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1.  INTRODUCTION

Relationships between animals and their associ-
ated microbiota are generally hypothesized to be
driven by 2 primary factors: the evolutionary history
of the host and the environment (Bordenstein & Theis
2015). In the former, animals associate with species-
specific microbial communities that often co-vary
with host phylogeny (Schmitt et al. 2012, Brooks et al.
2016, Carrier & Reitzel 2018, Pollock et al. 2018,
O’Brien et al. 2019, Lim & Bordenstein 2020). In the
latter, the composition of host-associated microbiota
depends on the abiotic and biotic environments, such
that bacterial communities may differ, for example,

due to temperature, salinity, and diet, to form a com-
munity with specific functional properties (Soto et al.
2009, Webster et al. 2011, Kohl & Carey 2016, Carrier
& Reitzel 2017).

Studies assessing the relative importance of the
host’s evolutionary history and the environment have
shown that both influence community composition,
but one of the 2 factors is commonly more influential.
In scleractinian corals (Pollock et al. 2018) and sponges
(Easson & Thacker 2014, Thomas et al. 2016), for
example, host phylogeny can best explain composi-
tional differences in these microbial communities.
Shifts in symbiont composition due to the abiotic en -
vironment have been observed in barnacles (Aldred
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& Nelson 2019), echinoderms (Carrier & Reitzel
2020), and sponges (Webster et al. 2011). In select
cases, however, the influence of the host’s evolution-
ary history and the environment are comparably
similar (Mortzfeld et al. 2016).

Discerning the impacts of evolutionary history and
adaptation to different environmental conditions is a
challenge in many marine species because phyloge-
netic relationships are often unknown, and environ-
mental conditions for closely related species tend to
overlap. One type of species pair where both factors
are known and the contributions of phylogeny and
environment can be teased apart are geminate spe-
cies, or sister species pairs that formed as a result of
geological events (Jordan 1908). These geological
events are often dated from independent evidence
and allow for the rates of molecular divergence be -
tween geminate species to be calibrated (Lessios
1979). Moreover, isolation by such geological events
also provides a basis for understanding the factors
responsible for the evolution of each species in these
isolated environments (Lessios 2008, O’Dea et al.
2016). Geminate species are thus an important and
potentially powerful system to compare the diver-
gence of organismal traits and determine how these
factors relate to communities of host-associated
micro organisms (Wilkins et al. 2019).

One geographic change that resulted in multiple
geminate species was the formation of the Isthmus of
Panama. Until the Miocene, the Caribbean Sea and
Tropical Eastern Pacific were continuous, with fauna
that spanned the region (Lessios 2008, O’Dea et al.
2016). The emergence of the Isthmus of Panama iso-
lated these 2 bodies of water and also affected the
physical conditions of these 2 oceans, causing multi-
ple groups of marine fauna to undergo independent
evolutionary trajectories. Those that
did not become extinct have since di -
verged and formed geminate species
pairs (Lessios 2008, O’Dea et al. 2016,
Wilkins et al. 2019).

One group of well-studied geminate
species that resulted from the Isthmus
of Panama are echino ids (phylum
Echinodermata). The intertidal and
sub tidal waters off the Panamanian
coast feature many geminate pairs,
including sea urchins in the genera
Echinometra and Diadema. Following
the formation of the Isthmus of Pana -
ma, Diadema split into the Pacific D.
mexicanum and the Caribbean D.
antilla rum (Lessios et al. 2001, Hicker-

son et al. 2006, Lessios 2008). Echinometra diverged
into E. van brun ti in the Pacific and E. lucunter and E.
viridis in the Caribbean, with the speciation event of
the 2 Caribbean species occurring after the emer-
gence of the Isthmus of Panama (McCartney et al.
2000, Les sios 2008). Since the rise of the Isthmus,
these geminate pairs have diverged in several life-
history characters, including egg size and biochemi-
cal composition (Lessios 1990, McAlister & Moran
2012), larval morphology and feeding ecology (Mc -
Alister 2008), and the timing of reproductive events
(Lessios 1981, 1984). In other echinoids, these life-
history characters are correlated with specific bacte-
rial communities (Carrier & Reitzel 2020). For exam-
ple, eggs of 3 confamilial echinoids are associated
with a phylogenetically diverse and species-specific
bacterial community that shifts gradually over the
course of development and in response to food avail-
ability (Carrier & Reitzel 2018, 2019a). Due to the
parallels with other echinoids, we hypothesize that
members of these geminate pairs would also associ-
ate with distinct bacterial communities.

The microbiota associated with geminate species
pairs were recently hypothesized to have diverged
during their independent evolutionary trajectories,
either as a product of the host genetics or environ-
mental differences (Wilkins et al. 2019). For the echi-
noid geminate species pairs on the Panamanian
coast, relatedness of microbial communities would
either mirror the evolutionary history of the host or
form distinct clades unique to species found in each
ocean (Fig. 1). To test this hypothesis, we sampled
eggs of all 3 Echinometra and 2 Diadema species.
Bacterial communities of the eggs of these 5 species
were then profiled using amplicon sequencing. We
found that the bacterial communities are distinct be -
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tween geminate species and reflect an interactive
effect between the evolutionary history of the host
and the environment as well as a pattern consistent
with phylosymbiosis.

2.  MATERIALS AND METHODS

2.1.  Echinoid collections and spawning

Adult Diadema mexicanum and Echinometra van-
brunti were collected by SCUBA diving off Isla Tabo -
 guilla near Panama City, Panama, in July and August
of 2019. Spawning of D. mexicanum follows a lunar
cycle (Lessios 1981), so collections were made during
full moon phases. Adults were transferred to and
spawned at the Smithsonian Tropical Research Insti-
tute (STRI) Naos Island Laboratories in Balboa. D.
antillarum, E. lucunter, and E. viridis were collected
at Galeta Marine Laboratory near Colón, Panama, in
the Caribbean Sea at new moon phases in July and
August of 2019. Of the Caribbean species, E. lucun ter
and E. viridis were brought to and spawned at Naos,
while D. antillarum was spawned at Galeta be cause
the adults often spawn or perish during transport.

Adult sea urchins (n = 15 per species; Table S1 in
Supplement 1 at www. int-res. com/ articles/ suppl/ m648
p169 _ supp/) were spawned by intracoelomic injec-
tion of 0.50 M KCl. Eggs of all 3 Echinometra species
were shed into 5.0 μm filtered seawater from their
site of origin, while Diadema eggs of both species
were shed onto and collected from the aboral surface
of the mother. Approximately 250 eggs per individ-
ual were collected with a sterile pipette and trans-
ferred to a 1.5 ml Eppendorf tube, where they were
concentrated using a microcentrifuge, and the super-
natant was removed. The eggs were preserved in
RNAlater in the Eppendorf tube and frozen at −20°C
for long-term storage.

The environmental microbiota from the seawater
where the sea urchins were collected was also sam-
pled. For both Pacific and Caribbean populations,
~0.5 l of seawater was filtered onto a 0.22 μm Milli-
pore filter to retain the environmental microbiota (n =
3). Full filter disks were preserved in RNAlater and
frozen at −20°C.

2.2.  Profiling bacterial communities

Total DNA was extracted from sea urchin eggs,
seawater samples, and DNA kit/reagent blanks (n = 3)
at the University of North Carolina at Charlotte, USA,

using the GeneJet Genomic DNA Purification Kit
(Thermo Scientific). DNA was quantified using a
Qubit Fluorometer (Life Technologies) and diluted to
5 ng μl−1 using RNase/DNase-free water. Bacterial
sequences were then amplified using primers for the
V3/V4 regions of the 16S rRNA gene (Table S2;
Klindworth et al. 2013). Products were purified using
the Axygen AxyPrep Mag PCR Clean-up Kit (Axy-
gen Scientific), indexed using the Nextera XT Index
Kit V2 (Illumina), and then purified again. At each
clean-up step, fluorometric quantitation was per-
formed using a Qubit, and libraries were validated
using a Bioanalyzer High Sensitivity DNA chip (Agi-
lent Technologies). Illumina MiSeq se quencing (v3,
2 × 300 bp paired-end reads) was performed in the
Department of Bioinformatics and Genomics at the
University of North Carolina at Charlotte.

2.3.  Computational analysis

Raw reads along with quality information were
imported into QIIME 2 (v. 2019.1; Bolyen et al. 2019),
where adapters were removed, forward and reverse
reads were paired using VSEARCH (Rognes et al.
2016), filtered by quality score, and denoised using
Deblur (Amir et al. 2017). QIIME 2-generated ‘fea-
tures’ were analyzed as amplicon sequence variants
(ASVs; Callahan et al. 2017) and were assigned tax-
onomy using SILVA (v. 132; Quast et al. 2013). Se -
quences matching to Archaea or found in DNA kit/
reagent blanks were filtered from the data, and sam-
ples with <1000 reads were discarded (Table S1).
The filtered table was then rarified to 1027 se -
quences per sample (i.e. the read count for the sam-
ple with the fewest remaining reads), a depth at
which the taxonomic and phylogenetic diversity for
our samples had essentially plateaued (Fig. S1 in
Supplement 2 at www. int-res. com/ articles/ suppl/ m648
p169 _ supp/).

To test whether community membership and com-
position were species-specific, we calculated un -
weighted and weighted unique fraction (UniFrac)
values (Lozupone & Knight 2005) and compared
them using principal coordinate analyses. Results
from these analyses were then recreated in QIIME 1
(v. 1.9.1; Caporaso et al. 2010) and stylized using
Adobe Illustrator. We then used a permutational mul-
tivariate ANOVA to test for differences in member-
ship and composition between species and, subse-
quently, performed pairwise comparisons. We also
calculated 4 measures of alpha diversity: total ASVs,
Faith’s phylogenetic diversity, McIntosh dominance,
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and McIntosh evenness. We compared these values
using a 1-way ANOVA for Echinometra and a Stu-
dent’s t-test for Diadema. Lastly, we summarized the
cumulative bacterial profiles associated with all sea
urchin species as well as the mean number of shared
and species-specific ASVs.

Using the weighted UniFrac values, we constructed
microbial dendrograms in QIIME 2, where samples
were collapsed by host species by pooling sequence
data from all samples for each host. These were then
used to test for phylosymbiosis by comparing topolog-
ical congruence with the cytochrome c oxidase sub-
unit 1 (COI) gene tree for these geminate species
pairs (McCartney et al. 2000, Lessios et al. 2001). The
host COI tree was constructed using BEAST (v. 1.8.4;
Drummond et al. 2012) by starting from a random co-
alescent tree and running for 107 steps, with record-
ings every 103 steps. We then used Tracer (v. 1.7.1;
Rambaut et al. 2018) to verify that effective sample
size values for all parameters exceeded 4260. A maxi-
mum credibility tree, with support
of 1 for all nodes, was then estimated
using Tree Anno tator (v. 10.10.4).
Pat terns of phylosymbiosis were
tested using the Robinson-Foulds
metric in TreeCmp (Bogdanowicz et
al. 2012) and matching cluster met-
rics with 10 000 random trees. This
analysis was performed using the
Python script of Brooks et al. (2016).

Our QIIME-based pipeline used
to convert raw reads to ASVs for
visualization is presented in de -
tail in Supplement 3 at www.  
int-res. com/  articles/ suppl/ m648
p169 _ supp/. The 16S rRNA gene
reads are accessible in the Dryad
Digital Repository (doi.org/ 10. 5061/
dryad.2z34tmphq).

3.  RESULTS

3.1.  Community relatedness and
diversity

The bacterial communities as so -
ciated with the eggs of these 2
geminate species pairs were spe-
cies-specific in both community
membership and composition, ex -
cept in 1 case (unweighted Uni -
Frac: p < 0.001; weighted Uni Frac:

p < 0.001; Fig. 2; Table S3). The 2 Caribbean Echino -
metra species, E. lucunter and E. viridis, associated
with comparatively similar bacterial communities in
both membership and composition (un weighted Uni -
Frac p = 0.055; weighted UniFrac: p = 0.069; Fig. 2;
Table S3). Relatedness of these bacterial communi-
ties suggests that the Pacific E. vanbrunti groups
with the Pacific Diadema mexicanum and Caribbean
D. antillarum, while Caribbean E. lucunter and E.
viridis group separately (Fig. 2). Moreover, compari-
son of host phylogeny and the bacterial dendrogram
suggest that the topological congruence for these
trees is non-random, even though they do not fully
mirror each other. Phylo symbiosis was thus sup-
ported for these geminate species pairs (both Robin-
son-Foulds and Matching Split: p = 0.062, normalized
score: 0.0; Fig. 3; Table S4).

Echinometra-associated bacterial communities
were, on average, more diverse in individual taxa
and phylogenetic breadth than those of Diadema
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(Fig. 4A,B; Table S5). Patterns of community diver-
sity within geminate species pairs differed between
genera: the 3 Echinometra species were similar to
each other, whereas the Pacific D. mexicanum was
more diverse than the Caribbean D. antillarum
(Fig. 4; Table S5). Moreover, the bacterial commu-
nities of Echinometra were more taxonomically
dominant and, thus, less even than those of
Diadema (Fig. 4C,D; Table S5). The eggs of all 3
Echinometra species were associated with similarly
dominant bacterial communities, while the eggs of
D. mexicanum had a more taxonomically dominant
community than that of D. antillarum (Fig. 4;
Table S5).

3.2.  Taxonomic representation and
divergence

Microbiota of both Echinometra and
Diadema eggs were primarily com-
posed of 2 bacterial classes, the Bac -
tero idia (Bacteroidetes) and Gamma -
pro teobacteria (Proteobacteria) (Fig. 5A;
Table S6). Bacteroidia, on average, re -
presented ~24.4 ± 14.4% (SD) and
~29.6 ± 1.3% of the bacterial commu-
nity of Echinometra and Dia de ma, re-
spectively, while the Gamma proteo -
bacteria represented ~35.2 ± 16.8 and
~34.7 ± 1.4% (Fig. 5A; Table S6). The
eggs of the Caribbean Echinometra, in
particular, were also dominated by un-
characterized ASVs within the Oxy -
pho to bacteria (phylum Cyano bacteria),

which represented ~15.2 ± 9.5% of the community
(Fig. 5A). These same bacterial taxa were only 2.6 ±
4.4% of the community for 2 Diadema species. The
Oxyphotobacteria were significantly more abundant
in the Caribbean Echinometra than the Pacific E. van-
brunti and represented ~4−5 times more of the com-
munity (Fig. 5B; Table S7). In addition to these
groups, the eggs of Echinometra had 5 other bacterial
classes that ranged from ~1.2 to ~6.2% of the commu-
nity, while Dia dema had 6 other bacterial classes that
represented between ~1.3 and ~12.5% of the commu-
nity (Fig. 5A; Table S6).

There was a total of 404 ASVs in the 3 Echino metra
geminate species. Of these, 137 (33.9%), 86 (21.3%),
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and 75 (18.6%) were specific to E. vanbrunti, E.
lucunter, and E. viridis, re spectively, while 14 (3.5%)
were shared between these species (Fig. 5C; Fig. S2;
Table S7). Notably, a total of 97 (24.0%) ASVs were
shared between the Caribbean E. lucunter and E.
viridis, while 17 (4.2%) or 20 (5.0%) ASVs were
shared between either species of Caribbean Echino -
metra and E. vanbrunti (Fig. 5C; Fig. S2; Table S7).
The Dia dema geminate species, on the other hand,
associated with 175 ASVs; 106 (60.6%) and 55
(31.4%) were specific to D. mexicanum and D. antil-
larum, respectively, and 14 (8.0%) were shared. The
most abundant ASV for both Diadema species
belonged to Kistimonas. This ASV represented ~25.3
± 32.3% of the community associated with D. antil-
larum eggs, was significantly more abundant in D.
antillarum than in D. mexicanum, and was barely
present (<0.01 ± 0.03%) in the Echinometra bacterial
communities (Fig. 5B; Table S8).

4.  DISCUSSION

The microbiota with which animals associate is
often attributed to their evolutionary history or to the
environment (Carrier & Reitzel 2017, Lim & Borden-
stein 2020). Studies assessing the relative importance
of a host’s evolutionary history or the environment
suggest that both influence microbial community
composition, but one factor is commonly more pro-

nounced. One ‘natural experiment’ to
test whether either factor or the inter-
action between these factors primarily
drives community composition is to
compare geminate species pairs (Jor-
dan 1908). One ex ample are echinoids
separated by the Isthmus of Panama
(Lessios 2008, O’Dea et al. 2016,
Wilkins et al. 2019).

By comparing the egg-associated
microbiota for the Echinometra and
Diadema geminate species pairs, we
reach 3 main findings. First, both pairs
of geminate species associated with
distinct bacterial communities that re -
flect a relationship consistent with phy -
lo symbiosis. Second, the re lated ness
of these microbiota — based on both
membership and composition — sup-
ports the hypothesis that the interac-
tion between the evolutionary history
of the animal host and the environment
best explains differences in these

communities. Third, particular microbial taxa (e.g.
Oxyphotobacteria and Kistimonas) differed consider-
ably between oceans.

Like the developmental stages of many marine
invertebrates, echinoid embryos and larvae associate
with species-specific bacterial communities that are
composed of hundreds of taxa (Carrier & Reitzel
2018, 2019a,b, 2020). Presently, no study has com-
pared the microbiome of echinoids across their evo-
lutionary history, but the microbiota associated with
3 confamilial echinoids showed a phylogenetic signal
(Carrier & Reitzel 2018, 2019a). Multiple studies do,
however, suggest that feeding environment and geo-
graphic locations with distinct oceanographic condi-
tions influence the composition of echinoid-associ-
ated bacterial communities (Carrier & Reitzel 2018,
2019b, 2020, Carrier et al. 2019).

Since their separation ~2.8 million yr ago, members
of echinoid geminate species pairs have diverged in
several aspects of their biology and ecology, includ-
ing egg size and biochemical composition (Lessios
1990, McAlister & Moran 2012), larval feeding ecol-
ogy (McAlister 2008), and reproductive ecology
(Lessios 1981, 1984). In this study, we have shown
that the bacterial communities with which they asso-
ciate are another biological difference between these
species pairs. Specifically, members of Pacific and
Caribbean geminate pairs shared between ~4 and
8% of their microbiota. This fraction of shared bacte-
rial taxa is similar to differences between the micro-
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biota of Strongylocentrotus droebachiensis larvae
from multiple geographical locations (Carrier et al.
2019). Differences in these communities may reflect
common taxonomic divergences amongst echinoid
species and/or between populations.

One exception to interspecific differences in egg
microbiota is our finding regarding the 2 Caribbean
Echinometra species, E. lucunter and E. viridis.
These species diverged from each other ~1.6 million
yr ago (McCartney et al. 2000) and, in this time, have
maintained a ~36.3% overlap of their bacterial taxa.
This lower level of taxonomic divergence has not
resulted in species-specific bacterial communities,
which is hypothesized to be a fundamental property
of animal-associated microbiota (Gilbert et al. 2012,
McFall-Ngai et al. 2013, Bordenstein & Theis 2015).
Recently, however, notions for universal rules gov-
erning animal−microbe symbioses have been called
into question (Hammer et al. 2019). The comparison
be tween these 2 Caribbean Echinometra species
may provide initial evidence against a general ex -
pectation of species-specific microbiota.

In marine and terrestrial taxa, the relatedness of
the microbial community tends to mirror the evolu-
tionary history of the host (i.e. phylosymbiosis;
Brooks et al. 2016, Lim & Bordenstein 2020). When
comparing host phylogeny and microbial dendro-
grams for the Echinometra and Diadema geminate
species pairs, we found evidence for phylosymbiosis
(Brooks et al. 2016, Lim & Bordenstein 2020). Al -
though these trees were not fully congruent, observ-
ing phylosymbiosis suggests that the influence of the
host’s evolutionary history was strong for these echi-
noids, despite the species having evolved in contrast-
ing and isolated environments (Figs. 1 & 2). Related-
ness of these bacterial communities did not fully
reflect either factor; instead, what was observed was
an intermediate between a host- and environment-
driven pattern (Figs. 1 & 2).

Symbioses between animals and microbes are a
product of the interaction between the host genotype
(GH), the microbial metagenome (GM), and the envi-
ronment (E) (Zilber-Rosenberg & Rosenberg 2008,
Bordenstein & Theis 2015, Carrier & Reitzel 2017).
This tripartite interaction (GH × GM × E) was evident
in the Echinometra and Diadema geminate species
pairs, where the Pacific E. vanbrunti grouped with
the Diadema geminate species pair and the 2 Carib-
bean Echinometra species grouped separately. Pro-
vided that both evolutionary history and environ-
ment contribute to the composition of echinoid
bacterial communities, the known history of the gem-
inate species can shed light on whether symbionts

have a deep common history with the host (e.g. co-
speciation; Peek et al. 1998, Funkhouser & Borden-
stein 2013, Moeller et al. 2016). Moreover, this may
also determine whether novel symbiotic partnerships
formed following the emergence of the Isthmus of
Panama (Lessios 2008, O’Dea et al. 2016).

Two potential candidates that most closely mir-
rored host evolution or environmental differences
are the Oxyphotobacteria and Kistimonas. Oxypho-
tobacteria are a group of cyanobacteria that perform
oxygenic photosynthesis (Soo et al. 2017). In our
data, this bacterial class was, on average, ~4−5 times
as abundant in the Caribbean Echinometra than in
the Pacific E. vanbrunti. The Caribbean is oligotro-
phic relative to the eastern Pacific. This environmen-
tal difference has been hypothesized to drive the
evolution of a number of life history traits that are
presumed to be adaptations for life in a lower-pro-
ductivity environment (Lessios 2008). Multiple echin-
oderms living in oligotrophic seas have been
observed to associate with bacterial lineages known
to perform photosynthesis (Bosch 1992, Galac et al.
2016, Carrier et al. 2018, Carrier & Reitzel 2020);
however, the function of these bacteria remains
unknown. Kistimonas is a recently identified bacter-
ial lineage that is most closely related to Marinobac-
ter and Endozoico monas (Choi et al. 2010, Lee et al.
2012, Ellis et al. 2019), the latter of which is known to
contribute to the health of marine sponges and corals
(Neave et al. 2016). The apparent abundance of this
bacterium on the eggs of D. antillarum, but not D.
mexicanum, may suggest that Kistimonas are of
functional importance.

Taken together, the data presented herein support
the hypothesis that the bacterial communities of
echinoid geminate species pairs have diverged since
the formation of the Isthmus of Panama. Moreover,
the relatedness of these bacterial communities sug-
gests that this divergence is a product of both the
evolutionary history of the host and of subsequent
evolution in their respective environments. The func-
tional importance of these bacterial communities
and, consequently, whether they are adapted for
each oceanographic regime, remain open questions
(Wilkins et al. 2019). Determining whether perform-
ance is enhanced under different environments may
be addressed by profiling what genes these bacteria
have and the conditions under which they are
expressed (Moitinho-Silva et al. 2014, Slaby et al.
2017, Domin et al. 2018, Carrier & Reitzel 2020). The
function and physiology of these bacterial symbionts
may then be determined by isolating and culturing
individual taxa. Add-back experiments may then be
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used to determine the importance of each bacterium
to the echinoid host (Moitinho-Silva et al. 2014, Slaby
et al. 2017, Domin et al. 2018, Carrier & Reitzel 2020).
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