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1.  INTRODUCTION

The Strait of Georgia in the northeastern Pacific is
a semi-enclosed sea that is used as a nursery and
feeding area by numerous species, including Pacific
salmon (Oncorhynchus spp.), Pacific herring Clupea
pallasii, and southern resident killer whales Orcinus
orca (Beamish & MacFarlane 2014). Primary produc-
tivity varies regionally within the Strait of Georgia
and is strongly influenced by the stability of the
water column (Masson & Peña 2009). The offshore
waters of the southern Strait of Georgia are highly

stratified and productive due to the freshwater dis-
charge from the Fraser River that forms a stable sur-
face layer. In contrast, the Gulf Islands are only
weakly stratified due to the strong tidal currents that
mix the water column, resulting in high turbidity and
low phytoplankton productivity (Johannessen et al.
2006, Masson & Peña 2009). Water stratification is
intermediate in the offshore waters of the northern
Strait of Georgia, as these waters are influenced by
both the tidal mixing and freshwater input from
northern inlets and passages and by the freshwater
discharge from the Fraser River. Given this spatial
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heterogeneity of productivity, it is possible to predict
that feeding and growth of fishes, such as salmon and
forage fish, may also vary regionally within the Strait
of Georgia.

Early marine growth is positively correlated with
survival of juvenile salmon (Healey 1982, Beamish et
al. 2004, Duffy & Beauchamp 2011). The growth rate
of juvenile salmon is directly (but not exclusively)
related to both food consumption (quantity and qual-
ity) and temperature (Brett et al. 1969, 1982). Food
quality (caloric density) can be directly assessed by
examining prey items found in stomach contents and
referring to laboratory analysis of energy density
(Brodeur et al. 1992). Food quantity, or consumption,
is difficult to directly assess for free-living fish, but is
often approximated via stomach fullness (Brodeur et
al. 1992). One could predict that higher growth rates
result from greater food consumption and/or con-
sumption of more calorie-dense food. One could also
predict (given consistencies in diet) a thermal opti-
mum for growth with lower growth above and below
this optimum temperature (Brett et al. 1969). Relation-
ships between short-term growth and diet in marine-
rearing juvenile salmon have not been extensively
examined.

Recent (within 5−7 d) growth rates of juvenile
salmon can be assessed through measures of plasma
insulin-like growth factor-1 (IGF-1) concentration
(Beckman et al. 2004, Ferriss et al. 2014, Journey et
al. 2018). IGF-1 is a hormone that is released from the
liver and circulates in the blood, stimulating somatic
growth (Duan 1998). Concentration of IGF-1 in the
blood plasma varies with feeding and fasting (Shimizu
et al. 2009), thus individual and annual differences in
IGF-1 concentration may imply differences in feeding
and/or caloric intake (diet quality or diet quantity).
Moreover, IGF-1 concentrations are directly related
to juvenile salmon growth rate (Beckman 2011).

The Department of Fisheries and Oceans Canada
(DFO) performs annual juvenile salmon surveys in
the Strait of Georgia and surrounding waters each
summer (Beamish et al. 2010a, Sweeting et al. 2003).
A near-continuous 20 yr time series of the abundance
and distribution of juvenile coho salmon Oncorhyn-
chus kisutch in the Strait of Georgia has been devel-
oped through these annual June/July and September
trawl surveys, and several reports have documented
decadal-scale changes in the survival and abundance
of these fish (Beamish et al. 2000, 2008, 2010a,
Sweeting et al. 2003). In addition to survival and
abundance, results from these surveys also report on
size, condition, and diet contents of juvenile salmon
(Beamish et al. 2000, 2004).

We report herein on plasma IGF-1 concentrations
of juvenile coho salmon captured during the June/July
DFO Strait of Georgia surveys in 2012, 2013, 2014,
and 2015. We had 2 primary objectives: (1) to assess
if growth varied regionally or inter-annually within
the Strait of Georgia and (2) to investigate potential
relationships between growth and diet and/or water
temperature to elucidate potential drivers of any
variations in growth.

2.  MATERIALS AND METHODS

2.1.  Survey design

The DFO Strait of Georgia summer salmon
survey is designed to assess overall abundance and
distribution of juvenile salmonids in the entire Strait
of Georgia, within the constraint of the number of
ship days available within a given year. As such,
tow locations (Fig. 1) and number of tows per region
(Table 1) varied between years. The start and end
latitude and longitude, net depth, and tow duration
were re corded for each individual tow. Specifics
of the complete survey design and methods are
detailed in Sweeting et al. (2003) and Beamish et
al. (2008).

2.2.  Field sampling of juvenile salmon

Juvenile salmon were captured via trawl net
aboard the CCGS ‘W.E. Ricker’ in late June and early
July of 2012, 2013, 2014, and 2015. A modified mid-
water rope trawl net was used, with the head-rope at
the surface (0), 15, or 30 m depths, with an average
net opening height between 12 and 18 m and net
opening width between 28 and 42 m. Juvenile coho
salmon assessed in this study were under 250 mm in
fork length (assumed to be in their first year of ocean
residence). Coho salmon were visually sorted from
the overall catch, measured for fork length, and had
blood samples collected at random, from 0 to 12 indi-
viduals per tow (sample size per tow dependent on
overall salmon catch per tow). Blood samples were
immediately centrifuged, the plasma removed with a
pipet, and then stored frozen (−20°C). Plasma sam-
ples were transported frozen and stored at −80°C
until processing at the Northwest Fisheries Science
Center in Seattle, WA (USA). Following blood collec-
tion, stomachs from some individuals were visually
assessed for fullness (% of total stomach volume
occupied by prey items) and percent diet composi-
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tion by taxon (genus or species, by estimated volume
[cc]). Complete stomach analysis techniques are
de scribed by Sweeting & Beamish (2009).

2.3.  Laboratory procedures

The IGF-1 concentration of plasma for individual
fish was measured using the time-resolved fluores-
cence immunoassay developed by Small & Peterson
(2005) as modified by Ferriss et al. (2014). Across
individual assays (37 samples per assay), all samples
within a year were standardized using inter-assay
pools of coho salmon plasma at 3 known IGF-1 con-
centrations (low, medium, and high), corresponding
to approximately 75, 50, and 25% binding in the
immunoassay. Individual plasma 11-ketotestosterone
concentrations were measured by immunosorbent
assay (Cuisset et al. 1994) to identify precociously

maturing coho salmon males (age 2).
The plasma concentration of IGF-1 for
precocious males is not a reliable indi-
cator of relative growth, thus these
individuals were removed from fur-
ther analysis (Beckman et al. 2004,
Larsen et al. 2004).

2.4.  Water column characteristics

Water column conductivity, temp -
erature, and depth/pressure (CTD)
were measured with a SBE 911plus
CTD (Seabird Scientific) during the
morning and the evening, before and
after fishing trawl operations for the
day. CTD cast locations were divided
among 6 geographic regions (see Sec-
tion 2.5). All CTD casts per region
within a year were averaged to form a
single regional mean per year, re -
sulting in 4 temperature profiles per
region across the 4 years of sampling.
Regional water column properties
(mixing) were indexed by assessing
whether a thermocline was present. A
thermocline was considered present
in a region if at any 2 points in the
regional average temperature profile
the change in temperature was greater
than 2°C with a depth change of less
than 10 m (Defant 1961). Temperature
at a depth of 5 m (always above the

thermocline, if present) was regarded as the average
temperature experienced by a fish, while tempera-
ture at a depth of 45 m (always below the thermo-
cline, if present) was used as the minimum water
temperature experienced by a fish per region.

2.5.  Data analysis

All data were assessed within the context of spatial
variation in the Strait of Georgia. The Strait of Geor-
gia was divided into 8 regions (from north to south):
Discovery Island, Desolation Sound, Northern Strait
of Georgia, Mid Strait of Georgia, Malaspina Strait,
Southern Strait of Georgia, Fraser River Plume, and
Gulf Islands (Fig. 1) based on oceanographic and
geographical boundaries. As sampling effort varied
between years, tow location and effort were not con-
sistent between years and within regions. Only geo-
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graphic regions where 10 or more juvenile coho
salmon were captured in 3 or more different tows in
all years were included in the analysis. Based on
these criteria, samples collected in Desolation Sound
and the Fraser River Plume were excluded from fur-
ther analysis.

IGF-1 concentrations (ng ml−1) and fork lengths
(mm) were reported as regional means, calculated as
the mean of individual IGF-1 concentrations (ng
ml−1) and individual fork lengths (mm) across all tows
in that region for a given year. Given the attributes of
the survey design and the pattern of catch, we do not
have adequate power to assess if variation in IGF-1
concentration or fork length exists among tows
within certain regions (low number of tows, low
catch/tow); thus, we did not address variation be -
tween tows within a region. In order to assess annual
differences, a yearly mean of regional means was
calculated. The 6 regions differ in geographic size
and fishing effort; thus, for the purpose of this study,
regional abundance of juvenile coho salmon (catch
per unit effort) was not assessed.

Differences among regions in IGF-1 concentration
and fork length were assessed with 1-way ANOVAs
with Tukey range tests (Tukey 1949) within a year.

Jarque-Bera tests (Jarque & Bera 1980) were used to
assess normality of IGF-1 concentration and fork
length within a region, and when necessary, IGF-1
concentrations within a year were log transformed
prior to analysis. Linear models were then used to
assess the relationship of regional IGF-1 concentration
to regional fork length within each year (2012, 2013,
2014, and 2015). Additionally, linear models were used
to assess the relationship of regional mean IGF-1 con-
centration to fork length, year, region, and tempera-
ture independently. Following this, year and region
were used as covariates to explore the annual rela-
tionship of IGF-1 concentration to fork length among
years. All statistical analyses were performed in
RStudio (version 1.2.1335) using the ‘stats’ and ‘htest’
packages (R Core Team 2018, RStudio Team 2018).

Stomach content was analyzed separately from all
other variables, as stomach content was not assessed
for every individual fish sampled for IGF-1 and stom-
ach content was not assessed in every region in every
year. To assess the influence of prey quality on IGF-1
concentration, the presence of the most abundant
taxa (all taxa that comprised more than 10% of over-
all diet contents in at least 2 of the 4 years) found
in juvenile coho salmon stomachs was quantified.
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Year Region Thermocline? Temp at 5 m Temp at 45 m CTD casts          Fishing tows     Fish sampled 
(°C) (°C) (n)                        (n)              for IGF-1 (n)

                                                        
2012 Disc Yes 15.3 9.2 4                           3                        16

NSOG Yes 16.1 9.0 7                           4                        26
SOG Yes 14.1 9.5 4                           5                        34
Mala Yes 15 8.7 2                           4                        17
SSOG Yes 14.6 8.8 5                           7                        24
Gulf No 10.9 9.3 8                           5                        22

2013 Disc Yes 14.3 9.1 3                           5                        24
NSOG Yes 15.9 9.1 7                          10                       46
SOG Yes 15.6 9.8 4                           9                        41
Mala Yes 15.9 8.9 2                           5                        25
SSOG Yes 14.7 9.1 5                           7                        46
Gulf No 14.6 10.5 4                           6                        27

2014 Disc Yes 17.2 9.3 3                           5                        26
NSOG Yes 16.8 9.3 7                          10                       61
SOG Yes 15.8 10.1 4                          12                       70
Mala Yes 18 9.3 2                           7                        43
SSOG Yes 16.2 9.1 4                          10                       65
Gulf No 12.1 9.8 4                           3                        21

2015 Disc Yes 17.3 9.9 2                           7                        43
NSOG Yes 17.5 10.1 6                          11                       57
SOG Yes 17.7 10.3 6                          14                       95
Mala Yes 16.5 9.7 5                           5                        30
SSOG Yes 17.4 9.8 9                          12                       80
Gulf No 14.9 11.1 4                           2                        16

Table 1. Physical water column properties and numbers of conductivity, temperature, and depth (CTD) casts, fishing tows, and
salmon sampled per region within a year. The water temperatures at 5 and 45 m were averaged per region using all CTD casts 

within a year. Refer to Fig. 1 for regional abbreviations. IGF-1: insulin-like growth factor-1
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Regional percentages of the 6 most abundant diet
taxa were arcsine transformed and regressed with
regional IGF-1 concentrations.

3.  RESULTS

3.1.  Water column temperature

Similar water temperature profiles were observed
in 5 of the 6 regions (excluding the Gulf Islands) in all
years (Fig. 2). Thermoclines were observed for all
regions in all years, except for the Gulf Islands where
no thermocline was apparent in any of the years
(Table 1). In the Gulf Islands, the average water col-
umn temperature ranged from nearly 11°C (2012)
to 15°C (2015) at 5 m to nearly 10°C at 45 m in all
years (an absolute range of only 1−5°C between 5
and 45 m, depending on year). In the remaining
regions, shallow thermoclines were found in all
years, 5 m temperatures ranged from nearly 14°C
(Discovery Islands, 2013) to 18°C (Malaspina, 2014)
and 45 m temperatures ranged from 9 to 10°C in all
years (an absolute range of 4−9°C temperature differ-
ence between 5 and 45 m, depending on year).

3.2.  Regional variations in IGF-1 concentration
and fork length

Mean juvenile coho salmon IGF-1 concentrations
varied significantly among regions in the Strait of
Georgia within a year for all 4 years of sampling (p <
0.05, Fig. 3). In 2012, mean IGF-1 concentrations in
the Discovery Islands and Northern Strait of Georgia

were significantly higher than in all other regions. In
the Gulf Islands, Malaspina Strait, and Southern
Strait of Georgia, IGF-1 concentrations were also sig-
nificantly lower than in the Mid Strait of Georgia in
2012. This pattern of IGF-1 concentration variation
repeated in 2014 when IGF-1 concentrations in the
Discovery Islands and Northern Strait of Georgia
were significantly higher than in all other regions,
and Malaspina Strait, Southern Strait of Georgia, and
Gulf Islands IGF-1 concentrations were significantly
lower than those of all other regions. In 2013 and
2015, there was less overall variation among the
regions, but Malaspina Strait samples had signifi-
cantly lower mean IGF-1 concentrations when
compared to all other regions in both years (p < 0.05,
Fig. 3). These observed differences in regional mean
IGF-1 concentration indicate that growth within the
strait varies both among regions and years.

The highest overall annual mean of IGF-1 concen-
trations (mean of regional means) was found in
2012, followed by 2015, 2014, and lastly 2013 (Fig. 4,
Table 2). However, the standard deviation from the
mean of regional means was highest in 2014, fol-
lowed by 2012, 2013, and 2015. These differences
highlight that while variation in IGF-1 among
regions within the strait exists in all years, the magni-
tude of variation (standard deviation) among regions
also varies along with the maximum and minimum
regional growth found in a year.

Juvenile coho salmon fork length varied signifi-
cantly among regions in the Strait of Georgia both
within and among regions for all 4 years of sam-
pling (p < 0.05, Fig. 5). The largest annual variation
in mean fork length among regions was seen in
2012 and 2014, when Malaspina Strait, Southern
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Strait of Georgia, and Gulf Islands mean fork
lengths were significantly lower than in the Dis-
covery Islands and Northern Strait of Georgia. The
highest overall annual mean (mean of means) and
lowest range of means for fork length was seen in
2015 (Fig. 4, Table 2)

3.3.  Linear regressions of IGF-1 concentration to
fork length, year, region, and temperature

There were significant positive correlations be -
tween IGF-1 concentration and fork length (R2 = 0.81,
F1,22 = 93.1, p < 0.05) and between IGF-1 concentra-
tion and geographic region (R2 = 0.67, F5,18 = 7.4, p <
0.05). We found no correlations between IGF-1 con-
centration and year (R2 = 0.13, F3,20 = 1.0, p = 0.4)
nor between IGF-1 concentration and water col-
umn temperature at 5 m (R2 = 0.05, F1,22 = 1.2, p =

0.28). The relationship between IGF-1 concentra-
tion and fork length was further explored utilizing
year and region as covariates. The best-fit linear
regression (strongest R2) ex plaining variations
among the IGF-1 concentration and fork length rela-
tionship was with year as a covariate (IGF-1 concen-
tration ~ Fork length × Year; R2 = 0.93, F7,16 = 30.5,
p < 0.05, Fig. 6).

3.4.  IGF-1 concentration and regional 
diet composition

Stomach content was analyzed separately from all
other variables, as stomach content was not assessed
for every individual fish sampled for IGF-1. The 6
most prevalent diet contents, as determined by the
percent occurrence in stomachs among all years
combined, were young-of-the-year (YOY) herring,
other juvenile fish (combined: sandlance, pollock,
rockfish, and unidentified fish remains), crab mega-
lopae, crab zoeae, hyperiid amphipods, and euphasi-
ids. These 6 diet contents comprised between 71%
(Malaspina 2014) and 100% (Strait of Georgia 2012
and 2013 and Gulf Islands 2013) of the total stomach
contents sampled in all years, excluding empty stom-
achs (Table 3). Notable observations were the low
occurrences of YOY herring across all regions in 2013
and 2015 and the low occurrence of hyperiid amphi -
pods in all regions in 2012.
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Year IGF-1 concentration (ng ml−1) Fork length (mm)

2012 69.7 ± 8.8 174 ± 16
2013 61.1 ± 6.5 169 ± 12
2014 66.5 ± 12.7 168 ± 16
2015 67.6 ± 5.4 177 ± 8

Table 2. Mean of regional means (±SE) of insulin-like growth
factor-1 (IGF-1) concentration and coho salmon fork length 
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Positive and significant correla-
tions were present between re gional
IGF-1 concentration and the occur-
rence of YOY herring (R2 = 0.48, F1,18 =
16.3, p < 0.05) and other juvenile fish
(R2 = 0.25, F1,18 = 6.13, p < 0.05) in
stomach contents (Fig. 7, Table 4).
There were no other significant cor-
relations be tween IGF-1 concentra-
tion and oc currence of specific diet
taxa (crab megalopae, crab zoeae,
hyperiid am phi pods, euphausiids)
(Table 4).

4.  DISCUSSION

Our data suggest that both spatial
and inter-annual variation in growth
of juvenile coho salmon occurs in the
Strait of Georgia. Low to intermedi-
ate growth was consistently found
in the regions of the Gulf Islands
and Malaspina Strait, while inter-
mediate to high growth rates were
found in the regions of the Northern
Strait of Georgia and the Discovery
Islands. However, inter-annual pat-
terns among other geographic regions
demonstrates a varying matrix of

lower to higher growth rates across the Strait both
spatially and between years (Fig. 8). These differing
growth rate measures suggest that variation in diet
quantity and/or quality may exist and that diet may
be a driver for differences in juvenile coho salmon
growth found herein. In particular, spatial variation
in growth was correlated with the presence of YOY
herring in the diet of juvenile coho salmon. The lack
of a direct relationship between regional mean
growth of juvenile coho salmon and mean water col-
umn temperature suggests that variation in the
quantity and quality of food resources drives much
of the difference in growth that we measured during
the early summer in the Strait of Georgia. Addition-
ally, these findings demonstrate the utility of IGF-1
measures of growth for providing insight into the
marine ecology of juvenile salmon. Other growth
measures, such as scale or otolith increments, can-
not provide the instantaneous, short-term signal
afforded by IGF-1 measurements, which allow
growth to be directly related to spatial location or
stomach contents of juvenile salmon.
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4.1.  Regional differences

The growth of juvenile coho salmon in Malaspina
Strait was consistently lower than in other regions.
Similarly, the mean fork length of coho salmon in
Malaspina Strait was also the lowest among regions
in all years (significantly in 2013 and 2015). It is
unclear why growth of juvenile coho salmon was
reduced in Malaspina Strait; however, reduced prey
resources for coho salmon is a simple and obvious
inference. The water column was well stratified in
Malaspina Strait, likely due to the influx of fresh-
water from Jervis Inlet and from the Fraser River,
suggesting that the stability of the water column
would have promoted primary productivity in this
area. As noted previously, zooplankton sampling was
too infrequent in this region to directly assess food
abundance. We therefore cannot directly address our
inference of reduced prey resources with data avail-
able from the concurrent survey.

It is interesting to note that Mala spina Strait is fre-
quently used preferentially by migrating juvenile
sockeye salmon Oncorhynchus nerka and steelhead
O. mykiss (Peterman et al. 1994, Furey et al. 2015,
Clark et al. 2016, Healy et al. 2017). Preferential use

of this region by juvenile salmon combined with
the narrow width and smaller geographic area of
Malaspina Strait compared to the Strait of Georgia
may result in a higher density of juvenile salmon in
this region. One could speculate that increased den-
sity of juvenile salmon could lead to lower prey avail-
ability, and thus, lower growth. A more directed
study assessing prey density, salmon density, and
salmon consumption as well as salmon growth would
be needed to determine if lower growth rates in
Malaspina Strait were due to lower prey density and
subsequently, why prey density in Malaspina Strait
might differ from other regions.

In contrast to Malaspina Strait, the Discovery
Islands region had the highest regional mean IGF-1
concentration among 3 of the 4 years of sampling
(2015 being the exception). The marine areas around
the Discovery Islands were historically thought to be
a poor rearing environment, due to extreme water
column mixing and warm surface temperatures
(Thomson 1981). In contrast, we found distinct ther-
moclines in all 4 years at our sampling locations, and
water column temperatures were similar to the
remainder of the Strait of Georgia, aside from the
Gulf Islands region. In juvenile sockeye salmon, a
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Year       Region Prevalence in diet by volume (%)           n
              YOY Crab Crab Hyperiid Euphasiids Other juve-      Empty          Total
              herring megalopae zoeae amphipods nile fish

2012      Disc 56 12 6 0 1 24                   0                 16
              NSOG 25 42 9 0 4 8                    2                 16
              SOG 17 23 22 4 28 4                    0                 33
              Mala 14 27 6 6 25 7                    1                  7
              SSOG 7 30 37 3 1 15                   1                 24
              Gulf ND ND ND ND ND ND                ND              ND
2013      Disc 7 18 0 27 12 8                    3                 21
              NSOG 0 15 16 29 10 7                    5                 38
              SOG 0 26 12 52 10 0                    0                  5
              Mala ND ND ND ND ND ND                ND              ND
              SSOG 4 25 14 39 11 4                    0                 37
              Gulf 2 68 16 10 0 4                    0                 25
2014      Disc 37 17 1 10 1 16                   4                 26
              NSOG 15 34 7 31 3 4                    0                 25
              SOG 7 30 19 23 7 3                    1                 65
              Mala 3 29 7 21 2 10                   4                 35
              SSOG 0 49 23 13 3 1                    2                 65
              Gulf ND ND ND ND ND ND                ND              ND
2015      Disc 0 13 9 34 19 8                    4                 43
              NSOG 3 32 9 32 7 3                    1                 44
              SOG 2 36 14 23 13 4                    1                 75
              Mala 1 39 4 19 8 4                    0                 24
              SSOG 0 40 3 24 7 3                    7                 66
              Gulf ND ND ND ND ND ND                ND              ND

Table 3. Mean regional diet composition (%) of juvenile coho salmon including total number of stomachs analyzed and number of 
empty stomachs. YOY: young-of-the-year; ND: no data were collected. Refer to Fig. 1 for regional abbreviations
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higher proportion of empty stomachs was seen in the
Discovery Islands region when compared to the
Strait of Georgia (Neville et al. 2016). This does not
appear to be the case for juvenile coho salmon,
though this could simply reflect local differences
within the Discovery Islands region. Most of the
samples of juvenile sockeye salmon analyzed by
Neville et al. (2016) were obtained in lower John-
stone Strait, an area that is tidally mixed and found to
be consistently poor for salmon growth (Journey et
al. 2018). In addition, this region has been shown
to have low zooplankton biomass (James et al. 2020).
In contrast, for this study, juvenile coho salmon were
obtained in the southern part of the Discovery Islands
region, an area that may be subsidized by the highly
productive waters of the Northern Strait of Georgia.
As the surface flows around the Discovery Islands are
northward toward Johnstone Strait and Queen
Charlotte Strait (Thomson 1981), prey produced in
the Northern Strait of Georgia may be transported
northward and become available to juvenile salmon
in the southern part of the Discovery Islands region.

The Gulf Islands region differs from the main basin
Strait of Georgia as the water is often cold and well
mixed. There was no significant thermocline present
in any sample year, and the water at 5 m was consis-
tently cooler than found in all other regions. In 2012,
2013, and 2014, IGF-1 concentrations of coho salmon
in the Gulf Islands region were lower than for fish in
other regions, except for Malaspina Strait and the
Southern Strait of Georgia. The Gulf Islands region
shares the properties of a cold, well mixed water col-
umn with Johnstone Strait, located at the northwest

entrance to the Strait of Georgia. Juve-
nile coho, chinook O. tshawytscha, pink
O. gorbuscha, chum O. keta, and sock-
eye salmon in Johnstone Strait have
previously been shown to have signifi-
cantly lower IGF-1 concentration than
those found in the Northern Strait of
Georgia (Journey et al. 2018). These
similar findings, of low IGF-1 concentra-
tions in fish from disparate regions with
well-mixed water columns, demonstrate
a correlation between local oceanogra-
phy and juvenile salmon growth. Well-
mixed water columns may directly in -
fluence feeding and growth through low
local productivity and prey re sources, or
directly influence prey con sumption
as the mixing may disperse juvenile
salmon prey. Either situation would
suggest poor feeding conditions.

4.2.  Significance of regional differences

Many long-term studies of salmon productivity in
the Strait of Georgia treat the area as a homogeneous
unit and use annual trends in size, abundance, and
adult returns to assess overall salmon response
(Beamish et al. 2008). However, given the differences
in regional productivity we found (Fig. 8), one might
suggest that coho salmon productivity may be better
assessed as the sum of differing regional productivi-
ties rather than a homogeneous average. However, 2
data gaps exist that limit the utility of applying a
regional approach to salmon productivity based on
this work: we do not report on potential regional vari-
ation in coho salmon population structure nor do we
report on regional abundance of juvenile coho
salmon.
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1) concentration (ng ml−1) and arcsine-transposed regional abundance (radi-
ans) of young-of-the-year herring (R2 = 0.48, F1,18 = 16.3, p < 0.05) and other ju-
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Diet item R2 F (df) p

YOY herring 0.47 16.1 (1,18) 0.001*
Other juvenile fish 0.25 6.1 (1,18) 0.02*
Crab megalopae 0.10 2.1 (1,18) 0.17
Crab zoeae 0.04 0.7 (1,18) 0.39
Hyperiid amphipods 0.13 2.8 (1,18) 0.11
Euphasiids 0.02 0.3 (1,18) 0.59

Table 4. Results of regression analysis between regional
mean insulin-like growth factor-1 (IGF-1) concentration
and diet composition of juvenile coho salmon. YOY: young-

of-the-year; *p < 0.05 
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The juvenile coho salmon that we sampled in the
Strait of Georgia undoubtedly originated from a vari-
ety of different populations, located on either the
mainland or the East Coast of Vancouver Island
(Beacham et al. 2016). Smolts from these different
populations may have entered the Strait of Georgia
at differing dates and at differing smolt sizes. Subse-

quently, individuals from these populations may
have maintained a local residence within the Strait of
Georgia or may have distributed themselves across
the entire area. We have not assessed the genetic ori-
gin of the fish sampled herein and thus do not know
whether fish in the regions we sampled represented
well mixed groups of populations or whether there
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were regional differences in population structure. We
are not aware of any data suggesting that fish from
differing populations may display aberrant plasma
IGF-1 concentration or differing IGF-1 concentration
versus growth relationships (Picha et al. 2008, Beck-
man 2011). Thus, we trust that our results are general
for coho salmon found in the Strait of Georgia and
are not the result of any specific population or mix-
ture of fish. Nevertheless, different populations may
reside in areas of differing productivity or respond to
environmental stressors differently.

Due to varying size of regions and sampling effort
within the regions, we are unable to make useful
estimates of abundance in the various regions. If
most of the fish from most of the populations are in a
certain area (e.g. a region with high growth such as
the Northern Strait of Georgia), growth variation in
other regions would be relatively unimportant and
could be essentially ignored with regard to assessing
overall productivity. Our work might thus be consid-
ered as just one of several steps required to ascertain
whether coho salmon productivity in the Strait of
Georgia could be considered as a sum of a mosaic of
regions and populations or as a homogeneous re -
sponse across a group of populations within a specific
region.

4.3.  Growth and size

IGF-1 concentration generally increases with size
in naturally rearing juvenile Pacific salmon (Ferriss et
al. 2014, Chamberlin et al. 2017, Journey et al. 2018).
The relationship between IGF-1 concentration and
size in free-living juvenile salmon is likely complex,
and open to speculation. However, faster-growing
fish inevitably become larger than
slower-growing fish; thus, in a steady-
state condition, larger fish should
have higher IGF-1 concentrations than
smaller fish as they became larger by
growing faster. Shimizu et al. (2009)
found correlations between size and
IGF-1 concentration in both 1 and 3
wk fasted fish, suggesting a correla-
tion that is independent of growth rate.
Yet, the actual relationship be tween
size and IGF-1 concentration was
weak, and the same study found no
relationship between size and IGF-1
concentration in fed fish, suggesting
that variations in feeding and growth
between individuals overwhelmed any

variation in IGF-1 concentration related to individual
size that was demonstrated in fasted fish. Moreover,
in other laboratory experiments, small fish fed a high
ration had higher IGF-1 concentrations than large
fish fed low rations (Beckman et al. 2004), suggest-
ing that any direct phy siological effect of size on
IGF-1 concentration is minimal.

Correlations between size and IGF-1 concentration
could also be ecologically based, reflecting the forag-
ing success of differently sized fish. Fish size is
related to swimming speed; thus, prey capture effi-
ciency could vary between smaller and larger fish
(Bainbridge 1958). Fish size may also relate to gape
limitations for prey, with smaller fish unable to cap-
ture and ingest relatively larger, energy-rich prey
(Chamberlin et al. 2017). In this study, we observed a
positive relationship between IGF-1 concentration
and fork length in juvenile coho salmon, suggesting
that larger fish had greater consumption levels (in
either quality or quantity) and thus higher growth
than smaller fish across all years. Interestingly, this
relationship varied among years, perhaps indicating
that size-related feeding conditions varied among
years.

We may infer variations in size-related foraging
based on characters of IGF-1 concentration versus
fork length regression relationships (Fig. 9). Either
the slope and/or intercept of IGF-1 versus length
relationships may vary based on the size and abun-
dance of prey items. The y-intercept of the fork length
and IGF-1 concentration relationship was higher in
2012 compared to all other years. The change in y-
intercept (IGF-1 concentration for a given fork length)
in 2012 may indicate better size-independent forag-
ing. Basically, this might be an indication of greater
prey abundance that benefits all fish regardless of
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size all across the Strait of Georgia as compared
to 2013−2015.

In contrast, the slope in 2014 was steeper than the
slope found in other years. The differences in slope
magnitude between 2012 and 2014 could reflect dif-
ferences in the energy content of prey for coho
salmon of differing sizes, differences in size-related
foraging costs between years, or simply regional dif-
ferences in prey consumption, growth, and thus size
(Chamberlin et al. 2017). Foraging costs can de -
crease when larger prey of the same caloric density
are available (Kerr 1971a,b, Sherwood et al. 2002a,b).
An example of this may be that a larger high-calorie
prey (such as YOY herring) may be consumed as fish
get bigger and gape limitations are by-passed. Alter-
natively, the change in slope may be driven by
regional differences in prey resources; with better
feeding, higher growth and larger size found in some
regions as compared to others. The data herein
showed that YOY herring were prevalent in the
stomachs in some regions in 2014 and not in others.

While some sampling of zooplankton does occur on
these surveys, the sampling is not rigorous enough to
generate region-specific prey abundances. In addi-
tion, the sampling gear used (bongo net) is not
designed for sampling juvenile fishes such as YOY
herring; thus, we do not have the ability to rigorously
test the hypothesis of varying prey abundance de -
scribed above with data collected during these sur-
veys. Nonetheless, we suggest that variation in IGF-
1 concentration and fork length relationships, such as
we described above, may provide useful ecological
inferences about juvenile coho salmon and their prey
field. It is our intention to pursue opportunities to
measure juvenile salmon IGF-1 concentration, docu-
ment prey contents in stomachs, and quantitatively
assess the prey field from which the fish were sam-
pled to more rigorously determine how variation in
IGF-1 concentration and fork length relationships
relate to differing prey consumption by fish of vary-
ing size.

4.4.  Growth and diet: prey quantity

Juvenile salmon growth is a function of prey
quality (caloric density), prey quantity, and tem-
perature (Brett et al. 1969). As described above,
we do not present data documenting regional prey
availability for juvenile coho salmon during our
survey. However, some data suggest that produc-
tivity in the Strait of Georgia varies both annually
and spatially. Gower & King (2018) reported that

the timing of the spring phytoplankton bloom oc -
curred around the beginning of April in the South-
ern Strait of Georgia in 2012 and 2014, and
approximately 3 wk earlier in 2013 and 2015. The
timing of spring bloom tended to occur approxi-
mately 2 wk later in the Northern Strait of Georgia
when compared to the Southern Strait of Georgia,
except in 2015, when the bloom occurred 2 wk
earlier in the North (Gower & King 2018). Thus,
phytoplankton abundance varies both temporally
and spatially. Of course, juvenile coho salmon do
not directly feed on phytoplankton; instead, we
found crab zoeae and megalopae, euphausiids,
amphipods, and juvenile fishes in their stomachs
during the survey in June and July. The distribu-
tion, nutritional quality, size, and abundance of
these prey items could all be influenced by varia-
tion in the timing and intensity of the spring phyto -
plankton bloom and thus could be responsible for
the growth variation we found. The stomach content
analysis described here does not provide a good
measure for assessing prey consumption; thus, we
focus on discussion of prey quality (Section 4.5)
with the acknowledgement that prey quantity likely
varied between years.

4.5.  Growth and diet: prey quality

The taxonomic composition and estimated caloric
value of juvenile coho salmon stomach contents
varied between years and regions. Of the prey
items found, current literature suggests that hyper-
iid amphipods had the lowest caloric density at
2464 J g−1 (Davis et al. 1998). Crab zoeae and
euphasiids have average caloric densities at 3362
and 4731 J g−1, respectively (Higgs et al. 1995). Juve-
nile fish (unidentified, sculpin, and sandlance) and
YOY herring have the highest caloric densities. Liter-
ature caloric values for juvenile fish were found to
be between 4060 J g−1 (Anthony et al. 2000) and
6837 J g−1 (Higgs et al. 1995) and up to 9801 J g−1

(McBride et al. 1959) for YOY herring. Larval crab
and juvenile herring become increasingly prevalent
as food sources as fork length increases for Puget
Sound chinook salmon (Duffy et al. 2010). Similarly,
growth of juvenile chinook salmon off the Washing-
ton Coast was positively correlated to the proportion
of forage fish such as the northern anchovy Engraulis
mordax in the diet (Litz et al. 2019). Together, these
data suggest that variation in diet quality could affect
variation in juvenile coho salmon growth in the Strait
of Georgia.
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4.6.  Growth and diet: YOY herring

The survival, and thus abundance, of YOY herring
in the Strait of Georgia is associated with the timing
of adult herring spawning and its relationship to the
spring phytoplankton bloom (Schweigert et al. 2013).
However, juvenile herring distribution within the
Strait of Georgia, both annually and regionally, may
be more dependent on spawn location and wind
intensity during larval stages than on timing and
location of spring phytoplankton bloom (Snauffer et
al. 2014). YOY herring abundance in the Strait of
Georgia has varied greatly between years from
1992−2016 (Boldt et al. 2019). For the years of our
study (2012−2015), catch per unit effort of YOY her-
ring in 2012 was approximately 4-fold higher than in
2013, 2014, and 2015 (Boldt et al. 2019). However, the
lack of detailed information on the spatial distribu-
tion and size of YOY herring in the areas sampled in
this study precludes us from directly assessing the
effects of the abundance and size of YOY herring on
the diet and growth of juvenile coho salmon in the
Strait of Georgia (YOY herring catch during the
Strait of Georgia juvenile salmon survey is merely
anecdotal because trawls were conducted during the
day at or near the surface when YOY herring are
located deeper in the water column). Nonetheless,
IGF-1 concentrations and herring abundance in the
stomach were relatively high in 2012.

The higher prevalence of YOY herring in coho
salmon stomachs in 2012 and 2014 could be the
result of higher overall YOY herring abundance. The
absence of YOY herring in coho salmon stomachs in
2013 and 2015 could have been the result of the pres-
ence of larger YOY herring that were beyond the
gape limit of juvenile coho salmon in those years.
Thus, the prevalence of YOY herring in 2012 and
2014 stomachs may indicate that YOY herring were
not only abundant, but abundant in viable sizes for
juvenile coho consumption.

Low abundance of YOY herring in the Strait of
Georgia has been associated with poor juvenile salmon
condition (a function of length and weight) and sub-
sequent poor marine survival (Beamish & Sweeting
2012). Additionally, variability in growth of juvenile
chinook salmon in Puget Sound was greater in years
when herring were abundant, with the data suggest-
ing that some larger juvenile chinook are able to
exploit herring in their diet when present and thus
grow faster (Chamberlin et al. 2017). The relation-
ship between availability of YOY herring and recent
growth reported here provides further data suggest-
ing that YOY herring are a high-quality food item for

juvenile salmon and that further examination of func-
tional relationships between juvenile coho salmon
and YOY herring may yield insights into the growth
and survival of coho salmon.

4.7.  Growth and temperature

Juvenile salmon growth may also be a function of
water temperature (Brett et al. 1969, Brett et al. 1982,
Plumb & Moffitt 2014). However, the effects of water
temperature on juvenile salmon growth are relatively
small over a wide range of temperatures near the
optimal thermal window for growth, 11−18°C, at
maximum feeding rates (Plumb & Moffitt 2014). In
this study, there were no significant correlations
between IGF-1 concentration and water temperature
at 5 m for any of the 4 years, possibly because, at this
depth, all water temperatures in the Strait of Georgia
were within the physiological optimal thermal win-
dow for juvenile salmon growth. However, it should
be noted that it is difficult to pinpoint the exact ther-
mal regime experienced by juvenile coho salmon in
the Strait of Georgia, as they are not limited to the top
5 m. Instead, they primarily reside within the top
45 m of the water column (Beamish et al. 2010a).
Differences in the water temperature between 5 and
45 m varied among regions. Water is generally poorly
stratified in the Gulf Islands due to strong tidal mix-
ing. As a result, water temperature only differed by
1−5°C between 5 and 45 m in this region, depending
on the year. Water temperature differences in the
remaining regions ranged between 5 and 9°C from
5 to 45 m among all years. Nevertheless, these differ-
ences are expected to have few direct effects on the
growth of juvenile coho salmon, as they were all
within the thermal growth optima.

4.8.  Competition with pink salmon?

Juvenile pink salmon are only abundant in mar-
ine waters of southern British Columbia during
even years, as adults are only abundant in odd
years (Beamish 2012). High abundances of juvenile
pink salmon have been negatively correlated with
the survival of coho salmon in the Strait of Georgia
(Beamish et al. 2010b). An approximately 60% diet
overlap exists between juvenile coho salmon and
juvenile pink salmon in the Strait of Georgia
(Beamish et al. 2010b). However, this large overlap
in diet is largely due to larval crabs and amphipods,
as juvenile pink salmon rarely consumed larval
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fish (Beamish et al. 2010b). It is unlikely that the
year-to-year differences in juvenile coho growth
observed in our study were due to abundance of
juvenile pink salmon: in years when juvenile pink
salmon were abundant, juvenile coho salmon con-
sumed relatively more high caloric density prey
(juvenile fish) than low caloric density prey (hyper-
iid amphipods). In addition, mean IGF-1 concen-
trations were higher in years when juvenile pink
salmon were present in the Strait of Georgia. Al -
though certainly not conclusive, as there is no tem-
poral overlap between studies, our results differ
from those of Beamish et al. (2010b) and suggest
that environmental factors other than simple pink
salmon presence drive variation in growth and sur-
vival of juvenile coho salmon.

4.9.  Summary

The small-scale geographical variations in growth
that we observed, both regionally and interannu-
ally, indicate that the rearing environment experi-
enced by juvenile coho salmon in the Strait of
Georgia is heterogeneous. Specifically, growth in
the Northern Strait of Georgia tends to be higher
than in the Southern Strait of Georgia, and growth
in regions around the Discovery Islands tends to
be higher than in Malaspina Strait or among the
Gulf Islands. These results suggest that mecha-
nisms driving the abundance and distribution of
juvenile fish and larger zooplankton will be re -
lated to variation in juvenile salmon growth. Stud-
ies to address these relationships will be difficult,
as they require both sampling juvenile salmon and
their prey field at relatively fine spatial and tempo-
ral scales. Different gear types are often needed to
accomplish a sufficient characterization of both
juvenile salmon and their prey. We trust that this
report will stimulate discussion of and plans for
such comprehensive sampling.
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Appendix. Additional analysis

Table A1. Linear models examining relationships of mean regional insulin-like growth factor-1 (IGF-1) concentration of juve-
nile coho salmon with length, year, region, and temperature. Shaded linear model (IGF-1~Length×Year) visualized in Fig. 6. 

Refer to Fig. 1 for regional abbreviations. *p < 0.05

Equation                            Coefficients      Estimate          SE                 t                    p                 R2              F (df)             p

IGF-1~ Length                     Intercept          −38.20          10.8            −3.53            0.002 *                                                           
                                               Length            0.61           0.1            9.68            0.000 *          0.81        93.7 (1,22)      0.000 *

IGF-1~ Year                         Intercept           69.66            3.6            19.32            0.000 *                                                           
                                                 2013               −8.58           5.1            −1.68            0.108                                                             
                                                 2014               −3.14           5.1            −0.62            0.545                                                             
                                                 2015               −2.08           5.1            −0.41            0.688            0.13         1.0 (3,20)       0.400  

IGF-1~ Temp                       Intercept           47.86            16.8            2.85            0.009 *                                                           
                                                Temp              1.18            10.7            1.01            0.280            0.05         1.2 (1,22)       0.284  

IGF-1~ Length+Year           Intercept          −37.10          9.4            −3.94            0.000 *                                                           
                                               Length            0.61           0.1            11.50            0.000 *                                                           
                                                 2013              −5.22          1.9            −2.77            0.012 *                                                           
                                                 2014              0.67           1.9            0.36            0.720                                                             
                                                 2015              −3.65          1.9            −1.96            0.065            0.89        38.6 (4,19)      0.000 *

IGF-1~ Length*Year           Intercept          −15.77          13.7            −1.15            0.267                                                             
                                               Length            0.49           0.1            6.26            0.000 *                                                           
                                                 2013              −9.83          21.9            −0.45            0.660                                                             
                                                 2014              −52.29          19.1            −2.74            0.015 *                                                           
                                                 2015              −21.40          30.8            −0.70            0.497                                                             
                                           Length:2013       0.02           0.1            0.18            0.858                                                             
                                           Length:2014       0.31           0.1            2.80            0.013 *                                                           
                                           Length:2015       0.10           0.2            0.59            0.566            0.93        30.5 (7,16)      0.000 *

IGF-1~ Length+Region       Intercept          −18.41          20.7            −0.89            0.386                                                             
                                               Length            0.51           0.1            4.49            0.000 *                                                           
                                                 Gulf               −3.18           3.5            −0.91            0.374                                                             
                                                 Mala              −5.42           4.1            −1.32            0.205                                                             
                                                NSOG            0.06           2.8            0.02            0.983                                                             
                                                 SOG              −4.77           2.8            −1.69            0.109                                                             
                                                SSOG             −3.79           3.3            −1.16            0.261            0.85        16.1 (6,17)      0.000 *

IGF-1~ Length*Region       Intercept          −70.18          61.3            −1.15            0.274                                                             
                                               Length            0.79           0.3            2.35            0.036 *                                                           
                                                 Gulf              52.53           70.1            0.75            0.468                                                             
                                                 Mala             47.11           83.3            0.57            0.582                                                             
                                                NSOG            −126.33          114.1            −1.11            0.290                                                             
                                                 SOG             76.48           73.3            1.04            0.317                                                             
                                                SSOG            72.61           75.3            0.96            0.354                                                             
                                           Length:Gulf       −0.31          0.4            −0.78            0.450                                                             
                                          Length:Mala       −0.29          0.5            −0.58            0.570                                                             
                                         Length:NSOG     0.68           0.6            1.10            0.294                                                             
                                           Length:SOG       −0.45          0.4            −1.11            0.289                                                             
                                         Length:SSOG      −0.43          0.4            −1.01            0.331            0.89       9.26 (11,12)     0.000 *
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