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1.  INTRODUCTION

Several studies have pointed out the critical need
to survey pre-settlement fish (hereafter referred to as
post-larvae) for marine ecosystem monitoring (Hsieh
et al. 2005, Cowen et al. 2007, Koslow et al. 2013).

Post-larval surveys are important because variations
in the supply of post-larvae will influence the size
and composition of juvenile fish populations (Jenkins
& King 2006) and thus determine adult fish renewal
(Takahashi & Watanabe 2004). Post-larval dis tribution,
richness, and abundance can be affected by bio-
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juvenile fish populations. No previous studies have predicted post-larval fish species richness and
abundance combining molecular tools, machine learning, and past-days remotely sensed oceanic
conditions (RSOCs) obtained in the days just prior to sampling at different scales. Previous studies
aimed at modeling species richness and abundance of marine fishes have mainly used environ-
mental variables recorded locally during sampling and have merely focused on juvenile and adult
fishes due to the difficulty of obtaining accurate species richness estimates for post-larvae. The pres-
ent work predicted post-larval species richness (identified using DNA barcoding) and abundance
at 2 coastal sites in SW Madagascar using random forest (RF) models. RFs were fitted using com-
binations of local variables and RSOCs at a small-scale (8 d prior to fish sampling in a 50 × 120 km2

area), meso-scale (16 d prior; 100 × 200 km2), and large-scale (24 d prior; 200 × 300 km2). RF mod-
els combining local and small-scale RSOC variables predicted species richness and abundance
best, with accuracy around 70 and 60%, respectively. We observed a small variation of RF model
performance in predicting species richness and abundance among all sites, highlighting the con-
sistency of the predictive RF model. Moreover, partial dependence plots showed that high species
richness and abundance were predicted for sea surface temperatures <27.0°C and chlorophyll a
concentrations <0.22 mg m−3. With respect to temporal changes, these thresholds were solely
observed from November to December. Our results suggest that, in SW Madagascar, species rich-
ness and abundance of post-larval fish may only be predicted prior to the ecological impacts of
tropical storms on larval settlement success.
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physical processes (Jackson et al. 2001, Leathwick et
al. 2006, Mavruk et al. 2018) and increasing stress
from anthropogenic activities (Jackson et al. 2001).
Because post-larval supply onto the nearshore habi-
tat is a function of spawning stock size (Moser & Wat-
son 1990), determining how post-larval species rich-
ness and abundances vary through time would help
us understand ecosystem modifications (Wernberg et
al. 2013) and detect changes in fish communities
(Koslow & Wright 2016). The central role of post-lar-
vae in fish population dynamics highlights the urgent
need for a better understanding of how species rich-
ness and abundance vary in nearshore habitats.

Since the early life stage of fishes is strongly im -
pacted by biophysical drivers (including hydrody-
namic conditions and food availability), we should be
able to use those drivers to predict post-larval species
richness and abundance in nearshore habitats. These
predictions may inform the future structure of settled
fishes, and thus adult populations, which is important
information for resource management (Francis et al.
2011). Therefore, by integrating environmental vari-
ables, species richness and abundance of post-larvae
are also central for ecological modeling (Nicolas et al.
2010, França et al. 2012). Most previous modeling
studies have been based on regression methods for
predicting the species richness and abundance of
fishes. For example, Francis et al. (2005) and Klemas
(2012) used generalized additive models (GAMs) for
predicting the abundance of fish, while Vasconcelos
et al. (2015) used generalized linear models (GLMs)
for predicting the species richness of estuarine fish.
However, França & Cabral (2015) reported the outper-
formance of classification and regression trees (CARTs)
for predicting species richness of juvenile estuarine
fishes compared to GLM, GAM, and boosted regres-
sion trees. CART can be highly sensitive to changes
in training and test data sets. Knudby et al. (2010) iden-
tified the high performance of random forest (RF)
models in predicting the richness of fish compared to
the modeling techniques mentioned above, including
CART.  The modeling studies mentioned above have al-
ways focused on juvenile and adult estuarine fish be-
cause an accurate identification of post-larvae to spe-
cies level is often difficult. The few previous modeling
studies of post-larvae included only a single species
(Jenkins et al. 1999, Koehl et al. 2007) or specimens
identified to the family level (Burgess et al. 2007).

All of the aforementioned studies modeling species
richness and abundance were based on variables
recorded during sampling, either in situ or using
remotely sensed oceanic conditions (RSOCs). How-
ever, environmental variables recorded before the

sampling period using RSOCs could be important for
modeling species richness and abundance because
these conditions can influence post-larval spatial dis-
tribution and survival and the structure of larval fish
supply into coastal habitat. To our knowledge,
RSOCs during the few days preceding sampling
have never been used for predicting species richness
and abundance of post-larvae, so the usefulness of
this approach remains to be demonstrated. Although
developing predictive models based on RSOCs re -
mains challenging, this approach has been success-
fully used to predict the occurrence of jellyfish blooms
(Albajes-Eizagirre et al. 2011).

Based on accurate estimates of species richness
using DNA barcoding, this study aimed to (1) identify
the best RSOC scales for accurately predicting varia-
tions in post-larval species richness and abundance;
(2) define the main RSOC variables affecting species
richness and abundance; and (3) discover how model
performance varied between 2 contrasting coastal
sites. We hypothesized that (1) small-scale RSOC
variables would predict the variations in species rich-
ness and abundance of post-larval tropical fishes bet-
ter than local, meso-, and large-scale variables, and
(2) the important variables should be similar for both
species richness and abundance at both sites. To
achieve these goals and test these hypotheses, we
used the RF machine learning technique to model
species richness and abundance of post-larval tropi-
cal fishes sampled at 2 contrasting coastal sites in
southwestern Madagascar. RF models were based
on locally recorded information (local variables) and
RSOC variables that were recorded at different spatial
and temporal scales before each sampling period.

2.  MATERIALS AND METHODS

2.1.  Study site

This study was carried out in southwestern Mada-
gascar (Fig. 1) because of (1) the presence of a barrier
reef and contrasting sites in terms of water mass
characteristics; (2) the availability of previous data
related to these sites; and (3) the presence of small-
scale fisheries activities which are in need of effec-
tive management. Due to logistical constraints, the
study was only conducted at 2 coral reefs, located
approximately 50 km apart. The first site, off Anakao
(Anakao reef; ANA), was a flat coral reef surrounding
Nosy Ve Island, situated 10 km south of the perma-
nent Onilahy River. This site is influenced by the
plume of the Onilahy River when northerly winds
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blow. The influence of this river flow explains the
variability in the water mass characteristics between
December and February (sea surface temperature
[SST]: 23.5−29°C; salinity: 32−35), i.e. during the
warm and rainy season (Jaonalison et al. 2016). The
second site was located in the north of the great bar-
rier reef of Toliara (GRT) (Fig. 1). This reef stretches
over 19 km and represents approximately 33 km2 of
structurally diverse, shallow reef areas where coral
diversity has declined since the 1960s (Bruggemann
et al. 2012). The GRT site was situated 4.5 km south
of the non-permanent Fiherenana River, and 25 km
north of Onilahy River. Characteristics of water masses
at GRT also vary, with SSTs ranging from 24−28°C

and salinity between 33 and 36 (Jaonalison et al.
2016). Nevertheless, the characteristics of the water
masses at GRT can be considered less variable than
at ANA because diurnal tidal currents induce a regu-
lar, intense mixing in the northern part of the great
barrier reef (R. Arfi unpubl. data).

2.2.  Post-larval sampling

This work was based on a monthly sampling during
3 austral warm seasons (November−April) in the
2014−2015, 2016−2017, and 2017−2018. Sampling was
performed during 3 consecutive nights of the new
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moon period, using Système Lumineux Electronique
d’Echantillonnage des Post-larves (SLEEP) light traps,
as in Collet et al. (2018). The new moon period of the
warm season was chosen because it corresponds to the
post-larval supply peak (Robertson et al. 1988). Al -
though light traps are selective and their efficiency is
influenced by hydrodynamic conditions and water mass
turbidity (Marchetti et al. 2004, Lindquist & Shaw 2005),
they were used because they can catch fish post-larvae
before they settle onto benthic habitats (Wilson 2001,
Anderson et al. 2002). At each site, 3 light traps were
set up at dusk and retrieved the following morning.
The collected post-larvae were live-transported to the
laboratory, where they were sorted to morphospecies.

2.3.  Identification process: high definition photo
and DNA barcoding

One specimen of each morphospecies was randomly
selected and photographed with a Nikon model D90
camera equipped with a Sigma 105 mm macro lens.
The camera was connected directly to a computer
equipped with Adobe Lightroom® software, which
was used for managing the photos and all information
related to each specimen. A tissue fragment of each
photographed specimen was preserved in 90% ethanol
and stored at −20°C until DNA extraction. Because
morphological identification of post-larval fish to spe-
cies level remains challenging (Frantine-Silva et al.
2015), genetic analysis has been used to effectively
identify fish larvae (Ko et al. 2013). DNA extraction
and sequencing were performed at the Mediterranean
Center for the Environment and Biodiversity (CEMEB)
at the University of Montpellier, France, following the
methods of Collet et al. (2018). DNA sequences of the
cytochrome oxidase I (COI) gene were manually ad-
justed after visual inspection using ‘Chromas v.2.6.4’
(http://technelysium.com.au/wp/chromas/). The ad-
justed sequences were then edited and aligned with
‘Clustak W’ using MEGA 7.0 (Kumar et al. 2016). COI
sequences, with the image of the corresponding spec-
imen, were then uploaded into the Barcode of Life
Data System (BOLD) database (public data set DS-
PHDJAO). In BOLD, each sequence was automati-
cally assigned a Barcode Index Number (BIN; Rat-
nasingham & Hebert 2013). To assign a species name
to each BIN, we first identified the specimen as
‘Genus+species’ if (1) the BIN corresponded to only
one species in BOLD and (2) the species was only ob-
served in this BIN. Secondly, if the BIN corresponded
to more than one species of the same genus, or if
the species’ name corresponded to multiple BINs in

BOLD, the specimen was identified as ‘Genus+BIN’
(e.g. Lethrinus [BOLD:AAB0511]). Third, if the
BIN corresponded to species from different genera,
but belonging to the same family, the specimen was
identified as ‘Family+BIN’ (e.g. Gobiidae [BOLD:
ACV9382]). Note that the identifications Genus+BIN
and Family+BIN signify identification to species level
because each BIN corresponds to an operational taxo-
nomic unit, and thus to a putative species (Ratnasing-
ham & Hebert 2013). When DNA barcoding failed,
identification re mained at the morphospecies level
(e.g. Congridae_gen sp_1HJ).

The total abundance and species richness in each
sample did not take into account small pelagic fish
species (e.g. Clupeiformes and Atheriniformes), which
can be abundant in some light-trap catches. However,
their abundances were considered in the models
among the local variables because large numbers of
small pelagic fishes may reduce the efficiency of the
light traps for catching reef fish post-larvae.

2.4.  Environmental variables

Several local variables were recorded at each site
when the light traps were set: SST (using a ther-
mometer), water transparency (using a Secchi disk),
and wind speed and direction (using an anemometer
and a compass). These variables were selected
because they can influence either the efficiency of
light traps (Hickford & Schiel 1999) or the species
richness and abundance of the post-larvae (Harris et
al. 2001, Chen et al. 2018). Due to technical prob-
lems, sea surface salinity was recorded for the
2017−2018 sampling season only and was thus not
retained for analyses. Due to logistical constraints,
light-trap setting time was not fixed but ranged from
16:45−20:45 h. The difference between the time of
sunset and light-trap setting and between the time
of sunrise and light-trap collection were thus calcu-
lated and used as local variables to reflect the potential
effect of high tide that always occurred around sunset.

RSOCs were extracted from 3 different spatial and
temporal scales (Fig. 1) based on James et al. (2002),
who suggested that fish larvae could be transported
21−43 km over 6 d. According to a similar proportion,
we hypothesized that larvae could be influenced by
environmental factors (1) up to 50 km from the coast
over an 8 d period before the sampling night at the
small scale (RSOC-SS); (2) up to 100 km and 16 d at
the meso scale (RSOC-MS); and (3) up to 200 km from
the coast and 24 d at the large scale (RSOC-LS). The
RSOC-SS, -MS and -LS included the composite MUR
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SST product (JPL 2015), AQUARIUS sea surface
salinity (Meissner & Wentz 2016) (both datasets
available through https:// oceandata. sci. gsfc. nasa. gov/
Aquarius/), and the level-3 daily data set of chloro-
phyll a (chl a) concentration from MODIS (NASA
Ocean Biology Processing Group 2017) (https://
oceancolor. gsfc.nasa.gov/). The WindSat data (www.
remss.com) are produced by Remote Sensing Sys-
tems and sponsored by the NASA Earth Science
MEaSUREs DISCOVER Project and the NASA Earth
Science Physical Oceanography Program (Wentz et al.
2013). Finally, the OSCAR surface current velocity
(ESR 2009) was obtained from www. esr. org/ research/
oscar/oscar-surface-currents/. All data sets and vari-
able names are summarized in Table 1. The spatial
and temporal resolution of these RSOC variables, as
well as their corresponding number of pixels (for
each variable, one pixel denotes one piece of infor-
mation), are detailed in Table 1. For each variable,
information from these pixels for each day was aver-
aged over 8, 16, and 24 d.

2.5.  Data sets used for RF modeling

For each sampling site, species richness and abun-
dance were modeled separately with local variables,
RSOC-SS, RSOC-MS, and RSOC-LS (Fig. 2a, Step 1).
This first step (1) selected the important local vari-

ables and (2) compared the goodness-of-fit of those
models using local variables against those using the
3 scales of RSOCs. Because local variables can play
an essential role in the prediction of species richness
and abundance, the most important variables were
identified following a RF-recursive feature elimination
(RF-RFE) algorithm, and then added to the RSOC-SS,
RSOC-MS, and RSOC-LS variables (Fig. 2a, Step 2).
This second modeling step allowed comparison be -
tween the goodness-of-fit of models without (Step 1)
and with (Step 2) the most important local variables.

2.6.  RF modeling

The RF algorithm was chosen because this machine
learning technique can be used with data presenting
non-constant variance distributions, or unbalanced
data. RF modeling can also easily deal with missing
values (Potts & Elith 2006) and allow for nonlinear re-
lationships between predictors (Darst et al. 2018). The
number of predictors randomly sampled at each node
(‘mtry’) and the number of trees (‘ntree’) are the main
parameters of the RF algorithm (Liaw & Wiener 2002).
Because the number of predictors (p) for each model
was always ≤14, mtry = was used by default for all
the models. The ntree parameter was visually selected
by plotting the minimum mean square error (MSE) ac-
cording to the number of trees. For all the models, 500

p
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Variable types            Variable codes      Variable description No. of pixel scale−1 Spatial resolution
                                                                   SS MS LS (km)
                                                                   
Response variables    Species richness   No. of species sample−1 − − − −
                                    Abundance           No. of ind. sample−1 − − − −

Local variables          SST_LO (°C)          Sea surface temperature (°C) − − − −
recorded during      Wind_ U_LO         Cross-shelf wind velocity (m s−1) − − − −
sampling night         Wind_V_LO          Alongshore wind velocity (m s−1) − − − −
(LO)                           Water_turb_LO     Water turbidity (m) − − − −

                                    Dif_set_LO            Difference between sunset and − − − −
                                                                   light-trap setting time (h)
                                    Dif_col_LO            Difference between the sunrise − − − −
                                                                   and light-trap collection time (h)
                                    S.Pelagic_LO        Pelagic fish (ind.) − − − −

RSOC                          SST_SS                  Sea surface temperature (°C) 12998 70208 284216 4 
                                    SSS_SS                  Sea surface salinity 0 127 1159 70 
                                    Chl_a_SS               Chlorophyl a concentration (mg m−3) 6780 39406 148978 4 
                                    Current _U_SS      Cross-shelf current velocity (m s−1) 48 318 1402 33 
                                    Current _V_SS      Alongshore current velocity (m s−1) 48 318 1402 33 
                                    Wind _U_SS          Cross-shelf wind velocity (m s−1) 34 473 6923 25 
                                    Wind _V_SS          Alongshore wind velocity (m s−1) 34 473 6923 25

Table 1. Response and explanatory variables included in random forest modeling, and spatial resolution of remote sensing
oceanic condition (RSOC) variables and the number of pixels corresponding each RSOC variable over small- (SS), meso- (MS),

and large-scales (LS) extracted at 8, 16, and 24 d preceding sampling, respectively. (−) not applicable
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trees were retained because this value provided the
minimum error estimates and, after this threshold, the
error remained stationary. The original data set was
split into a training data set containing 75% of the
original data and a testing data set containing 25%
(Fig. 2b). RF models were, however, implemented us-
ing bootstrap samples (with replacement) that were
generated from the training data. These bootstrap
samples contained an average of 63.2% of the train-
ing data, following Han & Kamber (2006). RFs
model goodness-of-fit based on a percentage of ex-
plained deviance (pseudo-R2) ob tained from models
trained with bootstrap samples. The best-fitted mod-
els are those with the highest pseudo-R2.

Multicollinearity and redundancy can influence RF
model goodness-of-fit and its interpretability (Mur-
phy et al. 2010), so variable selection is an important
step before training RF models. We used the RF-RFE
algorithm (Fig. 2b) that corresponds to the ‘wrapper’
selection method (Guyon & Elisseeff 2003, Genuer et
al. 2010). According to Darst et al. (2018), this algo-
rithm mitigates the impact of correlated predictors on
a RF model by selecting the group of predictor vari-
ables that corresponds to the lowest root MSE of pre-
diction (RMSE). Variable selection with the RF-RFE

algorithm was applied with 10-fold cross- validation
to avoid over-fitting (Reunanen 2003). The RMSE
was then plotted to determine the best predictor set
for fitting the RF model.

For RF models based on regression trees, the mean
decrease accuracy (%IncMSE) is the most widely
used, and more reliable, metric for measuring the rel-
ative im portance of variables (Genuer et al. 2010). In
this study, %IncMSE was used to rank the relative
contribution of predictor variables to variations in
species richness and abundance. Partial dependence
plots were then used to describe the marginal effects
of pre dictors on response variables (Friedman 2001)
and to identify the threshold values corresponding to
the first abrupt shift along predictor gradients (Cutler
et al. 2007).

Testing model performance in predicting response
variables was the last step of the modeling processes.
Two metrics were used for assessing the predictive
model performance. The first was the adjusted deter-
mination coefficient (adj.R2), which measures the error
between predicted and observed values in independ-
ent testing data (Fig. 2b). The adj.R2 values vary be -
tween 0 and 1, with values close to 1 indicating high
prediction performance and values close to 0 denot-
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ing low prediction performance. The second metric
was RMSE. RMSE is used to compare the predictive
performance of models when their adj.R2 values are
equal. The lowest RMSE value denotes the best pre-
dictive model.

Data analyses and modeling were all performed
with R v.3.5.1 (R Core Team 2018), using ‘caret’ pack-
age (v.6.0-84; Kuhn 2019) for variable selection with
RF-RFE and training data bootstrapping and the
‘randomForest’ package (v.4.6-14; Breiman et al. 2018)
for RF model fitting.

3.  RESULTS

3.1.  Temporal change of variables inside and
outside of the bay

The characteristics of the water masses inside the
bay differed between sites (Fig. 3a). Water masses
were more turbid at ANA than at GRT (ranging from
1−9 and 3−15 m, respectively). Sea surface salinities
varied widely at ANA (ranging from 31.5−35.7), while
little variation (34.3−35.9) was recorded at GRT. No
clear difference in SST was detected between the
sites. For the RSOC variables outside of the bay
(Fig. 3b), high SSTs and chl a concentrations oc -
curred from January−April. Cross-shelf winds were
mainly westerly (i.e. positive values), whereas along-
shore winds were northerly (i.e. negative values).
Similarly, alongshore currents were also mainly east-
ward, while alongshore currents were southward.

3.2.  Species richness and abundance of post-larvae

A total of 277 light-trap samples, 141 at GRT and
136 at ANA, were obtained over the 3 austral warm
seasons. The difference in sampling effort among sites
was associated with logistic problems. A total of 238
species (114 to species level, 76 to Genus+BIN level,
15 to Family+BIN level, and 33 morphospecies) were
caught, 190 at GRT and 165 at ANA, with 116 ob served
at both sites (Table S1 in the Supplement at www.
int-  res.com/ articles/ suppl/ m645 p125_ supp. pdf). Max-
imum species richness and abundance was 29 spe-
cies and 673 ind. trap−1 night−1 at GRT, and 17 species
and 202 ind. trap−1 night−1 at ANA. The highest val-
ues of species richness and abundance were ob served
from November−December for both sites (Fig. 4). At
both sites, catches were dominated by Apogonidae,
Lethrinidae, Pomacentridae, Lutjanidae, Siganidae,
Chaetodontidae, and Acanthuridae.
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3.3.  Goodness-of-fit of models without and 
with local variables

Deviance explained by models (pseudo-R2)
trained separately with RSOCs and local variables
ranged from 28−39% at GRT and 22−35% at ANA
for species richness. The pseudo-R2 for abundance
ranged from 14−28% (GRT) and 33−50% (ANA)
(Table 2). For both sites, models trained with local
variables ex plained more variations in species rich-
ness and abundance than RSOC-based models,

except for species richness in GRT,
where variability was mainly ex -
plained by RSOC variables (Table 2).
However, models combining RSOCs
and local variables ex plained a larger
part of the response variables than
models trained separately. For spe-
cies richness, deviance ex plained by
models combining RSOC and local
variables ranged from 51− 53% for
GRT and from 38−40% for ANA.
Abundance models combining RSOCs
and local variables explained 29−30
and 52− 54% of model de viance for
GRT and ANA, respectively (Table 2).

3.4.  Performance of RF models for
predicting species richness and

abundance

The adj.R2 and RMSE remained quite
stable from small-scale to large-scale
variables at ANA compared to GRT
(Table 3). For species richness, the
adj.R2 remained similar from small- to

large-scale variables (adj.R2 = 0.66). RMSE values
varied be tween 2.08 and 2.11 for ANA, whereas the
adj.R2 (between 0.68 and 0.61) and RMSE values
(between 3.04 and 3.34) were more variable for GRT
(Table 3). The adj.R2 and RMSE from small- to
large-scale variables of the abundance models var-
ied from 0.58−0.57 and 17.65− 18.30, respectively, for
ANA while they ranged from 0.61−0.53 and 46.45−
50.88 for GRT (Table 3). The lowest RMSE values for
small-scale models suggest that small-scale variables
more accurately predict species richness (2.08 for
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Models: without local variables (Independent) Models: with local variables (Combination)
Richness Abundance Richness Abundance

GRT ANA GRT ANA GRT ANA GRT ANA

LO 28 35 28 50
RSOC-SS 39 23 16 33 51 40 30 52
RSOC-MS 39 23 14 34 51 38 30 54
RSOC-LS 39 22 15 35 53 40 29 54

Table 2. Percentage of explained deviance of random forest models (pseudo-R2) fitted independently with local variables (LO;
including sea surface temperature, water turbidity, cross-shelf and alongshore wind speed, trap setting and collection time,
and pelagic fish) and remote sensing oceanic conditions (RSOCs; including sea surface temperature, chl a, cross-shelf and
alongshore wind speed, and cross-shelf and alongshore current speed) at a small scale (RSOC-SS), meso scale (RSOC-MS),
and large scale (RSOC-LS), as well as the combination of both (i.e. local variables with each RSOC at each scale) for explain-
ing species richness and abundance. See Fig. 2 for a description of the modeling steps; ANA: Anakao reef; GRT: great barrier 

reef of Toliara
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ANA and 3.04 for GRT) and abundance (17.65 for
ANA and 46.45 for GRT) of post-larvae fish than
those that incorporate meso- and large-scale vari-
ables (Table 3). The adj.R2 of the models with small-
scale variables also suggested a small degree of vari-
ation in the models’ performance among sites, with
0.66−0.68 for species richness and 0.58−0.61 for
abundance. Finally, the model performances, visual-
ized in Fig. 5, indicate the relevance of species
 richness and abundance predictions for the testing
data set.

3.5.  Importance and contribution of variables

Although the mechanisms driving species richness
and abundance in post-larval samples differed among
sites (Table 4), 5 common important variables were
identified: SST (SST_SS), chl a concentration (chl_a
_SS), alongshore wind speed (Wind_ V_SS), water
turbidity (Water_turb_LO), and trap-setting time
(Dif_set_LO) (Table 4). However, at GRT, species
richness was explained by the local alongshore
wind speed (Wind_V_LO) instead of Dif_set_LO
(Table 4). The partial dependence plots indicated
that high northerly Wind_V_SS (i.e. negative values;
>1.5 m s−1), low SST (<27°C), and low chl a (<0.22
mg m−3) were generally related to high species rich-
ness and abundance values at the 2 sites (Fig. 6).
Surprisingly, southerly Wind_V_SS (positive values)
and low chl a (<0.15 mg m−3) predicted high abun-
dance values only at GRT (Fig. 6). Regarding local
variables, partial dependence plots indicated that
turbid water (i.e. low value of Water_turb_LO) and
trap-setting time 0.5 h before sunset (negative
value) were associated with high species richness
and abundance (Fig. 6). Moreover, high abundance
values would be expected when the traps were set

1.5 h after sunset (positive value) at GRT (Fig. 6).
Current speed along the 2 directions was only
important for predicting species richness and abun-
dance at ANA. However, the importance of current
speeds always ranked lower than SST, chl a, and
wind speed. Finally, high species richness and
abundance was predicted for specific current condi-
tions: eastward (positive value of Current_U_SS)
and low westward current speed (negative value of
Current_U_SS), and northward (positive value of
Current_V_SS) and low southward current speed
(negative value of Current_V_SS).
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                                  Richness models                              Abundance models
                   GRT                   ANA                 GRT ANA
                             adj.R2            RMSE             adj.R2            RMSE    adj.R2 RMSE adj.R2 RMSE

RSOC-SS+LO        0.68               3.04                0.66                2.08      0.61 46.45 0.58 17.65
RSOC-MS+LO      0.64               3.25                0.66                2.09      0.54 48.82 0.55 18.09
RSOC-LS+LO        0.61               3.34                0.66                2.11      0.53 50.88 0.57 18.30

Table 3. Random forest (RF) model performance, combining local variables (LO; including sea surface temperature, water turbidity,
cross-shelf and alongshore wind speed, trap setting and collection time, and pelagic fish) and remote sensing oceanic conditions
(RSOCs; including sea surface temperature, chl a, cross-shelf and alongshore wind speed, and cross-shelf and alongshore cur-
rent speed) at a small-scale (SS), meso-scale (MS), and large-scale (LS). RF model performances are measured by the adjusted
determination coefficient (adj.R2) and the prediction root mean squared error (RMSE) for the great barrier reef of Toliara (GRT) and 

Anakao reef (ANA) using independent testing data (25%). See Fig. 2 for a description of the modeling steps
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4.  DISCUSSION

To our knowledge, this is the first study to predict
species richness and abundance of post-larvae fish
based on (1) precise species identification using DNA
barcoding, (2) a machine learning technique (here,
RF models), and (3) RSOCs extracted over several
days preceding sampling and at different scales. Our
findings revealed that RF models combining local
and RSOC-SS variables more accurately predicted
species richness and abundance of post-larval fish.
Only a few previous studies have used RSOCs to
model marine communities. For example, Albajes-
Eizagirre et al. (2011) extracted RSOC variables in
the days just prior to sampling to determine factors
affecting the occurrence of jellyfish blooms in the
Catalan coast of the northwestern Mediterranean Sea.
The RSOC variables obtained in the days just prior to
sampling used by these authors included water mass
(SST and salinity) and chl a as a proxy for food avail-
ability. Using a computational in telligence algorithm,
the authors found a strong relationship between the
minimum value of salinity and the appearance of jel-
lyfish blooms. Avendaño-Ibarra et al. (2013) used
RSOCs extracted during sampling in a redundancy
analysis to describe larval fish abundance variance in
the Gulf of California. They demonstrated the influ-
ence of SST, salinity, and chl a on the variation in
abundance of larvae in plankton nets. Complement-
ing these previous studies, the present research
using RF models was able to detect thresholds in
local and RSOC-SS variables for explaining the
variation in species richness and abundance. The
technique we adopted, combining molecular tools,

machine learning, and RSOCs obtained in the days
just prior to sampling and at different scales, can be
spatially and temporally transferable for addressing
questions in other regions or habitats.

4.1.  Importance of local variables for predicted
species richness and abundances

The high importance of local variables highlights
that post-larvae are sensitive to the conditions when
the light traps are set. Indeed, high species richness
and abundance values were observed when traps
were set 30 min or more before sunset (see Dif_set-
LO in Fig. 6). To our knowledge, no previous studies
have investigated the effect of trap-setting time on
species richness and abundance in light traps. These
high values of species richness and abundance ob -
served before sunset may be due to the interaction
between trap-setting time and tidal currents. Indeed,
post-larvae can be transported by onshore tidal cur-
rents, with maximum transport occurring before high
tide (Sponaugle & Cowen 1996). In the present study,
sampling took place during the new moon period,
when high tide always occurs before sunset. How-
ever, the high species richness and abundance ob -
served in the light traps could also be associated with
larval fish activities because they migrate vertically
throughout the water surface around sunset to feed
on zooplankton (McLaren & Avendaño 1995).

High species richness and abundance were also de-
tected when the water turbidity was high (see Fig. 6).
This finding was unexpected. We anticipated that
post-larval species richness and abundance would be
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Richness Abundance
GRT ANA GRT ANA

LO & RSOC %IncMSE Rank %IncMSE Rank %IncMSE Rank %IncMSE Rank

Wind_V_SS 19.24 4 17.39 2 16.94 1 12.60 1
Chl_a_SS 13.20 5 19.38 1 11.15 4 8.19 7
SST_SS 23.59 2 13.50 5 9.55 5 10.37 3
Water_turb_LO 25.24 1 15.34 4 16.01 2 9.10 5
Dif_set_LO − − 15.78 3 12.07 3 10.08 4
Wind_V_LO 22.36 3 − − − − − −
Current_V_SS − − 10.84 7 − − 8.54 6
Current_U_SS − − 10.18 8 − − 7.91 8
Wind_U_SS − − 11.07 6 − − 11.17 2

Table 4. Importance of local (LO) and remote sensing oceanic condition (RSOC) variables based on mean square error (%IncMSE) for
explaining the variation in richness and abundance of post-larvae at the great barrier reef of Toliara (GRT) and Anakao reef (ANA).
Rank: the rank of each variable based on the importance score (%IncMSE), where 1 corresponds to the highest importance score
for a given response variable. LO variables included trap-setting time (Dif_set_LO, in hours), water turbidity (Water_turb_LO, in
m), and alongshore wind speed (Wind_V_LO, in m s−1). RSOCs included sea surface temperature (SST_SS, in °C), Chlorophyll a
(Chl_a_SS, in mg m−3), cross-shelf (Wind_U_SS, in m s−1) and alongshore (Wind_V_SS, in m s−1) wind speed, and cross-shelf
(Current_U_SS, in m s−1) and alongshore (Current_V_SS, in m s−1) current speeds. (−) variables not retained for model fitting
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low when water turbidity was high, as high water tur-
bidity usually reduces the efficiency of the light traps
(Hickford & Schiel 1999, Lindquist & Shaw 2005) be-
cause the phototactic responses of post-larvae de-
crease with low light intensities (Stearns et al. 1994).
The high species richness and abundance observed
during high water turbidity in the current study may
be linked to strong winds that increase water turbidity
(Cho 2007) and generate surface currents (Kingsford
& Finn 1997) in coastal waters. A strong wind effect
during sampling (Wind_V_LO) was observed for spe-
cies richness in GRT (Fig. 6a). In such environmental
conditions, light traps set in more turbid waters may

be able to capture high species richness and abun-
dance by including non-phototactic species that are
driven by wind-generated currents.

4.2.  Combination of local variables with RSOCs:
useful for predicting species richness and 

abundance

RF models combining RSOCs and local variables
more accurately predicted species richness and
abundance. This may be related to the spatial distri-
bution of post-larvae, whereby there is higher spe-
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cies richness and abundance in near-shore waters
than in oceanic waters (Hsieh et al. 2010). Coastal
oceanic conditions can therefore be an important
driver for larval dispersal. For example, circular coastal
currents such as tidal eddies may retain post-larval
fish due to their recirculating properties, thereby re -
ducing post-larval potential dispersion (Kingsford &
Finn 1997, Burgess et al. 2007).

RF model performance in predicting species rich-
ness and abundance differed between sites. As indi-
cated by the adj.R2, RF models better predicted spe-
cies richness and abundance at GRT than at ANA.
Such differences could be explained by the contrast-
ing surface water characteristics. Anakao reef is
located about 10 km from the mouth of the Onilahy
River, which is influenced by permanent river dis-
charge that averages 145 m3 s−1 and reaches up to
1500 m3 s−1 during flood events (R. Arfi et al. unpubl.
data). Sentinel-2A images (European Spatial Agency)
have identified that the turbidity of the Onilahy River
plume can easily reach Anakao reef (T. Jallera unpubl.
data). This explains the high water turbidity and the
low sea surface salinity recorded at ANA (Fig. 3)
compared to GRT (Fig. 3). GRT is only occasionally
under the influence of flow from the Fiherenana River
(R. Arfi et al. unpubl. data). Moreover, the massive
and dominant cross-reef tidal inflow can renew up to
80% of the water at GRT (Chevalier et al. 2014). Nev-
ertheless, the restricted variation in the RF models’
performance between sites reflects the consistency of
RF models in predicting species richness and abun-
dance despite the spatial variability in surface water
characteristics.

4.3.  Variables contributing to predicted species
richness and abundance

RF models predicted high species richness and
abundance when the average SST remained under
27.0°C. High values of abundance were also predicted
when chl a remained under 0.22 mg m−3. These
threshold values were observed between November
and December for the 3 sampling seasons (Fig. 3b).
This period corresponds to the peak in species rich-
ness and abundance, indicating reproductive activity
of most reef fish species (Reynalte-Tataje et al. 2012).
Interestingly, chl a values above this threshold (ob -
served between January and April) coincided with
low species richness and abundance (Fig. 4). This
was unexpected because high chl a concentrations
should lead to high post-larval species richness
(Leathwick et al. 2006) and abundance (Falfán-

Vázquez et al. 2008). This paradoxical finding may
be related to tropical storms that always occur
between January and April in Madagascar; tropical
storms enhance chl a concentrations (Lin et al. 2003),
but they are also known to weaken fish reproductive
success by transporting larvae away from their settle-
ment areas (Morsink 2018).

Despite the presence of prevailing southerly along-
shore winds in southwestern Madagascar, the strong
northerly alongshore winds were the best predictor
of species richness and abundance. The northerly
alongshore winds determine the warm and wet sea-
sons in the region (R. Arfi et al. unpubl. data) and play
a role in the intensification of the southward South-
western Madagascar Alongshore Coastal Currents
(SMACC; Ramanantsoa et al. 2018). Indeed, winds
are major driving forces for ocean currents (Cowen &
Sale 2002), which partly explains the tight correlation
between these 2 factors. According to Murphy et al.
(2010), the presence of strong relationships between
variables reduces the RF models’ goodness-of-fit.
This explains why the southward alongshore cur-
rents were not retained in RF models for GRT. This
strong relationship between winds and currents is
also associated with the better statistical fit of the
alongshore wind (Wind_V_SS) for GRT compared to
ANA (Table 4). Thus, the lesser importance of the
alongshore wind at ANA may explain why south-
ward alongshore currents (Current_V_SS) were re -
tained in the RF models despite their strong relation-
ship, when the importance of alongshore currents was
ranked very low. Moreover, strong currents (>0.2 m s−1)
are associated with low values in species richness
and abundance (Fig. 6), while the SMACC speed
can reach 0.3 m s−1 during the austral warm season
(Ramanantsoa et al. 2018). These findings support the
fact that wind-driven surface currents constitute one
of the major factors explaining the transport and
concentration of fish larvae (Schlaefer et al. 2018).

4.4.  Possible contribution of other factors

The comparison of predicted and observed species
richness and abundance highlights that additional
factors should be considered to improve RF predic-
tive model performance. River flow, which contributed
to the difference between the present study sites,
may be an important candidate predictor. Models
involving freshwater, sediment, and organic material
driven by the river should be developed for model
performance improvement. In addition, larval fish
behavior may be also important because it may influ-
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ence species richness and abundance. Active larval
fish behavior, particularly shoreward movements
which enable them to swim against water flow, helps
with their retention near coastal habitats (Tricklebank
et al. 1992, Tzeng & Wang 1993, Hickford & Schiel
1999, Leis 2007). Larval fish species are also known to
migrate vertically (Paris & Cowen 2004, Irisson et al.
2009, Huebert et al. 2011, Berenshtein et al. 2018).
These vertical migrations, as observed in Pomacen-
tridae (Paris & Cowen 2004) and flatfish (Bailey et al.
2005), help the larvae avoid strong surface currents
(Shanks 2009). The most dominant fish families in the
present study (Siga nidae, Lutjanidae, Pomacentridae,
Lethrinidae, Chaetodontidae, and Acan thuridae) are
able to swim faster than 0.3 m s−1, reaching speeds up
to 0.65 m s−1 (Fisher 2005). This suggests an ability
of the post-larvae fish to maintain their position by
swimming against currents such as the SMACC in
southwest Madagascar (Ramanantsoa et al. 2018).

In conclusion, the present work demonstrates the
usefulness of DNA barcoding techniques for invento-
rying the biodiversity of reef fish in their early life
stages. This molecular tool permitted post-larval fish
identification, enabling precise and accurate calcula-
tions of species richness, which are essential for RF
modeling. RF models performed well in predicting
species richness and abundance. The weak spatial
variability in RF performances suggests that these
models were also consistent. RF models provided in -
formation on how alongshore wind speed, SST, and
chl a concentration best explained the post-larval
supply in terms of species richness and abundance.
RF models, assessing the differences between pre-
dicted and observed species richness and abundances,
should be considered when calculating future changes
in tropical fish post-larval supply. However, the
thresholds detected for each variable may change
over time, so they would need to be validated over a
longer time series. Such long-term monitoring would
take into account (1) the effect on El Niño-Southern
Oscillation on the characteristics of surface water,
hydro dynamic conditions, and food availability (Hoa -
reau et al. 2012); and (2) the contribution of tropical
storms, which can transport fish larvae over large dis-
tances (Reid et al. 2016). The validation of post-larval
supply predictions through long-term monitoring will
be useful for fisheries management. Indeed, post-lar-
val supply is a part of spawning stock size (Moser &
Watson 1990) and can be used as a biological index
for predicting juvenile fish recruitment (Milicich et
al. 1992, Stige et al. 2013). Accordingly, post-larval
supply success in coastal habitats is ex pected to shape
juvenile and adult fish communities.
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