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1.  INTRODUCTION

From the mid-20th century, the development of
methods to sample organisms from discrete depths
using midwater trawls (Isaacs & Kidd 1951, Clarke
1969, Baker et al. 1973) quickly helped to revolu-
tionise mesopelagic biogeography. This is because
studies were at last able to describe both fine-scale
latitudinal and vertical patterns in species distribu-
tions, and begin to understand the processes main-

taining them (Sutton 2013). Increased access to these
records via online global biodiversity databases has
considerably enhanced our understanding of marine
species distributions, and specifically the data have
found an important role in underpinning modelling
approaches such as ecological niche modelling or
species distribution modelling. In general, these
methods correlate records of species presence with
biologically relevant environmental variables, en -
abling predictions of the probability of occurrence of
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suitable habitat for a species across a region of inter-
est (Peterson et al. 2011a). Examples of such methods
being applied to mesopelagic fauna range from hel-
met jellyfish (Bentlage et al. 2013), giant squid (Coro
et al. 2015), snipe eels (DeVaney 2016) and lantern-
fishes of the family Myctophidae (Loots et al. 2007,
Flynn & Marshall 2013, Duhamel et al. 2014, Freer et
al. 2018, 2019).

Ecological niche models (ENMs) of mesopelagic
fishes have demonstrated that subsurface data (often
conditions at 200 m or deeper) may be better predic-
tors of distribution patterns than surface environ-
mental conditions (Duhamel et al. 2000, Loots et al.
2007, Koubbi et al. 2011b). However, in marine
ENMs, it is often the case that surface (or near-sur-
face) environmental variables are paired with occur-
rence records of animals that were caught from a
range of depths, despite the surface and deeper
waters having very different environmental condi-
tions. In such cases, the model may provide a poor
representation of the normal environment of a spe-
cies, and therefore their physical and ecological
niche, ultimately leading to inaccurate predictions of
suitable habitat (Duffy & Chown 2017).

A common method of including environmental
information from multiple depths into an ENM is to
treat data from each depth layer as a separate envi-
ronmental predictor, for example, using both sea sur-
face temperature and sea bottom temperature.
Although such ENMs do not rely on surface data
alone, they remain relatively simplistic (Duffy &
Chown 2017) and do not fully account for variability
in the association between depth and species occur-
rence throughout the pelagic environment, which
plausibly may be relevant to species with pelagic life
history stages.

Other methods exist to integrate a third (i.e. verti-
cal/depth) dimension into ENMs such as the method
described by Duffy & Chown (2017). This approach
uses species occurrence records and their associated
latitude, longitude and depth information, matching
these records with environmental variables from a
similar depth from which the animals were caught.
For example, a record caught at 250 m would be
matched to the temperature at 250 m (or the closest
available depth level) rather than using temperature
at the surface or any other depth level. As depth
is considered as discrete (i.e. discontinuous) levels
rather than as a continuous variable, a distinction can
be made between this modelling approach and truly
3-dimensional models in which environmental data
and species’ depths of occurrence would be known in
more detail. Nevertheless, this approach can be used

to create separate habitat suitability maps for each of
the depth ‘slices’ used and, as only the most appro-
priate environmental data are paired with each
occurrence record, the accuracy of the ENM can, in
principle, be improved.

However, applying a vertical dimension in this way
is rare (but see Bentlage et al. 2013), and models of
deep sea species are often constrained by issues of
low sampling effort, which can lead to problems of
small sample sizes, spatial sampling bias and/or a
poor representation of their environmental or geo-
graphic distribution (Robinson et al. 2011, Bentlage
et al. 2013). Sub-selecting only those occurrence
records that contain associated depth information
may exacerbate these issues, meaning that trade-offs
between data quantity and quality likely exist when
choosing between 2D and 3D approaches (Duffy &
Chown 2017).

Lanternfishes (Myctophidae) are the dominant
family of offshore fish in the Southern Ocean in terms
of biomass, abundance and diversity (Barrera-Oro
2002). As such they are key consumers of zooplank-
ton and krill (Saunders et al. 2015, 2019), and are
major components of the diets of predators such as
birds, seals and fish (Guinet et al. 1996, Olsson &
North 1997, Casaux et al. 1998, 2009, Collins et al.
2007, Cherel et al. 2008). Through their diel vertical
migration behaviour, they also play a key role in
the active transport of carbon to deeper waters
(Collins et al. 2012). Whilst their latitudinal biogeog-
raphy is well understood through large-scale model-
ling efforts (Loots et al. 2007, Koubbi et al. 2011b,
Duhamel et al. 2014, Freer et al. 2019), their vertical
distribution patterns remain less clear. The vertical
habitat use of Southern Ocean lanternfish has been
described from regional sampling efforts (Lancraft et
al. 1989, Duhamel et al. 2000, Pusch et al. 2004,
Collins et al. 2008, 2012, Hulley & Duhamel 2011,
Koubbi et al. 2011a), yet vertical migration behaviour
and a capability to evade net capture means that
sampling can be prone to false negative results
(Kaartvedt et al. 2012). Thus, 3D modelling approa -
ches have the potential to bring novel insights to ver-
tical distribution patterns and the complex use of the
environment by these species.

In this study, we investigated the 3-dimensional
distribution of 10 Southern Ocean lanternfish species
by building depth-specific ENMs following the
method of Duffy & Chown (2017). We also compared
the predictive performance of models and the spatial
overlap of 3D ENMs to those built using the less com-
plex ‘2D’ approach. Therefore, as well as improving
our understanding of the vertical habitat of these
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species, we aimed to evaluate the relative utility of
2D and 3D approaches when modelling suitable
habitat of mesopelagic species.

2.  MATERIALS AND METHODS

2.1.  Species occurrence records

Occurrence records of the family Myctophidae
were downloaded from the Global Biodiversity Infor-
mation Facility (GBIF; www.gbif.org/). The 10 species
with the highest number of records in the Southern
Ocean were retained for analyses: Electrona antarc-
tica, E. carlsbergi, Gymnoscopelus bolini, G. braueri,
G. fraseri, G. nicholsi, G. opisthopterus, Krefftichthys
anderssoni, Protomyctophum bolini and P. tenisoni.
All occurrence records were subject to quality assur-
ance and control processes. Unreliable data, which in-
cluded records with identical latitude and longitude,
and records with a latitude and longitude correspon-
ding to a terrestrial location, were removed. Due to
high sampling bias towards austral spring and sum-
mer seasons, only records from the months Octo-
ber−March were kept for analyses. Furthermore, only
occurrence records from 1960−2010 were retained, to
correspond to a similar baseline period of available
environmental data. Along with latitude and longitude,
depth-of-catch information was retained for each oc-
currence record, obtained from the ‘depth’ field of the
GBIF database, when this was available. It is possible
that some records reflect only the maximum depth
that the net reached, and not the actual depth that the
fish was caught. Hence, only records falling within
the expected vertical bounds for these fishes (i.e. 0−
1500 m) were retained.

2.2.  Environmental predictors

Five environmental predictors were selected on
which to build the ENMs. These comprised tempera-
ture, salinity, dissolved oxygen, primary productivity
and bathymetry, and were chosen based on their
physiological importance for marine ectotherms and
on previous results demonstrating their importance
for determining marine species distributions (Loots et
al. 2007, Koubbi et al. 2011b, Flynn & Marshall 2013,
Duhamel et al. 2014). Climatological means for tem-
perature, oxygen and salinity predictors were ex -
tracted from the World Ocean Atlas 2013 database
(Locarnini et al. 2013, Zweng et al. 2013, Garcia et al.
2013, 2014) at a resolution of 0.25° × 0.25° (~27.75 km

at the equator) for the months October−March across
the baseline temporal period 1956−2005. These data
were extracted from 7 vertical depth layers: sea sur-
face, 50, 100, 200, 500, 800 and 1000 m, with the
greater resolution at shallow depths representing
increased variability in conditions within the epi -
pelagic zone. Primary productivity data represent the
primary organic carbon production by all types of
phytoplankton (nmol m−2 s−1) in the upper 150 m for
the months October−March from 1956−2005. Bathy-
metric data correspond to maximum water depth, and
had an original spatial resolution of 30 arc seconds
(Becker et al. 2009), being re-sampled to the same
resolution as the other variables (i.e. 0.25° × 0.25°)
using the bi-linear resample tool in ArcGIS v.10.5.1
(ESRI). All data were delimited to 35−75° S, as this
region encompasses the known geographic extent of
these species (Duhamel et al. 2014) and environmen-
tal data south of 75° S are often missing or imprecise.

We acknowledge that some environmental predic-
tors (e.g. oxygen and temperature) are highly cor-
related, having Pearson’s r > 0.9 (Table S1 in the
Supplement at www.int-res.com/articles/suppl/ m647
p179_ supp. pdf), and that including correlated pre-
dictors can make it difficult to assess the relative
importance of each due to issues of collinearity. Nev-
ertheless, there is evidence to suggest that, when
dea ling with correlated variables that are each biolo -
gically meaningful, including all predictors can pro -
duce models with better predictive performance, in
addition to a better fit, than a model parameterized
on only one of the correlated predictors (Braunisch et
al. 2013). MaxEnt (Phillips et al. 2006, 2017), the ma -
xi mum entropy modelling approach we used here, is
(1) particularly effective in dealing with collinearity
through its iterative model fitting approach, which
can consider variables independently, (2) can include
non-linear interactions between variables and (3) has
a robust ability to rank variables according to their
importance (Braunisch et al. 2013).

2.3.  Building 2D and 3D models

The 2D ENMs were built with no reliance on
depth-of-catch information from occurrence records.
The 5 environmental predictors (sea surface temper-
ature, sea surface salinity, sea surface dissolved oxy-
gen, primary productivity and bathymetry) were
matched to the longitude and latitude fields of each
occurrence record. These models, that include all
available species presence data, are hereafter re -
ferred to as ‘2Dall’ models.

https://www.int-res.com/articles/suppl/m647p179_supp.pdf
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Many occurrence records were missing the depth-
of-catch information required for the 3D models. To
enable direct comparisons between 2D and 3D mod-
els based upon the same sample size, a ‘2Dsub’
model was fitted for each species, which only used
the occurrence records that are available for the 3D
models.

To build the 3D models, occurrence records with
associated depth-of-catch information were used in
combination with the 5 environmental predictors from
each of the 7 depth layers; 0, 50, 100, 200, 500, 800
and 1000 m. Data were extracted from each environ-
mental predictor raster and were matched to occur-
rence records based upon their longitude, latitude
and depth fields, following the methodology of Duffy
& Chown (2017). Specifically, the depth field from
each occurrence record was used to identify the clos-
est depth layer from which to extract the most appro-
priate environmental data. Primary productivity data
were assigned to all occurrences regardless of verti-
cal position. The resulting ENMs were then projected
spatially onto each of the aforementioned depth lay-
ers. This resulted in habitat suitability maps for each
modelled species and each depth layer, each repre-
senting a 2-dimensional slice within a 3-dimensional
environment.

2.4.  MaxEnt ecological niche models

For each species, occurrence and environmental
data were fitted to the presence-only ecological niche
modelling algorithm MaxEnt v. 3.4.1. MaxEnt esti-
mates the conditional probability of presence of a spe-
cies relative to locations where the species has been
observed by sampling the environment at a range of
locations across the study region (‘background sites’)
and discriminating these from locations and environ-
ments where species are known to be present (‘pres-
ence sites’). MaxEnt assumes background locations
adequately cover areas accessible to the species and
that presence localities are unbiased and cover impor-
tant environmental gradients (Jarnevich et al. 2015).
While a lack of absence data prevents probability esti-
mates of a species presence and predictions of species’
realised distributions, pre sence-only outputs can be
interpreted as showing the existing, fundamental
niche and the potential dis tribution of a species (sensu
Hutchinson 1957)  (Peterson et al. 2011b). MaxEnt was
chosen for its repeatedly high performance against
other ENM algo rithms (Elith et al. 2006, Ortega-
Huerta & Peterson 2008, Monk et al. 2010). Moreover,
MaxEnt’s capacity to use presence-only data is partic-

ularly appropriate for mesopelagic species given the
high po tential for errors under a presence−absence
ap proach, due to the low sampling effort relative to
the potential habitat area (or volume) available, as
well as the net-avoidance behaviour common among
lantern fishes (Collins et al. 2008, Kaartvedt et al. 2012).
Using an ensemble of model algorithms rather than
relying on a single approach can be the best method-
ological practice when the aim is to gain robust pre-
dictions of a species distribution (Araújo & New 2007,
Araújo et al. 2019). However, as the main aim of this
work was to understand the appropriateness and util-
ity of 3D models in comparison to traditional 2D meth-
ods, we give emphasis to this methodological compar-
ison rather than comparing between algorithms.

All ENMs were fitted using the ‘SDMtune’ R pack-
age (Vignali et al. 2019). Occurrence data were par-
titioned into ‘calibration’ and ‘evaluation’ data using
3 sub-samples, with 30% of data used for model eval-
uation each time. Only linear, quadratic and hinge
feature classes were selected in order to avoid fitting
overly complex responses (Elith et al. 2010). We
selected 10 000 background data points from within 2
degrees of all mesopelagic fish records within the
study region. This ensures that both the background
and presence sites have the same spatial and envi-
ronmental bias (Phillips et al. 2009). Similarly, for 3D
models, the depth distribution of background points
reflected the same depth sampling bias as occur-
rence records. We used 5000 model iterations, and all
other MaxEnt settings were kept as default, includ-
ing the use of the complementary log-log (cloglog)
transformed output for estimating probability of pres-
ence (Phillips et al. 2017).

2.5.  Comparing 2D and 3D modelling approaches

The outputs of the 2Dall, 2Dsub and 3D modelling
approaches were compared in terms of their discrim-
inatory ability, calibration and overfitting. Discrimi-
natory ability was determined by the area under the
receiver operating characteristic curve (AUC) calcu-
lated on the evaluation data (AUCTEST). The AUC
score is a widely used rank-based measure of predic-
tive accuracy that can be interpreted in the context of
MaxEnt as the probability that a randomly chosen
presence location is ranked higher than a randomly
chosen background point (Merow et al. 2013). A
model with no discriminatory power will have an
AUC value equal to 0.5 (no better than random),
whilst a model with perfect fit would have an AUC
value of 1.0. Discriminatory accuracy of each model
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was also measured using the true skill statistic (TSS)
(Allouche et al. 2006). TSS values range from −1 to 1,
with 0 reflecting a model that is no different than ran-
dom and values closer to 1 being better at discerning
presence and background points. Overfitting was
measured using AUCDIFF (Warren & Seifert 2011,
Bohl et al. 2019), the difference between the AUCs
calculated with calibration records (AUCTRAIN) and
evaluation records (AUCTEST). This metric is based on
the notion that overfitted models generally perform
well on training data but poorly on test data, and
will therefore yield relatively high AUCDIFF values.
Lastly, Akaike’s information criterion corrected for
small sample size (AICc) was used as a metric of cal-
ibration performance, as it has been demonstrated
that information criterion-based approaches to model
selection may be particularly useful when sample
sizes are small (Warren & Seifert 2011, Lawson et al.
2014).

We also compared how model outputs differed
across environmental space by reporting the permu-
tation importance of each environmental predictor
for 2Dall, 2Dsub and 3D model outputs. Response
curves, which describe the relationship between a
modelled species occurrence and an individual envi-
ronmental predictor, were also compared between
all model outputs. Finally, the niche overlap between
the 2Dall or 2Dsub output and each of the 7 depth
predictions of the 3D model (e.g. 2Dall vs. 3D 0 m,
2Dall vs. 3D 50 m etc.) were calculated using the
‘niche overlap’ tool in the software ENMTools v.1.3
(Warren et al. 2010). Both the Spearman rank cor -
relation coefficient and I metrics are reported for
comparison. The I metric reflects the similarity of
environmental suitability predicted by the ENMs, yet
tends to overestimate similarity when many grid cells
are of similar value. Rank correlation is more reflec-
tive of similarity between ENMs in their underlying
response to environmental gradients.

To quantify how model outputs differed geograph-
ically, range overlap scores were also calculated
between the 2Dall or 2Dsub output and each of the
7 depth predictions of the 3D model using ENM-
Tools. This requires a threshold value over which a
species is classified as present, rather than using a
continuous score between 0 and 1. To transform out-
puts into binary maps, we used the ‘Equal test sensi-
tivity plus specificity’ threshold criteria. Selecting
threshold criteria is somewhat arbitrary, and each
approach can generate different results. Our selec-
tion was based on the results of Liu et al. (2016), who
found that sensitivity−specificity approaches per-
formed best compared to others.

3.  RESULTS

3.1.  Comparing model predictive performance

A total of 2918 unique occurrence records were
used in analyses. For 5 out of the 10 species (Elec-
trona carlsbergi, Gymnoscopelus bolini, G. fraseri,
G. opisthopterus, Protomyctophum tenisoni), the
total number of occurrence records available for the
3D approach fell below 90 records per species due to
absence of depth information for the occurrence
records (Table 1). Depending on species, between
21.4 and 74.5% of records did not have associated
depth information.

Highest-scoring metrics of model performance var-
ied greatly between species and model approaches
(Table 1). In comparing overall performance between
2Dall and 3D models, 2Dall models had, on average,
higher AUCTEST and lower AUCDIFF scores, whilst 3D
models had higher TSS and lower AICc scores
(Table 1). Three of the 4 metrics were stronger in the
2Dall approach for G. fraseri, G. nicholsi and Kref -
tichthys anderssoni, whilst the opposite was found for
E. antarctica, G. braueri and G. opis thopterus. In
com paring performance between 2Dsub and 3D
models, AUCTEST, AUCDIFF and TSS scores were all
stronger, on average, for the 2Dsub approach
(Table 1). Whilst the 2Dsub approach yielded higher
performing metrics for most species, indicators of dis-
crimination accuracy (AUCTEST and TSS) remained
higher under the 3D approach for E. antarctica and
G. opisthopterus.

3.2.  Comparing predictions in environmental space

Temperature was the variable with highest per -
mutation importance for E. antarctica, G. bolini,
G. braueri, G, fraseri, G. opisthopterus and K. ander-
ssoni regardless of modelling approach. 2Dall and 3D
approaches both found primary productivity to be
the most important variable for E. carlsbergi, whilst
bathymetry was highest for G. nicholsi under both
2Dsub and 3D models (Table S2).

Comparing the niche overlap between 2Dall and
3D model predictions, we found that overlap values
were high across all species, although relative rank
values were lower and more variable (mean ± SD
across all comparisons = 0.8 ± 0.04) than the I similar-
ity metric (mean across all comparisons = 0.93 ± 0.01;
Table 2). Per species, niche overlap values remained
stable across the 3D model predictions at different
depth bands and often peaked at mid depths

183



Mar Ecol Prog Ser 647: 179–193, 2020

(100−500 m; Table 2). A similar pattern was found
when comparing the 2Dsub and 3D model predic-
tions (Table S3).

Response curves describing the relationship be -
tween a modelled species occurrence and an individ-
ual environmental predictor were compared across
the modelling approaches (Figs. S1–S30). The 3D
models demonstrate a slightly lower optimal temper-
ature and narrower thermal tolerance ranges. Most
species were predicted to tolerate a broader range of
salinity and dissolved oxygen under the 3D models.

3.3.  Comparing predictions in geographic space

Examples of suitable habitat predicted by the dif-
ferent model approaches are shown for G. opis th op -
terus (Fig. 1) and G. fraseri (Fig. 2) while all other
outputs are given in Figs. S31–S40. Comparisons of
geographic range overlap between 2Dall and 3D
model outputs varied considerably, but were found to
have higher overlap in the upper 200 m depth bands
than at deeper depths (Table 2). Spatial overlap was
consistently high at all depth bands for E. antarctica,
G. opisthopterus and G. braueri (Table 2). A similar
pattern was found when comparing the 2Dsub with
3D model predictions, and overlap values were
slightly elevated in these comparisons (Table S3).

For some species, the 3D outputs revealed vertical
distribution features that were not resolved by the
2Dall or 2Dsub approaches. For example, E. antarc-
tica (Fig. S31) was estimated to have greater suitable

habitat in the upper 200 m, whilst G. opisthopterus
was estimated to have greater suitable habitat below
500 m (Fig. 1). The 3D outputs also suggest that the
habitat suitability of some species, notably E. carls-
bergi, G. bolini, G. fraseri and K. anderssoni, extends
equatorward at deeper depths (Figs. S32, S33, S35,
S38, respectively). P. tenisoni had the highest loss of
occurrence records, and the resulting habitat suit-
ability maps under the 3D approach have low esti-
mates of presence throughout the study region com-
pared to the circumpolar prediction under the 2D
approach (Fig. S40).

4.  DISCUSSION

In this study we present results of Southern Ocean
lanternfish distributions obtained from both simplis-
tic (2Dall, 2Dsub) and depth-integrated (3D) ENMs.
In comparing metrics of model performance, and
how outputs differ in geographic and environmental
niche space, we have gained valuable knowledge
of the benefits and trade-offs presented by each
approach and how to interpret the ecological infor-
mation they provide.

4.1.  Distribution patterns

Using a variety of model performance metrics, we
have shown that, even after accounting for sample
size differences, 2D ENMs can perform better than

184

Species Sample size 2Dall 2Dsub 3D
2D 3D AUC AUC TSS AICc AUC AUC TSS AICc AUC AUC TSS AICc

test diff test diff test diff

Electrona antarctica 876 688 0.833 0.007 0.514 13155 0.860 0.007 0.575 10049 0.870 0.007 0.588 10239
E. carlsbergi 141 87 0.759 0.034 0.409 2392 0.754 0.058 0.459 1613 0.751 0.050 0.435 2293
Gymnoscopelus bolini 106 75 0.824 0.032 0.532 1669 0.830 0.044 0.566 1427 0.782 0.053 0.482 1234
G. braueri 356 242 0.745 0.033 0.387 5709 0.760 0.032 0.428 3842 0.750 0.031 0.396 3933
G. fraseri 124 81 0.857 0.018 0.584 2059 0.833 0.039 0.628 NA 0.776 0.081 0.531 1791
G. nicholsi 228 151 0.850 0.020 0.548 3617 0.830 0.029 0.525 2667 0.812 0.033 0.491 2456
G. opisthopterus 152 65 0.810 0.031 0.493 3358 0.864 0.017 0.596 2815 0.869 0.021 0.616 NA
Krefftichthys anderssoni 436 256 0.779 0.015 0.437 6878 0.780 0.019 0.471 4068 0.731 0.030 0.370 4208
Protomyctophum bolini 362 135 0.802 0.015 0.461 5597 0.822 0.020 0.505 2142 0.804 0.026 0.492 2339
P. tenisoni 137 35 0.877 0.015 0.624 2113 0.939 0.015 0.744 NA 0.895 0.034 0.704 NA
Mean 292 182 0.814 0.022 0.499 4655 0.827 0.028 0.550 3578 0.804 0.037 0.511 3562
SD 237 193 0.043 0.010 0.076 3483 0.055 0.016 0.093 2781 0.057 0.020 0.103 2879

Table 1. Comparison of 2Dall, 2Dsub and 3D model performance for each species indicated by metrics of area under the receiver
operating characteristic curves (AUCTEST and AUCDIFF), true skill statistic (TSS) and Akaike’s information criterion corrected for
small sample size (AICc). Better performance is indicated by high AUCTEST and TSS scores and low AUCDIFF and AICc scores.
Sample sizes reflect the number of occurrence records per species and modelling approach. See Sections 2.3 and 2.5 for details of 

the models and the performance metrics, respectively. NA: not available
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3D ENMs for the same species. For certain species,
this suggests that surface data alone can largely
determine the abiotic drivers of their fundamental
geographic distributions. This is also reflected in the

high niche overlap between modelling approaches,
and the similar, broadscale patterns in habitat suit-
ability they generate. Given that many myctophids
and other mesopelagic species spend time feeding in
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Fig. 1. Comparison of estimated conditional probability of presence (cloglog output) for Gymnoscopelus opisthopterus using
2Dall (using all available occurrence records and sea surface environmental data), 2Dsub (as 2Dall, but built using only the
same occurrence records as in the 3D model) and 3D (matches occurrence records with environmental variables from a similar
depth from which the animals were caught) approaches. The red line denotes the position of the Polar Front from Orsi & Harris 

(2015)
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surface zones, and that their prey depend upon sur-
face productivity, high performance of 2D ENMs in
comparison to 3D methods could be anticipated and
is reassuring for previous ENM predictions that have
not used fully depth-resolved methods for these spe-
cies (Loots et al. 2007, Duhamel et al. 2014, Freer et

al. 2018) and other mesopelagic fishes (DeVaney
2016).

Nevertheless, we also found examples of species
whose model performance benefitted from including
depth-resolved environmental parameters and, for
all 10 species investigated, the 3D model predictions

187

Fig. 2. Comparison of estimated conditional probability of presence for Gymnoscopelus fraseri (cloglog output); details as in 
Fig. 1
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gave novel insights into their vertical habitat suitabil-
ity, which until now was only described from trawl
data covering areas between 100 and 1000 km (Lan-
craft et al. 1989, Duhamel et al. 2000, Pusch et al.
2004, Collins et al. 2008, 2012, Hulley & Duhamel
2011, Koubbi et al. 2011a).

The apparent preferences for shallow or deep habi-
tat in our study species largely follow expectations
from observed data. For example, the prediction of
higher suitability of E. antarctica habitat in the upper
200 m matches previous observational records (Hul-
ley 1981, 1990, Lancraft et al. 1989). Suitable habitat
for Gymnoscopelus bolini and G. nicholsi, both ben-
thopelagic as adults, is increased along shelf regions
at depths below 200 m and between 100 and 500 m,
respectively. This reflects patterns from catch data at
similar depths (Duhamel et al. 2014). G. braueri and
Krefftichthys anderssoni display suitable habitat
throughout the water column, which may reflect the
extensive vertical migrations known in these species
(Collins et al. 2012, Duhamel et al. 2014). As adults,
G. opisthopterus inhabit deeper (>600 m) waters
associated with eastern slope regions of the Kergue-
len Plateau (Hulley & Duhamel 2011), the continental
slope of Antarctica (Koubbi et al. 2011a) and the
southern Scotia Sea (Collins et al. 2012), which re -
flects our findings of suitable habitat throughout
these shelf and slope regions at depths below 500 m.
The suitable habitat predicted in shallow water
regions may be explained by the up welling of deeper
water masses towards the surface in these areas
(Hulley & Duhamel 2011).

Overall, there was a tendency for 3D model predic-
tions at shallow depths to identify suitable habitat
further south than the 2Dall or 2Dsub model predic-
tions, particularly noticeable at the polar front
boundary within the Scotia Sea. This is likely due to
the 3D models occupying niche space with lower
optimal temperature and higher optimal salinity than
the equivalent 2D models, as identified by model
response curves. Despite this, the 2D and 3D
approaches were found to have high overlap in envi-
ronmental niche space across all depth predictions,
but their overlap in geographic space generally de -
clined at deeper depths. This highlights the potential
for 3D models to reveal how the latitudinal habitat of
a species may change with depth. For example, com-
parisons amongst 3D model predictions at different
depths show that suitable habitat for Electrona carls-
bergi extends further south at shallow depths and is
extended equatorward at deeper layers. Similar
 patterns are found for G. bolini, K. anderssoni and
G. fraseri, which all have extended equatorward dis-

tributions that reach into the region of the Subtropi-
cal Convergence at depths greater than 500 m. This
suggests that these species may follow Antarctic
Intermediate Water as it moves from shallow depths
in the Antarctic Convergence to deep waters around
the Subtropical Convergence (Pardo et al. 2012).
Such a hypothesis was first put forward by Hulley
(1981) following the disparate vertical ranges of
these species from different latitudes.

3D model outputs for some species also suggest
suitable habitat in areas previously unrecorded or
thought to be unsuitable based upon the outputs of
the 2D models. For example, Protomyctophum bolini
has an oceanic distribution that is bounded to the
south by the South Antarctic Circumpolar Current
Front (SACCF) (Saunders et al. 2019), and is gener-
ally absent inshore of shelf breaks (Duhamel et al.
2014). Results from the 3D model would suggest that
regions of the Western Antarctic Peninsula and con-
tinental slope approximately 90−140° E are also
potential suitable habitats, not dissimilar from the
results of Duhamel et al. (2014) that also predict suit-
able habitat south of the SACCF.

4.2.  Challenges of modelling in 3 dimensions

Integrating a vertical dimension into an ENM
brings with it additional challenges. Diel vertical
migrations, by their nature, will result in differences
in recorded depth between daytime and night-time
sampling efforts (Robison 2003). Extreme seasonal
changes in light conditions, as is found in polar
regions, may also alter the pattern, timing or extent
of vertical migrations (Cisewski et al. 2010, Dypvik et
al. 2012). Diel, seasonal and onto genetic variability in
depth distributions are confounded by net avoidance
issues, as species are more likely to evade nets
deployed above 400 m in daylight resulting in higher
catch rates at night (Collins et al. 2012). Overall, light
conditions at the time of sampling likely influence
the depth at which a fish is caught, which can in turn
can affect the vertical component of a model that has
incorporated this information. Authors should
acknowledge that the vertical distribution patterns
described by a 3D niche model are specific to a par-
ticular set of diel and seasonal light conditions.

To control for these issues of vertical sampling bias,
data from a wide range of diel and temporal sam-
pling times are required. One solution is to have sam-
pling protocols that are standardised across day/
night cycles and multiple depth bands. The need
for systematic sampling across environmental and
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spatial gradients echoes previous calls for well-
designed surveys to obtain the high quality data
needed for better performing ENMs (Fei & Yu 2016,
Leroy et al. 2018, Araújo et al. 2019). For mesopelagic
species, factoring in an additional temporal dimen-
sion is necessary to generate a more informative
sample of presences, as well as non-detections,
which would refine our ability to predict and inter-
pret patterns of vertical habitat use in light of diel
migratory behaviour.

4.3.  Data quantity versus quality

Since many occurrence records do not have associ-
ated depth data, they must be excluded from 3D
ENMs (Duffy & Chown 2017), or else alternative
solutions must be sought; for example, it may be pos-
sible to assign assumed depths to occurrence records
through a hierarchical modelling approach with cer-
tain expectations about the distribution-at-depth of
the missing data. In the examples considered in our
study, the sample size for half the species of 3D
ENMs dropped to fewer than 90 occurrence records,
and to only 35 records in the case of P. tenisoni. This
dropout highlights the need to consider the availabil-
ity of depth-specific presence data when choosing
the most appropriate modelling approach for marine
species.

ENMs built using a small sample size tend to be
less powerful because their parameter estimates have
higher uncertainty, outliers have a higher weight, and
there may not be enough records to comprehensively
represent the complexity of an ecological niche (Wisz
et al. 2008). Previous studies have explored the per-
formance of multiple ENM algorithms with different
sample sizes. These studies found that, whilst MaxEnt
can be less sensitive to changes in sample size than
other algorithms (Hernandez et al. 2006, Wisz et al.
2008), (1) depending on the type of data available, a
minimum of 50−100 occurrences are needed to char-
acterise a species’ niche (Meynard et al. 2019), though
some studies have produced useful models with as
few as 10 re cords (Stockwell & Peterson 2002, Soultan
& Safi 2017); (2) model performance tends to increase
with additional presences, but can plateau after rea -
ching a certain threshold where additional records
add little to model accuracy (Stockwell & Peterson
2002); and (3) characteristics of a species, e.g. niche
breath, specialisation (Mateo et al. 2010, Soultan &
Safi 2017) and the size of the study area (van Proosdij
et al. 2016), can influence minimum prior information
needed about a species. Taken together, these studies

are a strong indicator that low sample size can affect
model performance and may help to explain the
subtle differences we observed between the perform-
ance of 2Dall, 2Dsub and 3D models presented here.

That our results have signs of better fit with larger
sample size, as measured by the AUCDIFF metric, is
consistent with this literature. However, the AUCTEST

(Lobo et al. 2008) and recently the TSS (Leroy et al.
2018) metrics have been shown to be prevalence-
dependent; i.e. they are dependent on the proportion
of the data representing species presence (Phillips et
al. 2006, Raes & ter Steege 2007). When there is a
strong imbalance between presence and absence,
the model is very likely to have a higher probability
of occurrence at a random presence point than at a
random absence point, resulting in an AUC value
that is falsely inflated by statistical artefacts caused
by the lower sample size (McPherson et al. 2004, van
Proosdij et al. 2016). Here, several models showed
slightly higher AUCTEST and TSS values under the
2Dsub and 3D approaches, which had lower sample
size, and thus lower prevalence, than comparative
2Dall models. Thus, it is unclear whether these indi-
cators of performance are a statistical artefact, or a
true reflection of a better model performance. Never-
theless, these metrics are able to give an indication of
model discriminatory ability and, used in tandem
with other methods, such as niche and range overlap
tools, the ecological realism of model outputs can be
compared (Fourcade et al. 2014).

Data quality can be determined by several charac-
teristics of the presence data, including the reliability
of species identifications, spatial accuracy and the
degree to which they represent the true distribution
of the species (Kadmon et al. 2003). By utilising
depth-of-catch information, the 3D method em -
ployed here matches presence data to abiotic values,
which more accurately reflect the conditions at the
depth at which they were caught. In doing so, 3D
methods theoretically provide an improvement in the
spatial accuracy of the presence data and also in the
completeness of the representation of the environ-
mental niche provided by the model training data,
which is important for obtaining reliable models with
good calibration (Jimenez-Valverde et al. 2009, Mey-
nard et al. 2019). Our results demonstrate that this
may be particularly relevant for species that are
known to prefer deep ocean environments. G. opis -
thopterus can be characterised as being a deeper-
 living (400−1000 m), bathypelagic species (Hulley &
Duhamel 2011, Saunders et al. 2019). Performance
metrics agree that the 3D model for this species is
better performing than 2D models, supporting the
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idea that, in some cases, the quality of ecological
information provided by the presence (and absence/
pseudo-absence) data can be more important than
the quantity of information (Mateo et al. 2010).

At depths below the surface, environmental clima-
tologies, particularly for biochemical variables such
as dissolved organic carbon or chlorophyll, which are
often derived from satellite products, are not as
 readily available as in surface layers. Global ocean
models can provide estimates of carbon and nutri-
ent para meters subject to their own model-based
uncertainties (Allen et al. 2007, Aumont et al. 2015),
yet overcoming the limitations of creating depth-
resolved predictor information will also be important
to address the uptake, quality and performance of
future 3D ENM techniques.

In reality, both the quantity and quality of data
will influence model predictions, alongside sam-
pling biases (Fei & Yu 2016) and the distribution
characteristics of the modelled species (Kadmon et
al. 2003). The choice of the most appropriate mod-
elling ap proach will depend upon all of these fac-
tors and the intended use of the model. While a
large, representative sample size should be fa vou -
red in studies interested in defining environmental
conditions of a species or complex conservation
applications, a smaller sample size may be tolerated
when the aims of an ENM are to identify potential
sampling locations or to explore macroecological
patterns of poorly known regions or taxa (Wisz et
al. 2008, Soultan & Safi 2017).

Here we have shown that 3D approaches can give
results that are insightful and comparable to the
more simplistic 2D models for some species. How-
ever, the utility of these 3D approaches are limited
by the paucity of depth-of-catch data associated
with online-sourced occurrence records, at least
for the species considered here. We emphasise
the need for mesopelagic species data to be collec -
ted using appropriate temporal and depth-stratified
methods, and for providers to upload full and ac -
curate records of occurrence, including depth-of-
catch, when submitting data to global biodiversity
databases such as GBIF. This should also include
the type of net used, deployment method (e.g.
oblique or stratified depth), and non-detections of
species, as this information gives researchers a
fuller understanding of the data and its limitations.
Future studies aiming specifically to integrate a
third dimension into ENMs should consider the data
quality, quantity, the ecological characteristics of
the species and the objectives of the study to clarify
the suitability of such methods.

4.4.  Concluding remarks

We have found that 3D ENMs developed for meso-
pelagic species have a higher and more consistent
overlap to 2D ENMs in environmental space than
geographic space. However, this rarely resulted in
differences to inferred broad-scale patterns of habi-
tat suitability. 3D models may outperform models
based on 2D approaches depending on the metrics
used and species of interest, yet trade-offs are
required between the quality and quantity of occur-
rence records, which will determine the subsequent
choice of ENM (2D or 3D). In particular, the paucity
and added uncertainty of depth-of-catch data may
limit the widespread use of 3D if this is not corrected
through an increased effort of appropriate collection
and documentation. 3D models could be a valuable
addition to the researcher’s toolbox when investigat-
ing deep pelagic biogeography, and we advocate
their continued use and development, where data
are appropriate.

Data archive. All occurrence, background and associated en-
vironmental data utilised in this study can be accessed at
https://doi.org/10.5285/8E59F849-5B93-438E-A5E0-3C65636
F9053.
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