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1.  INTRODUCTION

All nudibranchs are considered carnivorous (Clark
1975, Wagner et al. 2009) and to be amongst the most
specialized predators in benthic marine ecosystems
(Megina & Cervera 2003). Nudibranchs are fre-
quently associated with sessile benthic species such
as sponges, hydrozoans, or bryozoans that they have
be come adapted to consume as slow-moving preda-
tors (Todd 1981). For this reason, nudibranchs have
traditionally been organized into 4 major feeding cat-

egories: sponge-grazers, bryozoan-grazers, hydroid-
grazers, and a ‘miscellaneous’ group that includes
other animals in their diets such as other nudibranchs
and tunicates (Todd 1981). Knowledge on the trophic
ecology of nudibranchs is mostly based on casual
observational records, whereas experimental and
quantitative information is scarce and has largely
been overlooked (Chadwick & Thorpe 1981, Megina
& Cervera 2003). This is partly due to their small size,
but mostly due to their scarcity (Todd 1981), com-
pared to other common benthic invertebrate preda-
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tors such as decapods and asteroideans. For instance,
stomach contents and food assays have only been de -
scribed for larger species of nudibranchs that meas-
ure more than 10 mm, like Platydoris argo, Robo astra
europaea, and Phyllodesmium poindimiei, in which
manipulation and direct observation is easier (Megi -
na et al. 2002, Wagner et al. 2009). Also, several ob -
servations of nudibranchs feeding on bryozoan and
sponge substrates have been reported (Franz & Clark
1972, Harvell 1984). However, to our knowledge, no
study has yet used stable isotope analysis for a long-
term dietary assessment in nudibranchs. Further-
more, although nudibranchs are supposedly highly
specialized predators, there is very little information
about adaptations of the radular morphology to their
feeding strategy (Nybakken & McDonald 1981).
There fore, several general perceptions about the tro -
phic ecology and biology of the group require a
major re-evaluation (Todd et al. 2001).

Polycerella emertoni is a small nudibranch origi-
nally described from the Atlantic coast of North
America (Verrill 1881). Many authors have suggested
an amphi-Atlantic distribution of the species, includ-
ing the Mediterranean Sea (García-Gómez & Bobo
1986, Moro et al. 2017). Reported locations in clude
areas of the Western Atlantic region such as Brazil
(Marcus 1957), Cuba (Espinosa et al. 2005), and
Venezuela (Gutiérrez et al. 2015); and locations in the
Eastern Atlantic region, including south- western
Spain (García-Gómez & Bobo 1986), the Azores Is-
lands (Amat & Tempera 2009), Morocco (Moro et al.
2017) and the Canary Islands (Ortea & Moro 2019). In
the Mediterranean Sea, it was first described in 1946
in the Fusaro coastal lagoon (Italy) (Schmekel 1965),
and later re ported in Malta (Sammut & Perrone 1998),
Greece (Kout sou bas et al. 2000), Tunisia (Antit et al.
2011), and Spain (Camps & Prado 2018). In the At-
lantic Ocean, P. emertoni has been observed associ-
ated with Zostera spp. (Verrill 1881), filamentous al-
gae (Verrill 1881), hydroids (Chambers 1934), and
soft-bodied bryo zoans such as Amathia distans (Mar-
cus 1957), A. gracilis (reported as Bowerbankia gra-
cilis by Franz & Clark 1972) and A.  verticillata (Ortea
& Moro 2019). However, in the Mediterranean Sea it
has only been observed associated with the wide-
spread bryozoan A. verticillata (Camps & Prado
2018), which prompted Zenetos et al. (2004) to pro -
pose P. emertoni as an invasive species in the Medi-
terranean. Yet, although the putative alien status of
A. verticillata has been debated in the recent litera-
ture (Galil & Gevili 2014), there are no molecular
studies to confirm this issue; thus in the meantime,
the species should be regarded as being of unknown

origin (Floerl et al. 2009). Similarly for P. emertoni,
the number of verified observations is considerably
higher in the Mediterranean than along the Western
Atlantic coast, so in the absence of molecular data to
support its alien status, the species is considered as
cryptogenic in this paper.

A. verticillata is a soft-bodied, stoloniferous ctenos-
tomate capable of forming large branching colonies.
The species is widely distributed in temperate and
tropical waters of the Western Atlantic, where it
thrives in natural habitats such as seagrass meadows,
mangroves, oyster reefs, and rocky shores (Galil &
Gevili 2014). However, it was first described in
human-modified Mediterranean environments (delle
Chiaje 1822) such as harbors and marinas, where it
causes undesired fouling (Rizgalla et al. 2019). Ac -
cording to Micael et al. (2018), A. verticillata is a sea-
sonal species; its growth declines considerably once
temperature drops below 18°C (in laboratory condi-
tions), and it moves into a senescent cryptic phase in
autumn and winter (Zabala 1986). This species can
produce new colonies that are capable of surviving
the cold-water period and settle on a variety of natu-
ral and artificial substrates until environmental con-
ditions become favorable again (McKinney 1983,
Robinson 2004).

Franz & Clark (1972) described P. emertoni as a spe-
cialized bryozoan-grazer, based on its strong as so -
ciation with A. verticillata in the Mediterranean Sea.
However, no feeding observations, manipulative ex-
periments, or biochemical assessments have been
conducted to support this idea, which is also question-
able given the records of P. emertoni on other sub-
strates (Verrill 1881, Chambers 1934, Marcus 1957,
Franz & Clark 1972). Overall, there is a lack of under-
standing about the relationship be tween the seasonal
abundance of P. emertoni and that of its potential
prey.

The aim of this study was to investigate the trophic
ecology of P. emertoni. Our initial hypothesis, sup-
ported by all work on nudibranchs conducted previ-
ously, was that P. emertoni is a predator and eats the
bryo zoan A. verticillata, on which it occurs in the Ebro
Delta. However, in the course of testing this hypo the -
sis using stable isotope analysis, we found a major dis-
crepancy between the δ13C signature of the nudi-
branch and that of its host. This led us to investigate a
second hypothesis, that P. emertoni does not feed on
the bryozoan itself, but rather on its microalgal
biofilm, which is available in large quantities. To this
end, we video-recorded feeding activities and con-
ducted further stable isotope analyses coupled with
Bayesian mixing models and stomach content analy-
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sis, to evaluate the diet of P. emertoni at different time
scales. In addition, we conducted a morphological as-
sessment of the radula of P. emertoni and compared it
with available information from other species to eval-
uate possible differences in their tro phic ecology. A
second objective was to understand the association
between P. emertoni and the seasonal availability of
A. verticillata. For this, we performed seasonal esti-
mates of the abundance of both P. emertoni and A.
verticillata aimed at investigating the nature and the
strength of the relationship between them.

2.  MATERIALS AND METHODS

2.1.  Study site

Alfacs Bay (40° 36’ N, 0° 43’ E) and Fangar Bay
(40° 47’ N, 0° 46’ E) are semi-confined estuarine areas
located respectively on the southern and northern
hemi-deltas of the Ebro River (Catalonia, NW Medi-
terranean; Fig. 1). Both bays receive recurrent dis-
charges of freshwater rich in nutrients and organic
matter from rice fields. Furthermore, they are subject
to strong seasonal salinity gradients, particularly Fan-
gar Bay, due to its smaller size. The southern shore of
Alfacs Bay (the ‘Banya’ sandspit) was in cluded in the

Ebro Delta Natural Park in 1986 and belongs to the
Natura 2000 network of the European Union, because
of habitats containing the seagrass Cymodocea nodo -
sa and the presence of a large population of the fan
mussel Pinna nobilis (Prado et al. 2020).

2.2.  Morpho-anatomical examination and video
recording of feeding habits

The external morphology of specimens was exam-
ined under a dissecting binocular microscope (Olym-
pus SZX10). The buccal mass was extracted and
soaked in 10% potassium hydroxide (KOH) to re -
move surrounding tissue. The radula and jaws were
then rinsed in distilled water. These structures were
finally mounted on aluminum stubs with carbon
adhesive discs, sputter-coated with gold in a Fisons
Instrument SC 510, and examined using a Zeiss DSM
940A scanning electron microscope (SEM) at 15 kV
at the Centres Científics i Tecnològics de la Universi-
tat de Barcelona (CCiTUB). We also recorded nudi-
branch feeding habits with a camera (Nikon DS-Ri1)
coupled to a dissecting microscope (Nikon
SMZ1500). Trials were repeated over 1−2 h until a
reasonably good quality and illustrative video was
obtained.
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Fig. 1. Ebro Delta (Catalonia, NW Mediterranean), showing Alfacs and Fangar Bays and the 3 sampling sites (A, B, and C). 
Inset shows the location of the Ebro Delta in Europe
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2.3.  Stable isotope ratios (δ13C and δ15N) and
elemental contents

In a first examination of individuals of Polycerella
emertoni and Amathia verticillata collected in Au -
gust 2018 in Alfacs Bay, a large deviation of 2.3‰
be tween the δ13C signature of the consumer and
the supposed diet (A. verticillata) was measured.
This result was discordant with the general consid-
eration that consumers have negligible values of
13C fractionation (i.e. ~0 ‰) compared to their prey
(Post 2002), and pointed to the possibility of an
alternative diet. Hence, in August 2019 samples of
P. emertoni were collected together with samples of
A. verticillata and the associated microalgal biofilm.
The collection of the biofilm was conducted by
gently shaking the bryozoan colony apart within a
zip-lock plastic bag filled with seawater, and then
filtering the de tached material through a 100 µm
mesh net to remove small broken bryozoan frag-
ments. The re maining material was filtered again
through 1 µm mesh net in order to retain the dia -
tom fraction (size ranges from 2 µm up to several
millimeters, although only a few species are larger
than 200 µm; see Round et al. 1990). This process
was conducted 5 times, and the associated bryozoan
fragments were also kept for stable isotope analysis.
For P. emertoni, whole individuals (N = 100) found
on the bryozoan colony fragments were pooled
in groups of 20 to obtain enough material for 5
replicates.

All samples were dried separately at 60°C over
24 h, and then ground to fine homogeneous powder
in a ceramic mortar. Samples were analyzed with a
Flash 112 IRMS delta C series EA Thermo Finnigan
mass spectrometer connected to an elemental ana-
lyzer for the determination of C and N contents (at
the isotopic ratio mass spectrometry facility in CCi-
TUB). Isotope ratios in samples were calculated from
linear calibration curves constructed with standard
re ference materials of known composition and a
blank correction. The difference in isotopic composi-
tion between the sample and reference materials was
determined by:

δ(‰) = (Rsample / Rstandard – 1) × 1000 (1)

where Rsample is the isotopic ratio of the sample,
 Rstandard  is that of the standard reference material,
and δ (‰) is the difference in isotopic composition of
the sample relative to that of the reference (Vienna
PeeDee Belemnite and atmospheric nitrogen for car-
bon and nitrogen, respectively). The reproducibility
of the stable isotope measurements was ~0.1‰.

2.4.  Stable isotope mixing models

The MixSiar Bayesian mixing model was used to
identify the long-term biomass contributions of food
resources to the diet of P. emertoni. This model was
outlined by Moore & Semmens (2008) and incorpo-
rates uncertainty and prior information into stable
isotope mixing models. MixSiar v.1.0.4 uses stable
isotope signatures with their standard error (SE) and
tissue− diet discrimination factor input variables to es-
timate the probability distributions (5th, 25th, 50th, 75th,
and 95th percentiles) of each food item to the mixture
and accounts for uncertainty associated with multiple
sources. The estimated median contribution (i.e. the
50th percentile) for each food source is usually given
for comparative purposes. All stable isotope data of
the samples collected from Alfacs Bay in August 2019
were pooled and input into the MixSiar Bayesian
mixing model. For δ15N, we fed the model with the
3.40 ± 0.18‰ (mean ± SE) fractionation value indi-
cated for consumers by Vander Zanden & Rasmussen
(2001), whereas for δ13C, we assumed the commonly
accepted view of no fractionation (Post 2002). Since
these fractionation rates constitute a theoretical ap-
proximation, additional runs were conducted using
3.4 ± 1‰ for δ15N and 0 ± 0.5‰ for δ13C in order to as-
sess the importance of possible deviations.

2.5.  Stomach contents and biofilm
community analysis

For molecular biology, the P. emertoni specimens
collected from Alfacs Bay in October 2019 were pre-
served individually in Eppendorf tubes of 0.20 ml
capacity, with 0.10 ml of ultrapure water, and stored
at −80°C until further processing. We analyzed the
stomach contents of 15 nudibranchs. To do this, we
used an adapted protocol from Trobajo & Mann
(2019) to digest remains of organic matter in the
samples and investigate the diatom community
within the stomach contents of the nudibranchs.
Briefly, nudibranchs were placed individually on
clean cover slips. Once the coverslips were fully dry,
they were placed on a ceramic hotplate within a
fume cabinet. When the temperature reached 90°C,
a drop of HNO3 (65−70%) was added to each cover-
slip and al lowed to evaporate for 2−3 min. This
operation was re peated several times until there
was no visible colored residue. Coverslips were
mounted with Naph rax (Brunel Microscopes) for
light microscopy (Nikon Eclipse 90i) or attached to
stubs for SEM examination.
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For evaluation of the periphyton covering the bry-
ozoan, samples from the same mats of A. verticillata
where nudibranchs were found were processed as
previously indicated for isotopic analyses and then
subjected to the same acid digestion steps mentioned
above. In addition, some bryozoan samples (from Au-
gust 2019) were also prepared for SEM observation.
Diatoms were identified to species wherever possible
using mainly identification keys by Wit kowski et al.
(2000) and Álvarez-Blanco & Blanco (2014).

2.6.  Seasonal abundance of A. verticillata
and P. emertoni

In Alfacs Bay, the monthly biomass (g dry weight
[DW] m−2) of the bryozoan A. verticillata (August
2018 to August 2019) was estimated using random
5 × 5 m quadrats (N = 5) deployed in 3 different ran-
dom sites at depths ranging from 60 to 80 cm (Site A:
40° 36’ N, 0° 43’ E; Site B: 40° 36’ N, 0° 43’ E; Site C:
40° 37’ N, 0° 44’ E, see Fig. 1). The bryozoan colonies
within each quadrat were collected in plastic bags
and transported to the laboratory for further process-
ing. All samples were dried separately at 60°C until
they reached constant weight (24 h), then weighed
(0.01 g accuracy). Surface seawater temperature
(°C), salinity (psu), oxygen (mg l−1), and pH were re -
corded monthly at the 3 sampling sites using a multi-
parameter YSI 556 MPS instrument.

The abundance of P. emertoni individuals on the
bryo zoanA.verticillata (ind.g−1 wetweight [WW])and
its egg masses (no. of egg masses g−1 WW) were esti-
mated every month in which the bryozoan was found.
Specifically, random samples of free-floating colonies
of A. verticillata were collected and preserved within
ice-coolers to prevent death by overheating. Once in
the laboratory, a total of 30 subsamples were inspected
for the presence of individuals and egg masses of
P. emertoni under a dissecting bino  cular microscope
(Nikon SMZ1500). Subsamples were then blotted dry
for ~3 min and weighed to the nearest 0.001 g. In
addition, the entire biomass of the bryozoan was sur-
veyed for additional individuals, which tended to
detach and accumulate on the edges of the container,
where they could easily be collected. All individuals
found were kept in absolute ethanol for later studies.

In Fangar Bay, in a single site randomly selected, A.
verticillata was collected in October 2018 and July
2019, at ~40 cm depth. In this bay, only the abundance
of P. emertoni and its egg masses were assessed due to
logistic difficulties in reaching the area. Sample col-
lection and processing were conducted as in Alfacs Bay.

2.7.  Statistical analyses

2.7.1.  Abundance of A. verticillata and P. emertoni

Patterns in the abundance of A. verticillata (g DW
m−2) among sites (random factor, 3 levels) and months
(fixed factor, 13 levels) were investigated with a 1-
way repeated measures ANOVA. Multiple regression
analysis was used to establish the relationship be-
tween the abundance of A. verticillata and environ-
mental variables. Similarly, differences in the abun-
dance of P. emertoni (ind. g−1 WW of A. verticillata)
and their egg masses across the months of presence
(fixed factor, 3 levels) and between bays (fixed factor,
2 levels) were investigated with a Student’s t-test for
independent samples.

2.7.2.  Stable isotopes and elemental contents

Differences in the δ13C and δ15N composition and in
the elemental contents of P. emertoni and A. verticil-
lata in Alfacs Bay between years (2018 vs. 2019) were
tested with a 2-tailed unpaired t-test with Welch’s
correction. Stable isotope signatures and elemental
contents of potential food items in August 2019 were
analyzed with a 1-way ANOVA.

For all parametric analyses, homogeneity of vari-
ance and normality assumptions were tested by
Cochran’s test and the Kolmogorov-Smirnov distribu-
tion-fitting test of the residuals, respectively. The crit-
ical level of significance was fixed at α = 0.05. How-
ever, in some instances the assumptions were not met
by transformation, and the level of significance was
fixed at α = 0.01 to minimize the possibility of making
a Type II error. Student-Newman-Keuls (SNK) post
hoc comparisons were used when necessary to iden-
tify significant differences in the interaction between
sites and months. All analyses were performed using
the software package STATISTICA v.13 (StatSoft).

3.  RESULTS

3.1.  Morpho-anatomical features and video
recording of feeding habits

Examined individuals of Polycerella emertoni fea-
tured a small (maximum length 5−6 mm, typically
3−4 mm), translucent body with bright yellowish
tones and small scattered dark brown and/or green
spots (Fig. 2a−d). The small size and color patterns
camouflage this species very effectively on the bry-
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ozoan where it lives. Egg masses were ca. 1.8 mm
length, and over 100 eggs were found within de -
tached mats of Amathia verticillata (Fig. 2e).

The jaws of the animals were broadly rounded with
prominentanteriorwingsandsmoothmasticatorybor-
ders.Theradulawascompletelytranslucent,elongate,
and narrow (Fig. 3a,e), had a radular formula 28−30 ×
2.1.0.1.2, and lacked any rachidian teeth (Fig. 3c,e,f).
The lateral tooth was ca. 2 times larger than the mar-
ginal ones and had an elongated and narrow base that
widened in its upper area where it had 2 hook-shaped
cusps, the upper one being wider and more devel-
oped (Fig. 3b,c,d). The 2 marginal teeth had a broad
rectangular base and a pointed cusp (Fig. 3b,c,e,f).

Results obtained from the video recording of the
nudibranch feeding habits showed an individual of P.
emertoni repeatedly sucking a kenozooid of A. verti-
cillata, without visible loss of, or damage to, the bryo -
zoan tissue (see Video S1 in the Supplement at www.
int-res. com/ articles/ suppl/  m645 p067_ supp/).

3.2.  Stable isotopes (δ13C and δ15N) 
and elemental contents

δ15N values of P. emertoni in Alfacs Bay were signif-
icantly higher (df = 5.27, t = 18.64, p < 0.05) in 2018

than in 2019 (mean ± SE: 12.59 ± 0.03 and 11.02 ±
0.07‰, respectively), and δ13C values also signifi-
cantly differed (df = 4.67, t = 0.77, p < 0.05) between
years (−17.40 ± 0.03 and −16.61 ± 0.13‰, respectively)
(Fig. 4). In contrast, for elemental contents, no signifi-
cant differences were observed between 2018 and
2019 (%C: 40−01 ± 1.22 and 39.03 ± 0.35%; %N: 12.01
± 0.02 and 11.16 ± 0.01%, respectively, for each year).

For A. verticillata, δ15N values in Alfacs Bay were
not significantly different between 2018 and 2019
(δ15N: 7.88 ± 0.04 and 7.96 ± 0.09‰, respectively), but
δ13C values did differ (df = 6.70, t = 19.77, p < 0.05)
(−15.11 ± 0.09 and −18.60 ± 0.14‰, respectively). For
elemental contents, no significant differences be -
tween years were observed (%C: 13.25 ± 0.39 and
12.2 ± 0.46%; %N: 2.72 ± 0.06 and 2.76 ± 0.11%).

When the 2 potential diets (biofilm of microalgae
and A. verticillata) and the consumer (P. emertoni)
were investigated together for Alfacs Bay in 2019, re-
sults showed the presence of significant effects for
both stable isotope signatures and elemental contents
(Table 1, Fig. 4). The δ13C signature of the nudibranch
P. emertoni (−16.61 ± 0.12‰) was very similar to that
of the biofilm (−16.76 ± 0.06‰), whereas that of A.
verticillata was significantly lower (−18.60 ± 0.15‰)
(Fig. 4). The δ15N signature was significantly higher in
P. emertoni (11.02 ± 0.07‰), followed by the biofilm
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Fig. 2. Polycerella emertoni individuals between 1 and 3 mm: (a,b) dorsal view; (c) copulation between 2 individuals; (d) lateral 
view; (e) egg mass attached to bryozoan branches
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Fig. 3. Scanning electron micrographs of the radula of Polycerella emertoni: (a) radular bulb; (b) marginal and lateral teeth; (c)
radular membrane and teeth in lateral view; (d) detail of the lateral teeth; (e) detail of the anterior teeth of the radula; (f) marginal 

teeth. Scale bars = 10 µm, except in (b) and (f): 1 µm
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(9.89 ± 0.32‰) and A. verticillata (7.96 ± 0.09‰)
(Table 1, Fig. 4). For elemental contents, %C was
higher in P. emertoni (39.03 ± 0.35%), but was not sig-
nificantly different between A. verticillata and the
biofilm (12.20 ± 0.46 and 13.06 ± 0.27%, respectively)

(Table 1). Elemental N was significantly different be-
tween organisms, with higher values in P. emertoni
(11.16 ± 0.10%), followed by A. verticillata (2.76 ±
0.11%) and the biofilm (1.67 ± 0.03%) (Table 1).

3.3.  Stable isotope mixing models

Results for the 50th percentile showed that the main
component of the P. emertoni diet in Alfacs Bay was
the biofilm of microalgae growing on the bryozoan
(99.90%), with only a minor contribution from A. verti -
cillata (0.10%). Changes of ±1‰ in the value of Δ15N
did not cause any change in the outcome of the
results, whereas changes of ±0.5‰ in the value of
Δ13C resulted in a variability of 81−100% contribu-
tion (respectively for −0.5 and +0.5 rates) of periphy-
ton to the nudibranch diet.

3.4.  Stomach contents and biofilm
community analysis

Diatom cells were found in 12 of the 15 individuals
of P. emertoni whose stomach contents were exam-
ined (8 of the 11 examined by light microscopy and
4 out of 4 by SEM). The diatom species and their
abundance seemed to vary among individuals (see
Table 2, Fig. 5h−n). The 2 digested samples of the bio -
film growing on the bryozoan A. verticillata showed a
rich and highly diverse community of benthic dia -
toms (Figs. 5a−g & 6), some of the most common being
Nitzschia cf. incognita, Navicula cf. normalo ides, N.
cf. salinicola, Halamphora coffeaeformis group, Hyalo -
synedra cf. hyalina, Cocconeis spp., Mastogloia cf.
lanceolata, M. cf. cuneata, Seminavis spp., Grammato -
phora spp., and Brachysira spp.

Determining potential selectivity of P. emertoni for
particular diatom species or guilds was beyond the
scope of this study. However, the approach we used
could easily be adapted to look for dietary preferences.

3.5.  Seasonal abundance of A. verticillata
and P. emertoni

Seasonal temperatures in Alfacs Bay ranged be -
tween 13.7 and 30.8°C, with an average of 20 ± 0.8°C,
and this was the most influential variable affecting
the growth of A. verticillata (Fig. 7). There was signif-
icant temporal variability in bryozoan abundance in
Alfacs Bay across sampling months and years, with
higher occurrence from July to August at water tem-
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ANOVAs             df                     MS           F               p

δ13C                                                                                  
Species                 2                     6.11       87.44       <0.001
Error                    12                    0.07                             
SNK          PE = BF > AVA

δ15N                                                                                 
Species                 2                    11.77      58.11       <0.001
Error                    12                    0.20                             
SNK          PE > BF > AVA

%C                                                                                  
Species                 2                     6.11        1726        <0.001
Error                    12                    0.67                             
SNK          PE > AVA = BF

%N                                                                                  
Species                 2                   134.30      3630        <0.001
Error                    12                    0.04                             
SNK          PE > AVA > BF

Table 1. One-way ANOVA for differences in stable isotopic
signatures and elemental contents among food items (AVA:
Amathia verticillata; BF: biofilm of microalgae growing on
the bryozoan) and the nudibranch (PE: Polycerella emertoni)
of Alfacs Bay in August 2019, for δ13C, δ15N, %C, and %N.
SNK: Student-Newman-Keuls test. Statistically significant 

results (α = 0.05) are indicated in bold

Fig. 4. Stable isotope ratios (δ15N and δ13C) of Polycerella
emertoni from Alfacs Bay in 2018 and 2019 (PEA-18 and
PEA-19, respectively), and of possible food items including
Amathia verticillata (AVA-18 and AVA-19, respectively),
and the biofilm of microalgae growing on the bryozoan (BF). 

Error bars are SE
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peratures from 27 to 30.8°C (Table 3, Fig. 8). Spatial
variability among study sites was not significant, and
neither was the Month × Site interaction (Table 3).

Results from multiple regression analysis showed a
significant correlation between A. verticillata abun-
dance and water temperature (r2 = 0.58, df = 1, F =
23.17, p < 0.05), whereas oxygen, salinity, and pH did
not have a significant effect.

Student’s t-test showed significant differences in
the abundance of P. emertoni and its egg masses
across months and bays (Table 2). Both individuals
and egg masses were dominant in Alfacs Bay during
the summer period, whereas abundances in Fangar
Bay peaked in October (Table 4, Fig. 9).

4.  DISCUSSION

This study provides the first record of herbivorous
behavior in the order Nudibranchia by evidencing
feeding on periphyton by the cryptic nudibranch
Polycerella emertoni. This evidence was achieved
using an array of techniques including video record-
ing, stable isotope ratios, and stomach contents. Our
video recording showed an individual of P. emertoni

repeatedly sucking a kenozooid of Amathia verticil-
lata but without actual loss of bryozoan tissue or
damage to it. This suggests that P. emertoni feeds on
the biofilm covering the external branching structure
of the bryozoan. According to the Bayesian stable
isotope mixing model used, this biofilm may consti-
tute up to 99% of the diet of P. emertoni, although
contributions ranging from ca. 80 to 100% are possi-
ble depending on variations in the fractionation rates
(3.4 ± 1‰ for 15N and 0 ± 0.5‰ for 13C). The δ13C sig-
nature of P. emertoni (−16.61‰) was very similar to
that of the biofilm (−16.76‰), as expected for diet
sources under the hypothesis of null 13C fractionation
(Post 2002). This biofilm was present in large abun-
dance on the surface of A. verticillata, and was
mostly composed of a diverse array of diatom species
which were also found in the stomach contents of
most of the individuals of P. emertoni examined (e.g.
Nitzschia cf. incognita, Navicula cf. normaloides, N.
cf. salinicola, or Hyalosynedra cf. hyalina). An impor-
tant next question to answer is whether P. emertoni
exhibits any selectivity in its feeding across the 3-
dimensional structure of the biofilm, including from
mainly attached, sometimes chain-forming species to
several solitary and mobile ones.
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Individual      Voucher slide or stub       Diatom species observed                                                                       Diatom density

1                                   LMA                     Many cells of cf. Stenoneis; some cells of Hyalosynedra                            ++++
                                                                  cf. hyalina; some Mastogloia spp.

2                                   LM1                     Some cells of cf. Stenoneis, Navicula sp. salinicola,                                     +++
                                                                  Hyalosynedra cf. laevis and Mastogloia cf. inaequalis

3                                   LM2                     Mastogloia sp.                                                                                                     +

4                                   LM3                     Some cells of Striatella unipunctata, Navicula cf. salinicola,                       +++
                                                                  cf. Stenoneis, round fragilarioid, Proschkinia sp.

5                                   LM4                                                                  –                                                                              0

6                                   LM5                     Some cells of Cocconeis cf. scutellum; Navicula cf. normaloides;              +++
                                                                  Mastogloia cf. lanceolata

7                                   LM6                                                                  –                                                                              0

8                                   LM7                                                                  –                                                                              0

9                                   LM8                     Few cells of Mastogloia cf. lanceolata                                                             ++

10                                 LM9                     Some cells of Tabularia cf. fasciculata; Brachysira estonarium,                   ++
                                                                  and cf. Stenoneis

11                                LM10                    Some cells of Nitzschia cf. incognita, Navicula cf. salinicola,                       ++
                                                                  and Halamphora coffeaeformis group

12−15                        SEM1−4                  Some cells of Nitzschia cf. incognita, Navicula cf. salinicola,            Not applicable
                                                                  N. cf. normaloides, Halamphora coffeaeformis group, 
                                                                  Cocconeis spp., Mastogloia cf. lanceolata, M. cf. cuneata, 
                                                                  Hyalosynedra cf. hyalina, Striatella unipunctata, Diploneis sp.

Table 2. Stomach contents of 11 Polycerella emertoni examined under light microscopy (LM) and 4 P. emertoni observed with
scanning electron microscopy (SEM). Diatom density was assessed visually and in a qualitative way (++++ = very high; +++ =
high; ++ = moderate, + = low; 0 = diatom cells not observed). Voucher slides and SEM stubs are held in the Institute of Agrifood 

Research and Technology (IRTA) center of Sant Carles de la Ràpita
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Although this study provides the first and only evi-
dence of herbivorous behavior in nudibranchs, there
are some other groups of Heterobranchia whose spe-
cies are characterized by different feeding behaviors,
including herbivory. For instance, species from the
order Cephalaspidea show the greatest diversity of
feeding strategies, ranging from herbivory to active
predation (Kohn 1983). In the superorder Saco glossa,
most species described to date are strict herbivores
(Raven et al. 2001), but some in the genera Olea and
Calliopaea are indicated to be specialized egg-
predators (Coelho et al. 2006, Filho et al. 2019).

The existence of a possible association between
radula morphology and food type was investigated
by Nybakken & McDonald (1981) in an array of nudi-
branch species feeding on different types of prey,

such as bryozoans, cnidarians, and tunicates. Unfor-
tunately, their description was limited to the number
of teeth per row, and the full radular formula was not
provided. The only species known to be similar to
P. emertoni in their radula morphology are Triopha
catalinae, Limacia cockerelli (Ny bak ken & McDon-
ald 1981, described as Laila cocke relli), and Antio -
pella barbarensis, which supposedly display a food
preference for hard bryozoan colonies, which is not
consistent with the diet of P. emertoni. Nybakken &
McDonald (1981) noticed that the teeth of P. emertoni
have a relatively narrow base compared to other spe-
cies of nudibranchs with a similar number of teeth
per row (such as T. catalinae),  suggesting that this
character might also be important for determining
diet type. On the other hand, P. emertoni displays a
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Fig. 5. Light microscope photographs of diatom species: (a−g) from biofilm on Amathia verticillata; (h−n) from stomach con-
tents of Polycerella emertoni individuals. (a,h) Nitzschia cf. incognita; (b,i) Navicula cf. normaloides; (c,d,j) Mastogloia cf.
lanceolata; (e) Grammatophora sp. and Halamphora sp. (smaller cell at top); (f) Hyalosynedra cf. hyalina (left) and Hyalosira
sp. (right); (g,n) Cocconeis cf. scutellum; (k) Brachysira cf. estoniarum; (l) Hyalosynedra cf. hyalina; (m) cf. Stenoneis. Scale bar 

in panel m = 10 µm and applies to all panels
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radular morphology and formula (28−30 × 2.1.0.1.2)
like those in some species of similar size and behav-
ior in the genus Okenia (family Goniodorididae). For
instance, O. zoobotryon, presumably a specialist con-
sumer of A. verticillata, has a very similar radular for-
mula of 25 × 1.1.0.1.1 (Pola 2014). O. polycerelloides
(29 × 1.1.0.1.1, Sales et al. 2019), O. problematica
(10−12 × 1.1.0.1.1, Pola et al. 2019), and O. evelinae
(28 × 1.1.0.1.1, Marcus 1957) are also comparable to
O. zoobotryon, which could mean that they have a
similar diet. The radula of P. emertoni and these
Okenia species is also long and narrow, with few
teeth in each row; the lateral teeth have 1−2 cusps
and denticulation on their inner face and smaller
marginal teeth. Other investigated species in the
Poly ceridae family, such as Polycera hedg pethi
(10−11 × 3−4.2.0.2.3−4, Miller 2001) and P. glandu-
losa (28−40 × 3.1−2.0.1−2.3, Behrens & Gosliner
1988), also display radular formulas somewhat differ-
ent from both P. emertoni and the previously men-
tioned Okenia species. It is also worth noting that the

radula of P. emertoni also differs from most other
radulae since it has no denticles at the end of the
teeth, al though the functionality of these denticles is
unclear. Despite these differences in the number and
shape of teeth, the radulae of these small nudi-
branchs are generally very similar in structure: long,
narrow, and with at least 1 well-developed lateral
tooth with at least 1 hook-shaped cusp, which may
reflect an array of specialized feeding strategies,
including the micro-herbivory condition of P. emer-
toni. However, this potential relationship is not
straightforward and needs to be investigated further,
including the proper determination of dietary items
with analytical techniques similar to those used in
the present study.

The abundance of P. emertoni was strongly sea-
sonal in the study areas of the Ebro Delta. The
numbers of both individuals and egg masses peak
be tween July and October, depending on the bay,
at water temperatures between 22 and 27°C. Sea-
sonality has already been reported in some nudi-
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Fig. 6. Scanning electron photographs of the biofilm on Amathia verticillata: (a,b) overview and detail of attached diatom cells
and organic matrix; (c) high abundance of appressed Cocconeis cells with a single Nitzschia species (elongated cell in center);
(d) slim, rectangular cells of Hyalosira (arrows) between polyps on A. verticillata. Scale bars = 10 µm, except in panel d: 100 µm
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branch species (Chambers 1934), and it is possibly
related to their high thermal sensitivity (Clark
1975). For in stance, Lambert (1990) reported large
summer peaks in the nudibranch community (in -
cluding Doto coronata, Dendronotus frondosus, and
Eubranchus exi guus) associated with colonies of
the hydrozoan Obelia geniculata in Cape Neddick

(York, ME). An other possible explanation of nudi-
branch seasonality is high specificity for their
dietary resources (Aerts 1994). In the Mediterran-
ean, P. emertoni has been consistently observed as -
sociated with the pseudo-indigenous bryozoan A.
verticillata (Camps & Prado 2018), suggesting that
the bryozoan provides a unique resource that is not
readily available elsewhere. Yet, P. emertoni from
the Atlantic has been ob served in other habitats
such as on filamentous algae (Verrill 1881), indica-
ting that A. verticillata is not itself the food source
but other resources associated with those substrates
are. Okenia zoobotryon, which is taxonomically
close to P. emertoni, is also primarily found associ-
ated with A. verticillata. However, small numbers
of adults have also been ob served on the macroalga
Gracilaria spp. and on other bryozoans, such as
Amathia maxima (Robinson 2004, described as
Bower bankia maxima), thus also raising questions
concerning the diet of this species. It remains to be
determined whether these filamentous algae and
bryozoans also possess a diatom epiphyton and
whether Okenia feeds on it.
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Fig. 7. Time series (August 2018 to August 2019) of environmental data at the 3 study sites (A, B, and C) in Alfacs Bay, Catalonia: 
(a) temperature (°C); (b) oxygen (mg l–1); (c) salinity (psu); (d) pH. Error bars are SE

RM-ANOVA                  df               MS          F            p

Site                                 2               11.92      1.45      0.27a

Error                               12              8.22                       
Month                            12              34.78      5.78   <0.001a  

Month × Site                 24              10.30      1.71      0.02b

Error                              144             6.01                       
SNK (Month)     Aug-18 = Sep-18 = Jul-19 = Aug-19 >

other months

Table 3. One-way repeated measures ANOVA results for dif-
ferences in the abundance of Amathia verticillata across 3
sites and between months: 2018 (Aug, Sep, Oct, Nov and
Dec) and 2019 (Jan, Feb, Mar, Jun, Jul, Aug). Abundance
data were log(x) transformed. Student-Newman-Keuls test.
Statistically significant results are indicated in bold. aα = 

0.05, bα = 0.01 (see Section 2.7.2 for details)
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An alternative plausible explanation for the high
degree of specificity between cryptic nudibranch
species and their habitats could be related to their
capacity to mimic particular substrates. Mimicry has
been widely observed in many marine invertebrates

in relation to predation, anti-predation, warning, or
reproduction (Randall 2005). In nudibranchs, the loss
of the shell as a defensive mechanism has been com-
pensated for by adaptations to prevent being de -
tected, such as homochromy (Faulkner & Ghiselin
1983), but all currently known cryptic nudibranchs
are thought to feed on their habitat. In fact, many
marine invertebrates camouflage themselves as their
habitat but feed on other species, so they do not nec-
essarily incorporate coloration patterns from their
diet. For instance, the pink shrimp Pontonides unci -
ger, which lives firmly attached to the coral Cirri pa -
thes spp., provides a remarkable example of com-
mensal mimicry by adopting the shape and color of
the polyps (Tazioli et al. 2007) while feeding on zoo-
plankton (Terrana et al. 2019). Another similar ex -
ample is the crab Xenocarcinus tuberculatus, which
displays the same varied colorations of its black coral
host (Tazioli et al. 2007), despite its diet being based
on detritus and zooplankton (Gosliner et al. 1996).
Also, some species of caprellids can change the color
of their exoskeleton depending on the substrate
where they shelter and may exhibit a significant
affinity for particular bryozoans (Keith 1971), al -
though their diet is mainly based on detritus, tiny
crustaceans, and diatoms (Guerra-García et al. 2015).

The abundance of the bryozoan A. verticillata
showed the same marked seasonality as P. emertoni,
as large mats were developed during the summer and
disappeared progressively in September− October
(Micael et al. 2018). According to McKinney (1983) and
Robinson (2004), A. verticillata is capable of establish-
ing new colonies from small fragments of the stolon
that are filled with a yolk-like substance and con -
stitute resting structures persisting over the winter
period (Jebram 1973). In spring, when temperature
and food conditions are favorable, fragments may
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Fig. 8. Abundance of Amathia verticillata (g dry weight
[DW] m−2) (5th−95th percentile) per month (August 2018 to
August 2019) at the 3 study sites (A, B, and C) in Alfacs Bay,
Catalonia. Boxplots: central line = median, box = upper and 

lower quartiles and error bars = SE

Student’s t-test                             df             t                p

Individuals of P. emertoni
Oct (A) vs. Oct (F)                        58        −4.83       <0.001
Jul (A) vs. Jul (F)                          58         11.70       <0.001
Aug-18 (A) vs. Aug-19 (A)          58         5.47       <0.001

Egg masses of P. emertoni
Oct (A) vs. Oct (F)                        58        −5.62       <0.001
Jul (A) vs. Jul (F)                          58         7.16       <0.001
Aug-18 (A) vs. Aug-19 (A)          58         3.75       <0.001

Table 4. Student’s t-test results for differences in the abun-
dance of Polycerella emertoni and egg masses of P. emertoni
between bays (A: Alfacs; F: Fangar) and in different months
when presence was observed: 2018 (Jul, Aug, Oct) and 2019
(Jul, Aug, Oct). Statistically significant results (α = 0.05) are 

indicated in bold
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 settle on a variety of natural and artificial substrates
and grow asexually (McKinney 1983, Robinson 2004).
Small-sized nudibranchs, taking advantage of the
presence of their highly seasonal food, exhibit very
rapid growth and can grow, mature sexually, repro-
duce, and lay eggs from a few days to a few weeks
 after the larval metamorphosis. These nudibranchs
are known as opportunists or  r-strategists; they do not
usually maintain stable populations, and they suffer
large fluctuations in the abundance of individuals
over short periods of time. There are usually several
generations in a single year. The larvae of benthic in-
vertebrates may remain in the plankton for periods
ranging from hours to months before settling and
metamorphosing into their juvenile form (Hadfield &
Paul 2001). If the larvae of P. emertoni are capable of
surviving long periods in the plankton (on the order of
months), the summer reappearance of A. verticillata
may provide the specific biological cues required to
initiate settlement as indicated for other species of
nudibranchs (Hadfield & Paul 2001), but more studies
are needed to confirm this idea.

Overall, the findings of our study question the gen-
eral paradigm that all nudibranchs are carnivores and
point to the need for a reassessment of the trophic
ecology of the many species in this order, particularly
for those that are similar in behavior and size to P.
emertoni. At least a new trophic category of biofilm-
grazer needs to be considered alongside the 4 ecolog-
ical categories traditionally recognized (Todd 1981).
Until more nudibranch species are studied using a
similar approach to that applied in the present work,
the full implications of our findings for food web/
nutrient transfers will not be clear. Nonetheless, our
study provides evidence of a previously neglected
route for periphyton carbon and other components

(such as silicon, which is metabolized
and accumulated mostly by diatoms) to
enter higher trophic levels during the
summer period when the species become
seasonally abundant. Animals take up
silicon in their diet and incorporate it into
connective tissues and bones, where it
plays a physiological role in the calcifica-
tion process (Harst & Obreza 2010).
Hence, grazing of diatoms by P. emertoni
may provide a pathway for silicon trans-
fer to secondary consumers throughout
the trophic food-web. In the particular
case of Heterobranchia, Carefoot & Pen-
nings (2003) also found that heavier sili-
con-rich food was readily eaten by sea
hares, and significantly reduced the time

spent swimming, which has possible implications for
habitat fidelity in these species. In turn, removal of
periphyton may also have positive effects on the set-
tlement of bryozoan larvae (see for instance Dahms et
al. 2004) adjacent to conspecific adults, as well as en-
hance the survival of small detached fragments of A.
verticillata, thus favoring its dispersal and introduction
into new areas.
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