Gaussian,
Poisson, negative binomial, Tweedie) on model fit;
note that some transformation and error distribution
combinations were not possible due to data require-
ments. Models incorporating the Tweedie distribu-
tion with a fourth-root transformation fit best for all 6
species, so they were used here.

We used these final GAMs to estimate the effects of
current direction and water clarity on video Sum-
Counts for each of the 6 species evaluated. Means for
each level of the 2 categorical variables were used to
develop adjustment factors for each of the current
direction and water clarity combinations for each of

the 6 species. Adjustment factors were then used to
standardize video SumCount values for variable cur-
rent direction and water clarity to more accurately
reflect true site abundance.

Chevron trap catchability (q) was then calculated
separately for each focal species (i) in each trap ( j)
sampled using the following equation:

(2)

where T is the number of individuals caught in the
chevron trap, and N is the product of the video Sum-
Count and adjustment factor estimated in Eq. (1).
Typically 0 ≤ q ≤ 1, but here the denominator is not
absolute abundance but a linearly scaled version of
it, so q can be >1.

2.4.  Effects of water temperature and 
substrate on catchability

To determine whether trap catchability of the focal
species varied by bottom water temperature or sub-
strate, we developed a second set of GAMs. These
species-specific GAMs examined the relationships
between chevron trap catchability (q) for each spe-
cies and 4 predictor variables that we hypothesized
might influence trap catchability: bottom water tem-
perature, percent hardbottom, soak time, and depth.
Bottom water temperature and percent hardbottom
were our 2 primary variables of interest, but soak
time and depth were also included to standardize
trap catchability for the effects of these 2 variables.
Trap soak times varied from 50−150 min in our study,
so it was important to standardize trap catchability
for variable effort (Bacheler et al. 2013b). Depth
was included to standardize for variability in trap
catchability across depths, either due to the effects of
depth alone or other variables that may be related to
depth (e.g. ambient light levels). Variance inflation
factors revealed no multicollinearity among predictor
variables.

We related trap catchability to these 4 predictor
variables as:

q = s(temp) + s(substrate) + s(soak) + s(depth) (3)

where q is the species- and site-specific trap catcha-
bility estimated in Eq. (2), temp is the bottom water
temperature (°C), substrate is the percent hardbot-
tom of the substrate, soak is the soak time of the
chevron trap, depth is the bottom depth (m), and s
is a nonparametric cubic spline smoothing function.
We evaluated the same 3 data transformations and

~q
T

N
ij

ij

ij
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4 error distributions as described above. A fourth-
root data transformation with a Gaussian error distri-
bution fit best for all focal species, but note that
model results were insensitive to different transfor-
mations and error distributions.

For each species-specific GAM developed, we
used Akaike’s information criterion (AIC) to compare
full models (shown in Eq. 3) to reduced models that
contained fewer predictor variables (Burnham &
Anderson 2002). AIC seeks parsimony by identifying
models that explain the most variation in the data
with the fewest parameters. We were specifically
focused on whether trap catchability varied signifi-
cantly by bottom water temperature or substrate; in
other words, for each species, would AIC retain or
ex clude these 2 variables? For each species, the
model configuration with the lowest AIC value was
considered the best model, which was indicated by
ΔAIC of 0. We also show all competing models within
2 ΔAIC units of the best model, given that these com-
peting models have nearly equivalent empirical sup-
port as the best model (Burnham & Anderson 2002).

3.  RESULTS

A total of 5465 trap-video samples were analyzed
in our study, ranging from a low of 1308 in 2018 to a
high of 1405 in 2017 (Table 1). Sampling was tempo-
rally consistent each year, beginning in late April or
early May and continuing through the end of Sep-
tember or October. Moreover, latitudes, bottom
water temperatures, and depths sampled among
years were similar (Table 1).

Of the 6 focal species examined, gray triggerfish
was observed in the most videos (44%), followed by
red porgy (38%), vermilion snapper (34%), black sea
bass (30%), red snapper (30%), and white grunt
(18%; Table 2). That trend differed for traps, where
black sea bass (38%) was present in traps more often
than any other species. Black sea bass was also the
only species that was more often caught in traps than

observed on video (Table 2). When reef fish species
were known to be present at a site based on video
observations, the species most likely to be caught in
the corresponding traps was black sea bass (95%),
while red snapper was least likely (43%).

Current direction had a strong and consistent in -
fluence on video SumCounts across all 6 species
(Table 3; Fig. S1 in the Supplement at www. int-res.
com/ articles/ suppl/  m642 p179 _ supp. pdf), whereas
water clarity had a weak effect on all species except
red porgy (Table 3; Fig. S2). Trap catchability for
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Year                  N                           Date                            Latitude (°N)          Bottom water temperature (°C)          Depth (m)

2015               1355               7/3 (4/21−10/22)               31.9 (27.3−35.0)                     22.7 (13.6−28.5)                      39 (16−110)
2016               1397                8/2 (5/4−10/26)                32.2 (27.2−35.0)                     23.9 (15.5−29.3)                      41 (17−115)
2017               1405                7/5 (4/26−9/29)                32.0 (27.2−35.0)                     22.7 (14.8−28.2)                      40 (15−111)
2018               1308               6/21 (4/25−10/4)               31.9 (27.2−35.0)                     22.5 (13.6−27.9)                      40 (16−114)

Overall           5465               7/9 (4/21−10/26)               32.0 (27.2−35.0)                     22.9 (13.6−29.3)                      40 (15−115)

Table 1. Annual trap and video sampling by the Southeast Reef Fish Survey, 2015−2018, included in the analyses. Values for 
date, latitude, bottom water temperature, and depth are provided as mean (range); dates are given as mo/d

Species                       %FO         %FO        %FO in traps 
                                on video     in traps    when observed 
                                                                           on video

Gray triggerfish           44               29                    53
Red porgy                    38               23                    56
Vermilion snapper       34               22                    54
Black sea bass              30               38                    95
Red snapper                 30               14                    43
White grunt                  18               16                    67

Table 2. Video and trap frequency of occurrences for 6 reef
fish species sampled by the Southeast Reef Fish Survey,
2015− 2018. A total of 5516 trap-video samples were included 

in the analyses. %FO: percent frequency of occurrence

Model                    Dev expl    s1(currdir)   s2(waterclarity)

Gray triggerfish        11.6             2***                   1
Red porgy                  14.0             2***                 1***
Vermilion snapper    4.1             2***                   1
Black sea bass           6.0             2***                   1
Red snapper              4.2             2***                   1
White grunt               3.5             2***                   1

Table 3. Generalized additive models relating video Sum-
Count (sum of all individuals of a particular species over a
series of frames in a video sample) of 6 reef fish species to
current direction and water clarity built on data from the
Southeast Reef Fish Survey, 2015−2018. Dev expl: deviance
explained by the model. Degrees of freedom are shown for
each term, and asterisks denote significance at the following 

alpha levels: * = 0.05; ** = 0.01; *** = 0.001

https://www.int-res.com/articles/suppl/m642p179_supp.pdf
https://www.int-res.com/articles/suppl/m642p179_supp.pdf
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each focal species was then calculated using video
SumCount values that were standardized for the
effects of current direction and water clarity.

We found large differences in trap catchability
among focal species, with median trap catchability
being smallest for red snapper (median = 0.0, mean =
0.3) and largest for black sea bass (median = 3.5,
mean = 10.2; Fig. 3). Trap catchability for all focal
species varied significantly by bottom water temper-
ature, percent hardbottom, soak time, and depth
(Table 4; Figs. S3 & S4). For all species, full models
that retained all 4 predictor variables were the best
models based on AIC (Table 4). Only white grunt had
a candidate model (ΔAIC = 1.2) that excluded 1 of our
2 predictor variables of interest (substrate; Table 4),
suggesting weak effects of this predictor variable on
trap catchability of white grunt.

Trap catchability for all 6 focal species varied sub-
stantially across the range of bottom water tempera-
tures encountered in trap-video sampling for this
study. There was a strong positive relationship be -
tween trap catchability and bottom water temperature
for 4 species (i.e. gray triggerfish, vermilion snapper,
red snapper, white grunt). From the coldest to warmest
water temperatures sampled in our study (i.e. ~13−
29°C), mean trap catchability increased the least for
vermilion snapper (0.002 to 0.051, ~2000%) and the
most for white grunt (0.001 to 0.487, ~65 000%; Fig. 4).
Mean black sea bass trap catchability displayed a
weaker negative relationship
with bottom water temperature,
declining 84% from the coldest
to warmest water sampled. The
last species, red porgy, dis-
played a weak dome-shaped re-
lationship between mean trap
catchability and bottom water
temperature that peaked at ap-
proximately 20°C (Fig. 4).

Unlike the inconsistent effects
of water temperature, trap catch-
ability for all 6 reef fish species
de clined consistently as the per-
cent hardbottom of the site in-
creased. The substrate variable
was included in the best GAMs
for all 6 species based on AIC
(Table 4), and the declines ap-
peared to take a linear or expo-
nential decay form, depending
on the species (Fig. 5). The dif-
ference in mean trap catchability
from sampling on sand (0%
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Model                                Dev expl   ΔAIC  s(temp)   s(substrate)  s(soak)  s(depth)

Gray triggerfish                                                                                                       
Full                                        5.3          0.0       1.0***         1.0**      2.4***  2.4*

Red porgy                                                                                                             
Full                                        3.4          0.0       2.3              1.7**          3.1*      7.0***

Vermilion snapper                                                                                               
Full                                        7.5          0.0       1.0***         2.7***      2.3**    7.3***

Black sea bass                                                                                                      
Full                                        9.0          0.0       3.7**          1.9***        1.00      4.8***
Full − soak                           8.9          1.3       3.7**          1.9***          ex       5.0***

Red snapper                                                                                                         
Full                                        2.3          0.0       1.0**          1.0*            2.00      6.1**
Full − soak                           2.0          1.5       1.0**          1.0*             ex       6.2**

White grunt                                                                                                          
Full                                      13.7          0.0       4.2***         1.0              1.60      4.3***
Full − soak                         13.5          0.6       4.1***         1.0               ex       4.4***
Full − soak − substrate      13.2          1.2       4.0***          ex              ex       4.3***

Table 4. Generalized additive models of trap catchability for 6 reef fish species when
observed on corresponding videos from the Southeast Reef Fish Survey, 2015−2018.
Only the best models or models within 2 ΔAIC values of the best models are shown for
each species. Predictor variables are defined in Section 2.4. Dev expl: deviance ex-
plained by each model; ex: predictor variable was excluded from that particular
model. Estimated degrees of freedom are shown for each term, and asterisks denote 

significance at the following alpha levels: *0.05; **0.01; ***0.001
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Fig. 3. Chevron fish trap catchability for 6 reef fish species
collected by the Southeast Reef Fish Survey, 2015−2018.
For each species, the thick horizontal line is the median
catchability, the start and end of each box represent the 1st
and 3rd quartiles, and the whiskers are 1.5 times the in-
terquartile range. GT: gray triggerfish; RP: red porgy; VS:
vermilion snapper; BSB: black sea bass; RS: red snapper; 

WG: white grunt
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hardbottom) to sampling on rock (100% hardbottom)
was the largest for vermilion snapper (−80%), red
snapper (−76%), and red porgy (−70%), and the least
for white grunt (−42%; Fig. 5).

4.  DISCUSSION

It is commonly assumed in ecological studies that
all individuals or species available for capture are
captured at a constant rate (Arreguín-Sánchez 1996,
Katsanevakis et al. 2012). We have shown, however,
that the catchability of 6 species of reef fishes from 5
different families in baited fish traps is highly vari-
able and strongly affected by water temperature and
substrate near the trap. These results suggest that
studies examining habitat use, biological hotspots, or
temporal trends cannot rely upon catch information
alone because catch is a product of both abundance
and catchability. In other words, abundance and
catchability are confounded, and only by estimating
catchability can the underlying abundance signal be
extracted from catch data (Langseth et al. 2016). It
would be misguided, for example, to identify and
protect a ‘biological hotspot’ based on large catches if
those catches were solely due to high catchability
and not abundance.

Water temperature strongly influenced the catcha-
bility of reef fish in baited fish traps in ways that are
consistent with their life histories. Fish are ectother-
mic, so catches in passive gears tend to be higher in
warmer water compared to colder water up to the
point where water temperature increases beyond the
thermal niche of the species (Hayward & Arnold
1996). In our study, the 4 reef fish species more com-
monly found in warmer waters of the SEUS (gray
triggerfish, vermilion snapper, red snapper, and
white grunt; Bacheler et al. 2019) displayed a pre -
dict able positive relationship between catchability
and water temperature. Red porgy is found in
deeper, cooler waters and displayed a much weaker,
dome-shaped relationship, indicating that its thermal
niche was lower than the 4 warmer water species.
Black sea bass is a colder water species that is com-
monly found north of the SEUS (Fabrizio et al. 2013,
Bacheler & Ballenger 2015), and was the only species
in our study to display a negative relationship be -
tween catchability and water temperature.

These results have implications for research fo -
cused on the redistribution of marine organisms in
response to climate change. As water temperatures
increase, marine species tend to move poleward or
into deeper waters to remain in the same thermal

habitat (e.g. Nye et al. 2009, Pinsky et al. 2013, Mor-
ley et al. 2018, Murphy 2020). However, a species’
thermal habitat is often quantified using catch data,
which, as discussed above, may itself be strongly in -
fluenced by water temperature. Accounting for vari-
able detection improves species distribution models
by increasing their accuracy and precision (Rota et al.
2011, Lahoz-Monfort et al. 2014). As we have shown,
water temperature strongly affected the catchability
of marine fish in traps. We recommend that future
research accounts for trends in detection in the
development of species distribution models for mar-
ine fishes to minimize error in the forecasts of spatial
distributions.

There are 2 mechanisms that may cause the catch-
ability of fish to be affected by the habitat in which
sampling takes place. First, the ability of sampling
gears to capture fish may be influenced by the habi-
tat itself. For instance, the presence of kelp or highly
rugose substrate may obstruct the view of underwa-
ter video, resulting in lower fish counts than ex -
pected compared to unobstructed habitats. A second
mechanism is that the behavior of fish may vary
across habitat types. Previous research has indicated
that lobsters and reef fishes are much more likely to
enter traps that land on soft compared to hard sub-
strates (Robichaud et al. 2000, Geraldi et al. 2009,
Bacheler et al. 2014), a finding corroborated consis-
tently from all 6 species examined in our study. It
remains unclear why lobsters and reef fishes are
more likely to be caught in traps that land on soft,
unstructured habitats. We hypothesize that it may be
due to the increased attractiveness of bait in areas
with less prey available or the trap acting as habitat
in places that normally lack habitat. Regardless,
these results suggest that fish behavioral responses
to sampling gears in different habitats are important
for estimating catchability.

We estimated reef fish catchability using a paired
gear approach, where fish counts from video cameras
were standardized to provide baseline estimates of
site abundance to which trap catches could be com-
pared. An added benefit of a paired gear approach is
the possible integration of data into a single index of
abundance using N-mixture or state-space models,
which explicitly account for variable catchability
(MacKenzie et al. 2002, Royle & Nichols 2003, Royle
2004). For instance, Coggins et al. (2014) used paired
trap-video sampling data to account for imperfect
detection of red snapper. Gwinn et al. (2019) used
paired trap-video data to develop a single long-term
index of abundance for vermilion snapper that ac -
counted for variable catchability; model results indi-
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cated a more substantial population decline than a
trap-video index of abundance that disregarded
catchability. We see broad utility of adding video
cameras to other passive or active sampling gears to
adequately account for variable catchability.

Catchability has been defined in a variety of ways
in the fisheries literature, and our definition is
slightly different from those used previously. Histori-
cally, catchability was defined as the proportion of
individuals in a fishing ground removed by a gear
sweeping that area (Baranov 1918, Gulland 1964,
Caddy 1979). However, Arreguín-Sánchez (1996)
noted that this definition disregards fish behavior, so
he and others instead defined catchability as the
number of fish captured (or mortality rate experi-
enced) per unit effort. Thus, variations in catchability
may be due to the vulnerability of fish to the fishing
gears used, the fishing strategy of fishers, or the biol-
ogy and behavior of the fish themselves. Our defini-
tion of catchability, whereby the trap catch is divided
by a standardized estimate of site abundance from
corresponding video cameras, most closely resem-
bles this latter definition. In our case, however, trap
catch and video counts occurred on vastly different
scales, so our catchabilities did not necessarily vary
between 0 and 1 like other definitions. Regardless of
the scale of catchability in our study, the values
tracked how well the traps caught fish that were ob -
served to be present on video.

There were some shortcomings of our work. First,
we only included reef fish species in our analyses if
they were captured in traps and observed on videos
greater than 10% of the time. Hundreds of reef-asso-
ciated fish species occur in the region, but most
rarely or never enter traps (Bacheler & Smart 2016,
Bacheler et al. 2019), suggesting extremely low trap
catchabilities for most species in the region. Second,
although traps are often used to index many species
simultaneously, a downside is that the capture of
predatory fish in traps may influence the subsequent
capture of prey species or vice versa (Glasgow 2017).
In other words, the catchability of fish caught in traps
was also likely dependent upon which species were
caught first, which we were unable to quantify with-
out inward-looking videos. Third, our GAMs relating
catchability to predictor variables only explained up
to 14% of the species-specific model deviance, sug-
gesting that most of the variability in trap catchability
remains unexplained. Fourth, we excluded samples
for which water clarity was poor (<1% of our sam-
ples) so we lack information on trap catchability in
highly turbid water that may be common in other
regions. Last, we assumed that catchability was

equal across all sizes and ages of fish encountered
in our study, but catchability may be age- or size-
dependent.

We have shown that the common assumption of
ignoring variable catchability in ecological studies is
unfounded. In our study, the catchability of reef
fishes in traps was highly variable, being strongly
affected by both the water temperature and substrate
upon which the trap landed. Future studies should
explicitly quantify gear-specific catchability, possibly
using paired gear studies, and incorporate estimates
of catchability into ecological studies, indices of
abundance, and stock assessments (Maunder & Punt
2004, Wilberg et al. 2009, Langseth et al. 2016,
Gwinn et al. 2019). Only after catchability and actual
abundance can be disentangled can we have truly
robust monitoring data that provide the foundation
for unbiased ecological experiments and accurate
management advice.

Acknowledgements. We thank the captains and crew of the
RV ‘Savannah’, RV ‘Palmetto’, SRVx ‘Sand Tiger’, and
NOAA Ship ‘Pisces’, SERFS staff members, and numerous
volunteers for making field work possible. We thank SERFS
staff from the South Carolina Department of Natural
Resources, the Southeast Area Monitoring and Assessment
Program − South Atlantic, and the Southeast Fishery-Inde-
pendent Survey, as well as M. Burton, R. Muñoz, and N.
McNeil, for data collection and assisting with video reading.
We also thank R. Cheshire, A. Chester, A. Hohn, T. Kellison,
and 3 anonymous reviewers for providing comments on ear-
lier versions of this manuscript. Funding was provided by
the National Marine Fisheries Service. Mention of trade
names or commercial companies is for identification pur-
poses only and does not imply endorsement by the National
Marine Fisheries Service, NOAA. The scientific results and
conclusions, as well as any views and opinions expressed
herein, are those of the authors and do not necessarily
reflect those of any government agency.

LITERATURE CITED

Alós J, Palmer M, Arlinghaus R (2012) Consistent selection
towards low activity phenotypes when catchability
depends on encounters among human predators and
fish. PLOS ONE 7: e48030 

Arreguín-Sánchez F (1996) Catchability:  a key parameter
for fish stock assessment. Rev Fish Biol Fish 6: 221−242 

Arreguín-Sánchez F, Pitcher TJ (1999) Catchability esti-
mates and their application to the red grouper (Epineph-
elus morio) fishery of the Campeche Bank, Mexico. Fish
Bull 97: 746−757

Askey PJ, Richards SA, Post JR, Parkinson EA (2006) Linking
angling catch rates and fish learning under catch-and-
release regulations. N Am J Fish Manag 26: 1020−1029 

Bacheler NM, Ballenger JC (2015) Spatial and temporal pat-
terns of black sea bass sizes and catches in the southeast-
ern United States inferred from spatially explicit nonlin-
ear models. Mar Coast Fish 7: 523−536 

188

https://doi.org/10.1371/journal.pone.0048030
https://doi.org/10.1007/BF00182344
https://doi.org/10.1080/19425120.2015.1095826
https://doi.org/10.1577/M06-035.1


Bacheler & Shertzer: Catchability of reef fish

Bacheler NM, Ballenger JC (2018) Decadal-scale decline
of scamp (Mycteroperca phenax) abundance along the
southeast United States Atlantic coast. Fish Res 204: 
74−87 

Bacheler NM, Smart TI (2016) Multi-decadal decline of reef
fish abundance and species richness in the southeast
United States assessed by standardized trap catches.
Mar Biol 163: 26 

Bacheler NM, Buckel JA, Paramore LM (2012) Density-
dependent habitat use and growth of an estuarine fish.
Can J Fish Aquat Sci 69: 1734−1747 

Bacheler NM, Schobernd ZH, Berrane DJ, Schobernd CM,
Mitchell WA, Geraldi NR (2013a) When a trap is not a
trap:  converging entry and exit rates and their effect on
trap saturation of black sea bass (Centropristis straita).
ICES J Mar Sci 70: 873−882 

Bacheler NM, Bartolino V, Reichert MJM (2013b) Influence
of soak times and fish accumulation on catches of reef
fishes in a multispecies trap survey. Fish Bull 111: 218−232 

Bacheler NM, Berrane DJ, Mitchell WA, Schobernd CM,
Schobernd ZH, Teer BZ, Ballenger JC (2014) Environ-
mental conditions and habitat characteristics influence
trap and video detection probabilities for reef fish spe-
cies. Mar Ecol Prog Ser 517: 1−14 

Bacheler NM, Shertzer KW, Buckel JA, Rudershausen PJ,
Runde BJ (2018) Behavior of gray triggerfish Balistes
capriscus around baited fish traps determined from fine-
scale acoustic tracking. Mar Ecol Prog Ser 606: 133−150 

Bacheler NM, Schobernd ZH, Gregalis KC, Schobernd CM
and others (2019) Patterns in fish biodiversity associated
with temperate reefs on the southeastern US continental
shelf. Mar Biodivers 49: 2411−2428 

Baranov FI (1918) On the question of the biological basis of
fisheries. Nauchn Issled Ikthiol Inst Izv 1: 81−128 (in
Russian)

Biro PA, Post JR (2008) Rapid depletion of genotypes with
fast growth and bold personality traits from harvested
fish populations. Proc Natl Acad Sci USA 105: 2919−2922 

Burnham KP, Anderson DR (2002) Model selection and multi
model inference:  a practical information-theoretic ap -
proach, 2nd edn. Springer-Verlag, New York, NY

Caddy JF (1979) Some considerations underlying definitions
of catchability and fishing effort in shellfish fisheries, and
their relevance for stock assessment purposes. Fish Mar
Serv Rep No 1489. DFO, Halifax

Coggins LG Jr, Bacheler NM, Gwinn DC (2014) Occupancy
models for monitoring marine fish:  a Bayesian hierarchi-
cal approach to model imperfect detection with a novel
gear combination. PLOS ONE 9: e108302 

Fabrizio MC, Manderson JP, Pessutti JP (2013) Habitat asso-
ciations and dispersal of black sea bass from a mid-
Atlantic Bight reef. Mar Ecol Prog Ser 482: 241−253 

Fraser HM, Greenstreet SPR, Piet GJ (2007) Taking account
of catchability in groundfish survey trawls:  implications
for estimating demersal fish biomass. ICES J Mar Sci 64: 
1800−1819 

Fredston-Hermann A, Selden R, Pinsky M, Gaines SD,
Halpern BS (2020) Cold range edges of marine fishes
track climate change better than warm edges. Glob
Change Biol 26: 2908−2922

Geraldi NR, Wahle RA, Dunnington M (2009) Habitat effects
on American lobster (Homarus americanus) movement
and density:  insights from georeferenced trap arrays,
seabed mapping, and tagging. Can J Fish Aquat Sci 66: 
460−470 

Glasgow DM (2017) Environmental relationships and pred-
ator-prey interactions within the snapper-grouper com-
plex in the southeastern U.S. Atlantic — implications for
fisheries management. PhD dissertation, University of
South Carolina, Columbia, SC

Green SJ, Tamburello N, Miller SE, Akins JL, Côté IM
(2013) Habitat complexity and fish size affect the detec-
tion of Indo-Pacific lionfish on invaded coral reefs. Coral
Reefs 32: 413−421 

Gulland JA (1964) Manuals of methods for fish population
analysis. FAO Fish Tech Pap No 40. FAO, Rome

Gwinn DC, Bacheler NM, Shertzer KW (2019) Integrating
underwater video into traditional fisheries indices using
a hierarchical formulation of a state-space model. Fish
Res 219: 105309 

Hangsleben MA, Allen MS, Gwinn DC (2013) Evaluation of
electrofishing catch per unit effort for indexing fish abun-
dance in Florida lakes. Trans Am Fish Soc 142: 247−256 

Hastie TJ, Tibshirani RJ (1990) Generalized additive mod-
els. Chapman & Hall, London
Hayward RS, Arnold E (1996) Temperature dependence
on maximum daily consumption in white crappie:  impli-
cations for fisheries management. Trans Am Fish Soc
125: 132−138

Issaris Y, Katsanevakis S, Salomidi M, Tsiamis K, Katsiaras N,
Verriopoulos G (2012) Occupancy estimation of marine
species:  dealing with imperfect detectability. Mar Ecol
Prog Ser 453: 95−106 

Jones EG, Tselepides A, Bagley PM, Collins MA, Priede IG
(2003) Bathymetric distribution of some benthic and ben-
thopelagic species attracted to baited cameras and traps
in the deep eastern Mediterranean. Mar Ecol Prog Ser
251: 75−86 

Katsanevakis S, Weber A, Pipitone C, Leopold M and others
(2012) Monitoring marine populations and communities: 
methods dealing with imperfect detectability. Aquat Biol
16: 31−52 

Kendall MS, Bauer LJ, Jeffrey CFG (2008) Influence of ben-
thic features and fishing pressure on size and distribution
of three exploited reef fishes from the southeastern
United States. Trans Am Fish Soc 137: 1134−1146 

Klippel S, Amaral S, Vinhas L (2016) Development and eval-
uation of species distribution models for five endangered
elasmobranchs in southwestern Atlantic. Hydrobiologia
779: 11−33 

Lahoz-Monfort JJ, Guillera-Arroita G, Wintle BA (2014)
Imperfect detection impacts the performance of species
distribution models. Glob Ecol Biogeogr 23: 504−515 

Langseth BJ, Schueller AM, Shertzer KW, Craig JK, Smith
JW (2016) Management implications of temporally and
spatially varying catchability for the Gulf of Mexico men-
haden fishery. Fish Res 181: 186−197 

Livernois MC, Powers SP, Albins MA, Mareska JF (2020)
Habitat associations and co-occurrence patterns of two
estuarine-dependent predatory fishes. Mar Coast Fish 12: 
64−77 

MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle
JA, Langtimm CA (2002) Estimating site occupancy rates
when detection probabilities are less than one. Ecology
83: 2248−2255 

Manly BFJ, McDonald LL, Thomas DL, McDonald TL, Erick-
son WP (2002) Resource selection by animals:  statistical
design and analysis for field studies. Kluwer Academic
Publishers, Dordrecht

Maunder MN, Punt AE (2004) Standardizing catch and

189

https://doi.org/10.1016/j.fishres.2018.02.006
https://doi.org/10.1007/s00227-015-2774-x
https://doi.org/10.1139/f2012-098
https://doi.org/10.1093/icesjms/fst062
https://doi.org/10.7755/FB.111.3.2
https://doi.org/10.3354/meps11094
https://doi.org/10.3354/meps12780
https://doi.org/10.1007/s12526-019-00981-9
https://doi.org/10.1073/pnas.0708159105
https://doi.org/10.1371/journal.pone.0108302
https://doi.org/10.3354/meps10302
https://doi.org/10.1093/icesjms/fsm145
https://doi.org/10.1111/gcb.15035
https://doi.org/10.1016/j.fishres.2004.08.002
https://doi.org/10.1890/0012-9658(2002)083%5b2248%3AESORWD%5d2.0.CO%3B2
https://doi.org/10.1002/mcf2.10104
https://doi.org/10.1016/j.fishres.2016.04.013
https://doi.org/10.1111/geb.12138
https://doi.org/10.1007/s10750-016-2796-5
https://doi.org/10.1577/T07-210.1
https://doi.org/10.3354/ab00426
https://doi.org/10.3354/meps251075
https://doi.org/10.3354/meps09668
https://doi.org/10.1080/00028487.2012.730106
https://doi.org/10.1016/j.fishres.2019.105309
https://doi.org/10.1007/s00338-012-0987-8
https://doi.org/10.1139/F09-011


Mar Ecol Prog Ser 642: 179–190, 2020

effort data:  a review of recent approaches. Fish Res 70: 
141−159 

Monk J (2014) How long should we ignore imperfect detec-
tion of species in the marine environment when model-
ling their distribution? Fish Fish 15: 352−358 

Moriarty M, Sethi SA, Pedreschi D, Smeltz TS and others
(2020) Combining fisheries surveys to inform marine spe-
cies distribution modelling. ICES J Mar Sci 77: 539−552 

Morley JW, Selden RL, Latour RJ, Frölicher TL, Seagraves
RJ, Pinsky ML (2018) Projecting shifts in thermal habitat
for 686 species on the North American continental shelf.
PLOS ONE 13: e0196127 

Moro S, Jona-Lasinio G, Block B, Micheli F and others (2020)
Abundance and distribution of the white shark in the
Mediterranean Sea. Fish Fish 21: 338−349 

Murphy JT (2020) Climate change, interspecific competi-
tion, and poleward vs. depth distribution shifts:  spatial
analyses of the eastern Bering Sea snow and Tanner crab
(Chionoecetes opilio and C. bairdi). Fish Res 223: 105417 

Nielsen LA (1983) Variation in the catchability of yellow
perch in an otter trawl. Trans Am Fish Soc 112: 53−59 

Nye JA, Link JS, Hare JA, Overholtz WJ (2009) Changing
spatial distribution of fish stocks in relation to climate
and population size on the Northeast United States con-
tinental shelf. Mar Ecol Prog Ser 393: 111−129 

Pinsky ML, Worm B, Fogarty MJ, Sarmiento JL, Levin SA
(2013) Marine taxa track local climate velocities. Science
341: 1239−1242 

Powles H, Barans CA (1980) Groundfish monitoring in
sponge-coral areas off the southeastern United States.
Mar Fish Rev 42: 21−35

Prendergast JR, Quinn RM, Lawton JH, Eversham BC, Gib-
bons DW (1993) Rare species, the coincidence of diversity
hotspots and conservation priorities. Nature 365: 335−337 

R Core Team (2019) R:  a language and environment for sta-
tistical computing. R Foundation for Statistical Comput-
ing, Vienna

Recksiek CW, Appeldoorn RS, Turingan RG (1991) Studies
of fish traps as stock assessment devices on a shallow
reef in southwestern Puerto Rico. Fish Res 10: 177−197 

Ricker WE (1975) Computation and interpretation of biolog-
ical statistics of fish populations. Bull Fish Res Board Can
191: 1−382

Robichaud D, Hunte W, Chapman MR (2000) Factors affect-
ing the catchability of reef fishes in Antillean fish traps.
Bull Mar Sci 67: 831−844

Robins CM, Wang Y, Die D (1998) The impact of global posi-
tioning systems and plotters on fishing power in the
northern prawn fishery, Australia. Can J Fish Aquat Sci
55: 1645−1651 

Rota CT, Fletcher RJ, Evans JM, Hutto RL (2011) Does
accounting for imperfect detection improve species dis-
tribution models? Ecography 34: 659−670 

Royle JA (2004) N-mixture models for estimating population
size from spatially replicated counts. Biometrics 60: 
108−115 

Royle JA, Nichols JD (2003) Estimating abundance from
repeated presence-absence data or point counts. Ecology
84: 777−790 

Rudershausen PJ, Mitchell WA, Buckel JA, Williams EH,
Hazen E (2010) Developing a two-step fishery-indepen-
dent design to estimate the relative abundance of deep -
water reef fish: application to a marine protected area off
the southeastern United States coast. Fish Res 105: 254−260

Schobernd CM, Sedberry GR (2009) Shelf-edge and upper-
slope reef fish assemblages in the South Atlantic Bight: 
habitat characteristics, spatial variation, and reproduc-
tive behavior. Bull Mar Sci 84: 67−92

Schobernd ZH, Bacheler NM, Conn PB (2014) Examining
the utility of alternative video monitoring metrics for
indexing reef fish abundance. Can J Fish Aquat Sci 71: 
464−471 

Shertzer KW, Bacheler NM, Coggins LG Jr, Fieberg J (2016)
Relating trap capture to abundance:  a hierarchical state-
space model applied to black sea bass (Centropristis stri-
ata). ICES J Mar Sci 73: 512−519 

Sissenwine MP, Bowman EW (1978) An analysis of some fac-
tors affecting the catchability of fish by bottom trawls. Int
Comm Northw Atl Fish Res Bull 13: 81−87

Speas DW, Walters CJ, Ward DL, Rogers RS (2004) Effects of
intraspecific density and environmental variables on
electrofishing catchability of brown and rainbow trout in
the Colorado River. N Am J Fish Manag 24: 586−596 

Ward P (2008) Empirical estimates of historical variations in
the catchability and fishing power of pelagic longline
fishing gear. Rev Fish Biol Fish 18: 409−426 

Wells RJD, Boswell KA, Cowan JH, Patterson WF (2008) Size
selectivity of sampling gears targeting red snapper in the
northern Gulf of Mexico. Fish Res 89: 294−299 

Wilberg MJ, Thorson JT, Linton BC, Berkson J (2009) Incor-
porating time-varying catchability into population
dynamic stock assessment models. Rev Fish Sci 18: 7−24 

Williams BK, Nichols JD, Conroy MJ (2002) Analysis and
management of animal populations:  modeling, estimation,
and decision making. Academic Press, San Diego, CA

Wood SN (2006) Generalized additive models:  an introduc-
tion with R. Chapman & Hall/CRC, Boca Raton, FL

Wood SN (2011) Fast stable restricted maximum likelihood
for marginal likelihood estimation of semiparametric gen-
eralized linear models. J R Stat Soc B Stat Meth 73: 3−36

190

Editorial responsibility: Tim McClanahan, 
Mombasa, Kenya 

Submitted: February 10, 2020; Accepted: April 17, 2020
Proofs received from author(s): May 15, 2020

https://doi.org/10.1111/faf.12039
https://doi.org/10.1093/icesjms/fsz254
https://doi.org/10.1371/journal.pone.0196127
https://doi.org/10.1111/faf.12432
https://doi.org/10.1016/j.fishres.2019.105417
https://doi.org/10.1577/1548-8659(1983)112%3C53%3AVITCOY%3E2.0.CO%3B2
https://doi.org/10.3354/meps08220
https://doi.org/10.1126/science.1239352
https://doi.org/10.1038/365335a0
https://doi.org/10.1016/0165-7836(91)90074-P
https://doi.org/10.1139/f98-037
https://doi.org/10.1111/j.1467-9868.2010.00749.x
https://doi.org/10.1080/10641260903294647
https://doi.org/10.1016/j.fishres.2007.10.010
https://doi.org/10.1007/s11160-007-9082-6
https://doi.org/10.1577/M02-193.1
https://doi.org/10.1093/icesjms/fsv197
https://doi.org/10.1139/cjfas-2013-0086
https://doi.org/10.1016/j.fishres.2010.05.005
https://doi.org/10.1890/0012-9658(2003)084%5b0777%3AEAFRPA%5d2.0.CO%3B2
https://doi.org/10.1111/j.0006-341X.2004.00142.x
https://doi.org/10.1111/j.1600-0587.2010.06433.x



