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1.  INTRODUCTION

Marine top predators are a crucial component of
the marine food web and play a key role in ecosys-
tem structure and function (Coleman & Williams
2002, Roman et al. 2014). These animals forage in a
highly dynamic environment, and their foraging

strategies largely depend on the spatiotemporal dis-
tribution of their prey (Croxall et al. 1985, Weimer-
skirch et al. 1994). As such, the importance of identi-
fying productive foraging areas of marine predators,
and their association with oceanographic features
and metrics of biological productivity, has increas-
ingly been recognized (Guinet et al. 2001, Lea &
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Dubroca 2003, de Bruyn et al. 2009, Wakefield et al.
2009, Kirkman et al. 2016b, Pistorius et al. 2017). This
spatial information is fundamental for ecosystem-
based management, informing bycatch reduction
measures, reducing competition with fisheries and
developing specific area-based management meas-
ures (Lombard et al. 2007, Corrigan et al. 2014, Hays
et al. 2016, 2019, Augé et al. 2018). In addition, mar-
ine top predators are often advocated as sentinels,
with knowledge of their foraging behaviour consid-
ered useful as a proxy to measure environmental
change (Hindell et al. 2003, Hazen et al. 2019). This
is especially relevant for land-breeding predators
such as seals and seabirds, many of which must bal-
ance foraging trips at sea with regular periods of off-
spring attendance at breeding colonies (Shaffer et al.
2003, Costa 2007, Harding et al. 2007). These atten-
dance patterns thus restrict their distributional range
and may increase their sensitivity to environmental
change (Fretwell & Trathan 2019).

Ecological studies using animal-borne data loggers
have proven valuable towards identifying areas of
ecological importance which may warrant protection
(Raymond et al. 2015, Reisinger et al. 2018, Hindell et
al. 2020) and for the purpose of monitoring changes
in the marine environment (Biuw et al. 2010, McIn-
tyre et al. 2011, Hoskins & Arnould 2014). However,
despite a marked increase in the number of tracking
studies involving seals and seabirds in recent years,
information is still lacking for many species. In addi-
tion, foraging behaviour has often been inferred from
the study of a small component of a population (e.g.
individuals from a single breeding colony), which
may not be representative of the entire population
(Wege et al. 2016). This is of concern, as conspecifics
inhabiting geographically distinct breeding areas are
often subject to different oceanographic conditions
which may drive variability in foraging behaviour.
Indeed, there is increasing evidence of geographic
differences in the foraging strategies (Lea et al. 2008,
Staniland et al. 2010, Hückstädt et al. 2016), habitat
use (Lowry et al. 2000, Robson et al. 2004, Baylis et al.
2018) and diet or trophic ecology (Drago et al. 2016,
Handley et al. 2017, de Lima et al. 2019) within mar-
ine top predator species.

The Cape fur seal Arctocephalus pusillus pusillus
is endemic to southern Africa and breeds at numer-
ous colonies extending from the south coast of
Angola to the southeast coast of South Africa (Kirk-
man et al. 2013). The total population size is esti-
mated at 1.5−2 million individuals, the majority of
which are concentrated within the Benguela Ecosys-
tem (Benguela) (Kirkman et al. 2007). The species

comprises a major proportion of southern Africa’s
marine predator biomass, previously estimated to
consume ca. 2 million tonnes of prey per year (Punt et
al. 1995). While Cape fur seals are generalist feeders,
the bulk of their diet consists of commercially impor-
tant species such as sardine Sardinops sagax, an -
chovy Engraulis encrasicolus, Cape horse mackerel
Trachurus trachurus capensis, hake (Merluccius
spp.), West Coast rock lobster Jasus lalandii and
chokka squid Loligo vulgaris reynaudii (de Bruyn et
al. 2003, 2005, Mecenero et al. 2006a,b, Huisamen et
al. 2012, Connan et al. 2014). The composition of
their diet also varies both spatially (David 1987, de
Bruyn et al. 2003, Mecenero et al. 2006a) and tempo-
rally (de Bruyn et al. 2005, Mecenero et al. 2006b).
Although the diet of Cape fur seals has been rela-
tively well researched, surprisingly little is known
about their foraging behaviour, including horizontal
and vertical utilisation of the marine environment. A
single study has reported the at-sea movements of
foraging Cape fur seals, focussing on the Namibian
component of the population (Skern-Mauritzen et al.
2009). In addition, published information on Cape fur
seal diving behaviour is available for 2 individuals
followed in 1977 (Kooyman & Gentry 1986) and 32
individuals in 2006−2008 (Kirkman et al. 2019), from
a single breeding colony on the northwest coast of
South Africa.

Continuation and enhancement of scientific moni-
toring of Cape fur seals has been petitioned for,
partly based on increasing concerns over competitive
interactions between seals and fisheries, as well as
the need to establish indicators of ecosystem change
in the Benguela (Kirkman et al. 2011). Baseline data
on at-sea distribution and behaviour is a prerequisite
for identifying potential overlap and interactions
with fisheries and monitoring the ecological responses
of Cape fur seals to environmental change. The latter
is especially relevant given the vulnerability of the
Benguela to climate change (O’Toole et al. 2001,
Jarre et al. 2015) and potential effects of overfishing
throughout the system (Coetzee et al. 2008, Roux et
al. 2013). Shifts in the distribution of several impor-
tant foraging species, including sardine, anchovy
and West Coast rock lobster have already been doc-
umented throughout the Benguela (Roy et al. 2007,
Coetzee et al. 2008, Blamey et al. 2012). Several stud-
ies have identified considerable implications of these
shifts on the demographics and foraging ecology of
seabird species including the Cape gannet Morus
capensis (Pichegru et al. 2007, Grémillet et al. 2008),
African penguin Spheniscus demersus (Crawford et
al. 2011, Sherley et al. 2014) and Cape cormorant
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Phalacrocorax capensis (Crawford et al. 2016). For
these and other seabird species, consequences have
been more detrimental for colonies in Namibia and
on South Africa’s west coast, while some colonies on
South Africa’s southeast coast may have benefited
from the eastward shift in prey species, particularly
anchovy (Crawford et al. 2009, 2014, Green et al.
2015, Grémillet et al. 2016). However, in the absence
of baseline information on key attributes of the forag-
ing ecology of Cape fur seals, the effects of these
prey shifts on fur seals remains poorly understood.

Throughout its South African distribution, the
Cape fur seal population is subjected to a wide range
of oceanographic conditions, with substantial differ-
ences between the west and southeast coasts. The
west and southwest portion of their range in South
Africa is influenced predominantly by the cold,
nutrient-rich Benguela Current, which is character-
ized by high levels of wind-driven upwelling (Hutch-
ings et al. 2009, Kirkman et al. 2016a). In contrast,
much of the south and southeast coast of South Africa
is largely under the influence of the warmer Agulhas
Current (Hutchings et al. 2009, Kirkman et al. 2016a).
While this region is generally less productive, signif-
icant upwelling still occurs at localized sites (i.e.
capes and shelf edges) (Goschen et al. 2012, 2015,
Kirkman et al. 2016a). In addition to the physical
oceanographic characteristics, the width of the conti-
nental shelf also varies substantially along the South
African coast (Dingle & Rogers 1972). Therefore,
given the varying conditions across the range of
Cape fur seals in South Africa, site-specific foraging
strategies may be expected, highlighting the need
for a range-wide assessment of Cape fur seal forag-
ing behaviour.

In this study, we considered 3 geographically sepa-
rate Cape fur seal colonies with divergent adjacent
oceanographic conditions, and investigated intra-
and inter-colony variation in (1) at-sea movements,
(2) marine habitat selection and utilisation and (3)
diving behaviour. This was done to obtain a better
understanding of behavioural plasticity in Cape fur
seals, and accordingly, their capacity to adapt to
future ecosystem changes driven by climate change
or other impacts, and to identify important habitat to
inform spatial management planning and decision-
making concerning Cape fur seals. Lactating adult
females were the focus of the study as they provide
a good indication of local feeding conditions during
periods of central-place foraging while provision-
ing pups, whereas other sex and age classes are free
to roam in search of optimal resources (Kirkman et
al. 2019).

2.  MATERIALS AND METHODS

2.1.  Study sites and data collection

Data were collected in June−September of 2014
and 2015 at 3 Cape fur seal breeding colonies: Klein-
see; Seal Island (False Bay); and Black Rocks (Algoa
Bay) (see Fig. 1). The mainland colony at Kleinsee is
located on South Africa’s west coast and hosts the
largest South African Cape fur seal population (esti-
mated annual pup production of 50 000−80 000), while
False Bay, situated on the southwest coast, hosts the
second-largest island breeding population (estimated
annual pup production of 14 000−19 000) (Kirkman
et al. 2007). In contrast, the colony at Black Rocks,
located within a national park on the southeast coast,
is spatially restricted owing to the small size of the
island and, thus, significantly smaller (estimated
annual pup production of 300−500) (Kirkman et al.
2007).

At each study site, female Cape fur seals nursing
pups were selected at random and captured using a
modified hoop net based on the design of David et al.
(1990), following which animal-borne data recording
devices were deployed. At Kleinsee and False Bay,
29 animals were anaesthetised using isoflurane by
means of a portable vaporizer (Stinger, Advanced
Anaesthesia Specialists; Gales & Mattlin 1998). Once
anaesthetised, individuals were removed from the
net, weighed on a platform with a suspension scale
(±0.5 kg) and several measurements, including stan-
dard length, axillary girth and fore-flipper length,
were taken using a fibreglass tape measure (±0.5
cm). At Black Rocks, the devices were fitted on ani-
mals through the open dorsal aperture in the net
while animals were restrained within the hoop net.

Individuals captured at Kleinsee were instru-
mented with either a GPS dive-behaviour logger
(MK 10, Wildlife Computers) or a combination of a
FastLoc GPS logger (Sirtrack) and a dive-behaviour
recorder (MK9, Wildlife Computers). Individuals at
False Bay were instrumented with Argos-linked
FastLoc GPS-dive behaviour loggers (Splash F297A,
Wildlife Computers) and individuals at Black Rocks,
with platform terminal transmitters (PTTs; SPOT-
287C, Wildlife Computers). At all sites, devices were
attached to the dorsal mid-line pelage of the animal
using a quick-setting epoxy (Araldite AW2101, CIBA -
GEIGY). Following deployment procedures, the ani-
mals were allowed to recover from anaesthesia,
released back into the colony and monitored until
full recovery and resumption of normal behaviours.
All devices used in the present study constituted
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<1% of the body mass of sampled individuals. As
such, and based on findings from previous studies
(McMahon et al. 2008, Field et al. 2012), no adverse
influences on individual performance or survival
were expected.

Females at Kleinsee were recaptured after they
returned from a single foraging trip. Animals were
located within the colony with the assistance of VHF-
based tracking, with a VHF transmitter (Sirtrack) fit-
ted to study animals during deployment. Devices
were removed by cutting the fur beneath the devices
using a scalpel. Owing to logistical constraints, in -
cluding the offshore location of the colonies and risk
of disturbance, individuals at False Bay and Black
Rocks could not be recaptured and, thus, devices
continued to transmit data until the battery failed or
the devices moulted off.

2.2.  Data processing and statistical analyses

2.2.1.  Location data

All data processing and statistical analyses were
conducted in R version 3.5.1 (R Core Team 2018).
GPS devices deployed at Kleinsee were programmed
to log location data at 10 min intervals. At False Bay,
PTTs were programmed to transmit location data to
the CLS Argos system every 90 s while at sea. This
produced a complementary data set comprising both
Fastloc GPS and ARGOS locations, both of which
were incorporated into the study to increase the spa-
tiotemporal coverage. PTTs deployed at Black Rocks
were programmed to transmit location data at 90 s
intervals.

Prior to filtering, all ARGOS locations of class Z
were removed from the data. The remaining ARGOS
and GPS locations were then processed following the
methods of Austin et al. (2003), using a 3-stage filter-
ing algorithm implemented with the package ‘dive-
Move’ (Luque 2007). Firstly, the filter removed loca-
tions that required speeds >3 m s−1 to travel to the 4
nearest neighbouring points. Secondly, the filter
implemented a simple forward/backward speed fil-
ter (McConnell et al. 1992) with a speed threshold of
3 m s−1. Finally, the remaining ARGOS locations were
passed through the third stage of the filter which
removed locations exceeding distances from the pre-
vious location, based on a user-defined threshold.
Threshold values of 30.6 and 45.24 km were speci-
fied for False Bay and Black Rocks, respectively, cor-
responding to the 95th percentile of inter-location dis-
tances calculated for ARGOS locations of classes 1, 2

and 3. The use of this filtering method permitted the
inclusion of both GPS and ARGOS locations, subse-
quently allowing for consistency across sites.

A foraging trip was defined as the period at sea
between departure from and arrival back at the
breeding colony. Where available, haul out and dive
information was used to identify trip start and end
times. However, where necessary, arrival/departure
times were estimated from the nearest at-sea loca-
tion, based on the average travel speed during the
individual’s foraging trip. Only complete trips, where
individuals returned to the breeding colony, were
considered for all further analyses. Following Skern-
Mauritzen et al. (2009), at-sea periods of less than
24 h were also excluded, as these short trips may rep-
resent periods of thermoregulation and not foraging.
Foraging tracks were then linearly interpolated using
the package ‘adehabitatLT’ (Calenge 2006) to pro-
vide locations at an even fix frequency of 10 min.

For each filtered track, trip duration (d), total dis-
tance travelled (km), maximum distance attained
from the colony (km) and bearing of the distal point
(°) were calculated using the geosphere package
(Hijmans 2017). Foraging trip metrics were com-
pared between colonies by employing a linear mixed
effects (LME) modelling framework to accommodate
multiple foraging trips per individual using the pack-
age ‘lme4’ (Bates et al. 2015). Each model included
colony as a fixed effect and individual ID as a random
effect to account for repeated measures. Barring dis-
tal bearing, all foraging trip metrics were left-skewed
and were therefore log-transformed prior to inclu-
sion in the LMEs. To validate the LMEs, quantile−
quantile plots were used to assess normality of resid-
ual spread, and model residuals were plotted against
fitted values to assess homogeneity of variance.

Individuals are expected to spend more time in
areas where search behaviour and foraging effort
is concentrated (Péron et al. 2012). Therefore, time
spent per grid cell was used as a spatial proxy of
foraging distribution. For each interpolated track,
the number of locations per square 0.05° grid cell
(selected to aggregate several seal locations) were
calculated using the package ‘raster’ (Hijmans 2018)
and converted to the proportion of the foraging trip
spent per grid cell. For individuals tracked over
multiple trips, the proportion of time per grid cell
was calculated as the total proportion of time at-sea
across all foraging trips to ensure that individuals
contributed equally to the sample. Finally, the pro-
portion of time per grid cell was summed across
individuals to produce a single layer for each colony
grouping.
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Oceanographic variables including depth, sea floor
slope and sea surface temperature (SST) have previ-
ously been identified as important determinants of
habitat use by marine predators (Reisinger et al. 2018,
Hindell et al. 2020). Therefore, as a broad assessment
of habitat use, data for each of these variables were
collated for the at-sea range of the Cape fur seals
from each colony. Depth data were obtained from the
GEBCO 15-arc second grid (https://www.gebco.net)
at 0.004° resolution, and used to calculate sea floor
slope by means of the ‘terrain’ function in the ‘raster’
package. Daily SST values were obtained from the
Multi-scale Ultra-high Resolution (MUR) SST data
set (https://coastwatch.pfeg.noaa.gov) at 0.01° reso-
lution. Environmental covariates were then spa-
tiotemporally matched to each real and interpolated
location. For each foraging trip, the proportion of
time associated with pre-determined classes of depth
(20 m), slope (0.5°) and SST (0.5°C) intervals was cal-
culated. Environmental covariates were compared
between colonies using LMEs with depth, sea floor
slope and SST modelled in response to colony as a
fixed effect. To account for repeated measures, a ran-
dom effect of trip nested within individual was in -
cluded in each model.

To determine habitat selection, knowledge of the
habitat utilised in relation to potentially available
habitat is required. Presence−pseudoabsence ap -
proaches have been used effectively for marine pred-
ators (Pistorius et al. 2017, Reisinger et al. 2018, Hin-
dell et al. 2020) and were adopted in the present study.
Following the methods of Raymond et al. (2015), 20
pseudo-tracks were simulated for each real track
using a first-order vector autoregressive model, imple-
mented using the ‘availability’ package (Raymond et
al. 2016). Simulated pseudo-tracks were bound by a
land mask, and characteristics of the real tracks were
maintained through constraints on sampling fre-
quency, distances, turning angles and departure and
arrival locations. Locations of each pseudo-track
were then spatiotemporally matched with the above
environmental covariates.

The influence of depth, sea floor slope and SST on
the probability of occurrence (presence) in relation to
available habitat (pseudo-absence) were investigated
using a binomial generalized additive model (GAM).
The model fitted a binomial response variable of
presence (1) represented by each real location and
absence (0) represented by each pseudo-location.
Response variables were modelled in relation to the
environmental covariates fitted as smooth predictor
effects, with separate splines fitted for each colony
grouping. While it is possible to account for repeated

measures of individuals through the use of general-
ized additive mixed models (GAMMs), the incorpo-
ration of a random effects structure into the present
study resulted in the model failing to converge. In
addition, as the response intercept in question repre-
sents a constant ratio of presence (observed loca-
tions) to absence (simulated locations), including a
random effects structure to account for individual
variability presents little advantage (Raymond et al.
2015). Therefore, standard GAMs were used for
habitat selection analysis.

2.2.2.  Diving data

Data on dive behaviour were collected for females
from Kleinsee and False Bay. At Kleinsee, dive behav-
iour data, obtained through archival dive re corders,
provided complete dive records for each foraging trip
at a resolution of 1 or 5 s. Dive data were corrected
for depth drift, and summary statistics for each dive
were produced using the ‘diveMove’ package (Luque
2007). In contrast, devices used at False Bay were
programmed to store and transmit (at user-defined
intervals) summaries of the diving data at 0.5 m
depth resolution. To account for these differences,
comparisons of diving behaviour were limited to the
maximum dive depth and the probability of benthic
diving.

Only dives greater than 4 m in depth were consid-
ered for further analysis (Kirkman et al. 2019). Dives
were classified as either benthic or pelagic using a
custom written, 2-stage routine based on the dive
depth to bathymetric depth ratio (Baylis et al. 2015)
and a modified version of the intra-depth zone (Trem-
blay & Cherel 2000). Firstly, the location of each dive
was determined based on the nearest 10 min location
linearly interpolated along the trajectory. Bathymet-
ric depth data were then extracted for each dive loca-
tion and the ratio of dive depth was divided by bathy-
metric depth. Secondly, the routine compared the
depth of each dive to the depth of the previous and
following dive. Dives were classified as benthic if the
dive depth to bathymetric depth ratio was >0.9 (i.e.
max depth was within 10% of the sea floor), and if
the dive depth was within ±10% of either the previ-
ous or following dive, provided that the dives occurred
within 1 h of each other.

GAMMs were used to investigate the influence of
colony and time of day on diving behaviour using the
‘mgcv’ package (Wood 2015). Two separate GAMMs
were fitted, the first using dive depth as a response
variable and the second using a binomial response
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variable indicating whether a dive was pelagic (0) or
benthic (1). In each GAMM, colony grouping was fit-
ted as a categorical parametric coefficient, and time
of day (hour) was fitted as a smooth predictor with
separate splines fitted for each colony grouping.
To account for repeated measures across foraging
trips and individuals, a random effect structure
consisting of foraging trip nested within individual
was incorporated into the GAMM. A significance
threshold of α = 0.05 was assumed throughout, and
unless stated otherwise, all results are presented as
mean ± SE.

3.  RESULTS

At-sea distributions from 87 complete foraging
trips were obtained for 35 female Cape fur seals
between June and September of the respective study
years (Table 1; Table S1 in the Supplement at www.
int-res. com/ articles/ suppl/ m649 p201 _ supp .pdf). The
number of foraging trips per individual ranged from
1 to 13. While the inclusion of multiple trips per indi-
vidual may influence the results, preliminary analy-
ses using only the first trip for each individual were
not different from the results obtained when all trips
per individual where included. Therefore, to in crease
the temporal coverage, all foraging trips per individ-
ual were retained for further analyses. During longer
foraging trips of some of the females from the Klein-
see and False Bay colonies, haul-out behaviour at
sites away from the breeding colonies was frequently
recorded. One individual from Kleinsee hauled out at
the Buchu Twins seal colony (15 km south of Alexan-

der Bay) during 2014 and remained at this site for 4 d,
during which time she conducted 2 short trips to sea
lasting 1.8 and 2.4 d and covering distances of 80.9
and 144.3 km, respectively (Fig. S1A). During 2015,
another individual hauled out at the Strandfontein
Point seal colony (30 km south of Hondeklip Bay) for
1 d before returning to the breeding colony at Klein-
see (Fig. S1B). Females from False Bay often hauled
out at the Geyser Rock breeding colony, situated ap -
proximately 100 km southeast of False Bay (Fig. S1C),
with haul-out durations lasting between 7 and 22 h.
In all cases, haul-out periods on land were noted, and
all at-sea periods in between haul-outs were consid-
ered as part of a single foraging trip until the individ-
ual returned to the breeding colony. Cape fur seals
from the Black Rocks colony did not haul out else-
where during foraging trips.

3.1.  Foraging trip metrics and at-sea movements

Foraging trips of female Cape fur seals lasted
be tween 1.3 and 29.0 d, during which time indi-
viduals traversed distances of 38.2 to 1342.8 km and
reached maximum distances ranging from 13.7 to
335.8 km from the breeding colonies. For individu-
als from the Kleinsee colony, foraging trips were
slightly longer during 2015 (duration: 7.4 ± 1.1 d,
total distance: 412.3 ± 55.7 km) compared with
2014 (duration: 6.1 ± 1.03 d, total distance: 353.5 ±
60.1 km). However, these differences were not sta-
tistically significant (linear models, all p > 0.1,
Table S2), and data were pooled over the 2 years.

The effect of colony on foraging trip duration and
total distance travelled was not signif-
icant (LMEs, all p > 0.1), but there was
a significant influence on maximum
distance (LME, p < 0.05) and distal
bearing from the colony (LME, p <
0.001) (Table 2). Foraging trip dura-
tions and distances of Black Rocks
individuals were substantially shorter
than individuals from Kleinsee and
False Bay (Tables 1 & 2). However,
across all sites, there was a high
degree of variability among indivi -
duals. This was particularly evident
for the False Bay colony, where 2 of
the 5 individuals either remained in
False Bay or traversed short distances
(mean: 3.4 d, 138.4 km) to the neigh-
bouring bays, travelling close to shore
(Fig. S2B). The 3 remaining individu-
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                                                 Kleinsee               False Bay         Black Rocks

No. of trips                                     23                          38                       26
Duration (d)                              6.9 ± 0.6                8.8 ± 2.5             5.4 ± 0.9
Total distance (km)              389.3 ± 30.1         469.1 ± 136.4     260.5 ± 34    
Maximum distance (km)     137.4 ± 9.6          134.4 ± 37.9         81.2 ± 10.4
Distal bearing (°)                  250.7 ± 8.6          143.5 ± 4.9        148.2 ± 22.2  
No. of dives per trip           1134.6 ± 137.4       470.3 ± 100.1              na
Dive depth (m)                       88.9 ± 6.0             75.6 ± 26.9                na
Dive duration (min)                 2.9 ± 0.2                2.5 ± 0.5                  na
Proportion of benthic            0.35 ± 0.04            0.42 ± 0.1                  na

dives per trip
Depth (m)                             171.2 ± 10.1         125.5 ± 35.8       130.6 ± 31.9  
Mean sea floor slope (°)         0.2 ± 0.02              0.5 ± 0.1             0.9 ± 0.3
Mean SST (°C)                       13.6 ± 0.2             14.9 ± 0.5             18 ± 0.3

Table 1. Summarized foraging and dive metrics, as well as values of environmen-
tal variables encountered along trajectories of female Cape fur seals tracked
from Kleinsee (n = 23 females), False Bay (n = 5) and Black Rocks (n = 7). 

Values are presented as mean ± SE; na: parameters not available 

https://www.int-res.com/articles/suppl/m649p201_supp.pdf
https://www.int-res.com/articles/suppl/m649p201_supp.pdf


als undertook longer foraging trips (12.5 ± 2.9 d) and
travelled substantial distances (688.5 ± 146.0 km),
with foraging trip trajectories extending over much
of the Agulhas Bank (Fig. S2A). Most animals from
Kleinsee travelled to the west and southwest of the
colony, al though there was substantial variation
between individuals (range: 45−243°; Table 1). Indi-
viduals from the False Bay population travelled
mainly to the east and southeast of the colony (range:
99−189°). Distal bearings of animals from Black
Rocks varied widely between individuals (range:
60−236°), with most travelling either to the southwest
or east of the colony. Individuals tracked over multi-
ple trips from False Bay and Black Rocks were rela-
tively consistent in their durations, distances and
headings across foraging trips (Table S1).

The at-sea movements from all 3 colonies were
confined mainly to shelf (<200 m) and shelf-slope
waters (<1000 m) (Fig. 1). The total at-sea range of
Cape fur seals (sum of all 0.05° grid cells used) from
Kleinsee, False Bay and Black Rocks covered an area
of 4545, 4825 and 1975 km2, respectively. For animals
from Kleinsee, several grid cells incorporating a high
proportion of time at-sea were associated with the
shelf break (200 m) and deeper waters of the shelf-
slope (200− 1000 m) (Fig. 1). Individuals also spent a
high proportion of time over the shelf in waters of

100− 200 m directly to the west of the
colony (Fig. 1). For False Bay individu-
als, the at-sea range was spread
mainly southeastward over the Agul-
has Bank (Fig. 1). Distribution patterns
were similar to those of Kleinsee ani-
mals, with several ‘hotspots’ associated
with the deeper waters of the shelf,
shelf break and, to a lesser ex tent, the
shelf-slope waters (Fig. 1). The eastern
section of False Bay and the neigh-
bouring Walker Bay also appeared to
be an important foraging area (Fig. 1).
This was, however, almost exclusively
ac counted for by the 2 in dividuals that
re mained close to the colony and trav-
elled between these 2 bays (Fig. S2).
The at-sea range of the Black Rocks
animals was substantially smaller com-
pared with individuals from the Klein-
see and False Bay colonies, with sev-
eral ‘hotspots’ associated with the shelf
break situated south of Cape Recife.
However, individuals from Black Rocks
also spent a large proportion of time in
shallower waters (<100 m) on the shelf

(in close proximity to the colony) but with minimal
time spent within Algoa Bay (Fig. 1).

3.2.  Habitat use and habitat selection

Seals moved over depths down to 1456 m and sea
floor slopes up to 14°, with encountered SSTs rang-
ing be tween 11 and 22°C. Available habitat as esti-
mated by simulated locations ranged broadly at
all colonies for depth (down to 4743 m), sea floor
slope (0− 52°) and SST (11−23°C). Analysis of habi-
tat selection (presence) in relation to availability
(pseudo-absence) revealed all fitted slopes to be
significant (GAM, p < 0.001) (Table 3).

Depths encountered varied significantly (LME,
p < 0.05) between colonies (Tables 1 & 2) with ani-
mals from Kleinsee, on average, encountering deeper
areas more often than individuals from False Bay and
Black Rocks (Tables 1 & 2). In addition, inter-colony
differences in the proportion of time spent within
pre-determined depth classes were apparent (Fig. 2).
Individuals from Kleinsee spent the greatest propor-
tion of time at sea in relatively deep waters ranging
between 140 and 360 m (Fig. 2). Some individuals
from the False Bay colony used similar depth classes
to Kleinsee animals, on average spending a large
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Response                         Predictor             CE        SE       df         t           p 

Duration                      Intercept (KS)        1.9       0.1     68.4    13.5   <0.001
                                              FB                  −0.1      0.2     28.1    −0.3     0.77
                                              BR                  −0.4      0.2     40.5    −1.9     0.06
Total distance             Intercept (KS)        5.9       0.2     64.0    38.7   <0.001
                                              FB                  −0.2      0.3     30.5    −0.8     0.44
                                              BR                  −0.5      0.3     41.6    −1.9     0.06
Maximum distance     Intercept (KS)        4.9       0.1     62.7    33.7   <0.001
                                              FB                  −0.4      0.3     30.1    −1.4     0.18
                                              BR                  −0.6      0.3     40.9    −2.3     0.02
Distal bearing             Intercept (KS)      250.7      9.4     41.1    26.6   <0.001
                                              FB              −107.5   19.0     21.6    −5.7   <0.001
                                              BR              −107.1   17.7     27.9    −6.0   <0.001
Bathymetric depth      Intercept (KS)        5.0       0.1     36.2    45.7   <0.001
                                              FB                  −0.5      0.2     27.9    −2.1   <0.05  
                                              BR                  −0.4      0.2     31.0    −1.9     0.05
Sea floor slope            Intercept (KS)        −1.9       0.1     42.1  −19.7  <0.001
                                              FB                  0.7       0.2     19.6    3.7   <0.001
                                              BR                  1.0       0.2     26.5    5.5   <0.001
Sea surface                 Intercept (KS)        2.6     0.01   43.5  181.7  <0.001

temperature                       FB                  0.1     0.03   22.9    3.1   <0.001
                                              BR                  0.3     0.02   29.7    10.4   <0.001

Table 2. Summary results of the linear mixed effects models for the effect of
colony on foraging trip metrics and environmental covariates encountered
during foraging trips of female Cape fur seals. KS: Kleinsee, FB: False Bay, BR: 

Black Rocks. Significant p-values (p < 0.05) are highlighted in bold
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proportion of time in waters ranging from 140 to
240 m. However, there was also a substantial propor-
tion of time spent over shallower depth classes (20−
80 m). While deeper waters of over 1400 m were
encountered by Black Rocks individuals, very little
time was spent in waters deeper than 140 m, with a
clear peak over depths between 80 and 120 m
(Fig. 2). Selection for depth in relation to availability

was similar across colonies, with animals selecting
depths shallower than 500 m and with the probability
of occurrence decreasing substantially between 500
and 1000 m (Fig. 3).

Sea floor slope varied significantly between col -
onies (LME, p < 0.001), with individuals from Black
Rocks generally encountering steeper sea floor slopes
compared to individuals from Kleinsee and False Bay
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Fig. 1. (A) Study sites in South Africa and (B–D) the proportion of time (PT) spent per 0.05° grid cell for Cape fur seals from (B)
Kleinsee, (C) False Bay and (D) Black Rocks. Study colonies are represented by a green dot and all other South African Cape
fur seal breeding colonies by black dots. Bays and headlands are represented by orange dots. In (A), isobaths between 200 and
5000 m are shown in 200 m intervals. In (B−D), isobaths representing the 100 m (black lines), 200 m (dark grey lines) and 

1000 m (light grey lines) depth contours are shown



(Table 2). However, the use of sea floor slope classes
was similar across colonies, with the greatest propor-
tion of time spent over flat bottom areas with slopes
of <1° (Fig. 2). Similarly, across colonies, animals
showed a higher selection for flat bottom areas with

the probability of occurrence peak-
ing at slope values of <5° (Fig. 3).

There was a significant differ-
ence in the SST between colonies
(LME, p < 0.001) (Table 1), with
encountered SST values increasing
along the coast from Kleinsee to
Black Rocks (Table 2). Kleinsee
individuals spent a high proportion
of time associated with SSTs rang-
ing from 13 to 14.5°C with a second
peak around 16°C (Fig. 2). Al -
though less marked for False Bay
seals, slight peaks in the proportion
of time were apparent around 13,
15.5 and 18°C (Fig. 2). Individuals
from Black Rocks on average spent
a high proportion of time associ-
ated with temperatures in the
colder end of the recorded range
(16− 18°C), although some individ-

uals spent a substantial proportion of time in warmer
waters, in excess of 20°C (Fig. 2). While availability
and use of SST varied substantially among sites, ani-
mals tended to select temperatures towards the
upper end of the range at each of the 3 colonies
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Response         Parametric coefficients Approximate 
Predictor                                      Est          SE           z significance of 

                                                                                       smooth terms
                                                                                                        Edf              F

Probability of occurrence
Intercept                                  −2404.3    126.9     −18.95             −                −
Depth:KS                                       −             −             −                7.6         12883.8
Depth:FB                                       −             −             −                8.1         3313.3
Depth:BR                                       −             −             −                7.2         792.9
Sea floor slope:KS                         −             −             −                5.5         1296.6
Sea floor slope:FB                         −             −             −                5.0         127.4
Sea floor slope:BR                         −             −             −                8.9         5347.2
Sea surface temperature:KS        −             −             −                7.4         1243.8
Sea surface temperature:FB        −             −             −                8.9         20243.0
Sea surface temperature:BR        −             −             −                8.7         2075.3

Table 3. Results from the generalized additive models for the influence of depth (m),
sea floor slope (degrees) and sea surface temperature (°C) on the probability of oc-
currence (presence) in relation to the potential habitat available (pseudo-ab-
sence) of female Cape fur seals at Kleinsee (KS), False Bay (FB) and Black Rocks
(BR). Dashes specify where either parametric coefficients or smooth terms were not
fitted for a particular predictor effect. All smooth terms were significant (p < 0.05)

Fig. 2. Mean (±SE) proportion of foraging trips associated with pre-determined classes of (A) depth (20 m), (B) sea floor
slope (0.5°) and (C) sea surface temperature (0.5°C) for female Cape fur seals from Kleinsee (red), False Bay (blue) and 

Black Rocks (green)
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(Fig. 3). For Kleinsee individuals, the probability of
occurrence increased around 16°C, while peaks
were apparent at False Bay between 17 and 19°C.
For individuals at Black Rocks, marginal peaks in
the probability of occurrence were observed at both
colder (<17°C) and warmer (20−22°C) temperatures.

3.3.  Diving behaviour

A total of 42 325 dives were re corded for the 23
individuals from Kleinsee (n = 26 095) and the 5 indi-
viduals from False Bay (n = 16 230) (Table 1). The
number of dives recorded per trip ranged from 382 to
2890 (86−279 dives d−1) and from 50 to 1057 (15−239
dives d−1) for individuals from Kleinsee and False
Bay, respectively. For seals from Kleinsee, the deep-
est dive depth and longest dive duration recorded
were 361 m and 8.1 min, respectively, while for seals
from False Bay, the deepest dive depth and longest
dive duration recorded were 411.5 m and 8.8 min.
Most dives occurred at night (18:00 to 06:00 h SAST),
although the percentage of nocturnal dives was
higher for seals from Kleinsee (63%) than for those
from False Bay (38%). Benthic dives accounted for
32% of all recorded dives, but were present for all
individuals. While individuals from Kleinsee dived
slightly deeper and performed a greater proportion
of benthic dives during 2014 (depth: 90.7 ± 11.3, per-
centage benthic dives: 42 ± 9%) compared with 2015
(depth: 87.7 ± 7.1, percentage benthic dives: 29 ±
4%), these differences were not significant (LME, p >
0.1) (Table S2), and data were pooled for analysis of
dive metrics.

Dive depth and the probability of benthic diving
did not vary significantly among colonies (Table 3).
Indeed, mean dive depths and the average propor-
tion of benthic dives per trip were remarkably sim-
ilar between Kleinsee and False Bay animals, but
each parameter varied substantially between indi-
viduals (Kleinsee: mean dive depth: 13.8−146.7 m,
percentage benthic dives: 4−97%, False Bay: mean
dive depth: 29.2−201.9 m, percentage benthic dives:
3−94%). For the 2 individuals from False Bay that
undertook short trips within the bay and to neigh-
bouring bays, dives were consistently shallower
(43.1 ± 11.5 m), and were mainly benthic (62 ±
4.3%). In contrast, mean dive depths (96.8 ± 14 m)
and the percentage benthic diving (27.6 ± 4.9%)
for the 3 individuals from False Bay that travelled
further over the Agulhas Bank were more similar to
those recorded at Kleinsee. At both sites, foraging
trips with a higher proportion of benthic dives
were, on average, shorter than trips comprising
more pelagic dives (LMEs, all p < 0.05, Table S3,
Fig. S3). A diel pattern in diving behaviour was
also evident, with time of day significantly influ-
encing both dive depth and the probability of ben-
thic diving (GAMM, all p < 0.001) (Table 4). In gen-
eral, dive depths and the probability of benthic
diving were greater during daylight hours (06:00−
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Fig. 3. Results of the generalized additive model for the in-
fluence of (A) depth (m), (B) sea floor slope (°) and (C) sea
surface temperature (°C) on the probability of occurrence
(presence) in relation to available habitat (pseudo- absence)
of female Cape fur seals from Kleinsee (red), False Bay
(blue) and Black Rocks (green). Shaded areas represent 

SE estimates from the model



18:00 h SAST), although the trend
was more distinct and showed less
variability across individuals from
Klein see compared to those from
False Bay (Fig. 4).

4.  DISCUSSION

Information on the at-sea distribu-
tion and behaviour of marine preda-
tors is useful for informing ecosystem-
based management and predicting the
response of species to future environ-
mental changes (McGowan et al. 2017,
Arthur et al. 2018, Hays et al. 2019).
This study provides the first detailed
assessment of at-sea movement and
habitat use of Cape fur seals from 3
different sites in South Africa. Results
reveal that the foraging ranges of

females from all sites were generally limited to the
shelf (up to 200 m) and shelf-slope waters (up to 1000
m). However, geographic differences in distributions
and habitat use were apparent, which likely in -
dicates the variability in local foraging conditions
and habitat availability. In addition, this study com-
pared the dive behaviour of individuals from 2 of
these colonies and found little difference in dive
depth and the proportion of benthic dives between
study sites, although substantial differences were
apparent between individuals from both sites. Diel
variation in diving parameters was apparent at both
study sites.

4.1.  Foraging trip metrics and at-sea movements

Foraging trip metrics of Cape fur seals recorded in
the present study varied widely among individuals at
each colony. However, mean trip duration and dis-
tances across colonies were within the winter range
previously recorded for lactating females of other
temperate latitude fur seal species (Harcourt et al.
2002, Hoskins et al. 2015, 2017). During this time,
female fur seals are central-place foragers and gen-
erally limited in their at-sea distribution. Individuals
from Black Rocks, on average, undertook shorter for-
aging trips compared with animals from Kleinsee
and False Bay. For all colonies, movements were con-
fined to the shelf, shelf-break and shelf-slope. How-
ever, the Kleinsee and False Bay populations ap -
peared to spend a relatively high proportion of time
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Response Parametric coefficients Approximate              p
Predictor                   Est        SE         z significance of 

                                                                   smooth terms
                                                                                   Edf         F

Dive depth
Intercept (KS)           93.1       6.7      14.0                 −          −              <0.001
FB                            −21.9     14.5     −1.5                 −          −                0.13
Hour:KS                      −           −          −                  8.9     2374.3          <0.001
Hour:FB                       −           −          −                  8.6      157.6           <0.001

Probability of benthic diving
Intercept (KS)           −1.1       0.3      −3.2                 −          −              <0.01  
FB                              0.3       0.7       0.5                  −          −                0.60
Hour:KS                      −           −          −                  8.9      700.6           <0.001
Hour:FB                       −           −          −                  8.7      139.3           <0.001

Table 4. Results from the generalized additive mixed models for the influence
of colony grouping and time of day on dive depth and the probability of ben-
thic diving for female Cape fur seals from Kleinsee (KS) and False Bay (FB).
Dashes specify where either parametric coefficients or smooth terms were
not fitted for a particular predictor effect. Significant p-values (p < 0.05) are 

highlighted in bold

Fig. 4. Results of the generalized additive mixed models for
the influence of time of day on (A) dive depth and (B) the
probability of benthic diving of female Cape fur seals from
Kleinsee (red) and False Bay (blue). Lighter shaded bands
represent standard error estimates from the models; gray 

background shading indicates night time
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over the deeper portion of the shelf, and in particular
over the shelf-break and shelf-slope waters. This is
typical of epipelagic foragers, which forage closer to
the surface and target areas and features of high
prey concentration (Guinet et al. 2001, Page et al.
2006, de Bruyn et al. 2009). In comparison, the distri-
bution of the Black Rocks animals was more restricted
to the shallower shelf region closer to the colony,
although several apparent hotspots were associated
with the shelf break and slope south of Cape Recife,
an area of known localized upwelling (Goschen et al.
2015).

Geographic differences in foraging behaviour and
distribution have previously been documented in
other otariid species (Staniland et al. 2010, Baylis et
al. 2018) and for Cape fur seals breeding in Namibia
(Skern-Mauritzen et al. 2009). There are several pos-
sible explanations for such differences between breed-
ing sites. For central-place foraging marine preda-
tors, longer foraging trips and extensions in foraging
range are attributes thought to reflect poor local for-
aging conditions (e.g. Boyd et al. 1994, Pichegru et
al. 2007). It is possible that at Black Rocks, shorter
trips and smaller foraging ranges are a result of higher
quality local foraging conditions compared to condi-
tions at Kleinsee and False Bay colonies. Indeed, over
the past 2 decades, large-scale eastward shifts in the
distribution of several forage species, primarily an -
chovy, have been beneficial for several seabird col -
onies on the southeastern coast (Crawford et al. 2009,
2014). In addition, large proportions of anchovy have
previously been reported in the diet of Cape fur
seals at Black Rocks (Connan et al. 2014) and Rob-
berg (Huisamen et al. 2012), the closest neighbour-
ing col ony. However, given the lower and less pre-
dictable productivity characteristic of this sub-region
of the Benguela, it is unlikely that prey availability
alone is able to explain the shorter foraging trips and
more re stricted at-sea movements for the Black
Rocks colony.

A more likely explanation, perhaps, is that forag-
ing trip durations and distances reflect the availabil-
ity of suitable foraging habitat. While published in -
formation is limited, available evidence on Cape fur
seal foraging distributions suggest that individuals
feed predominantly over the continental shelf and
shelf-slope and features associated with this area
(David 1987, Skern-Mauritzen et al. 2009, present
study). As such, the broad continental shelf off Klein-
see and, particularly, the Agulhas bank southeast of
False Bay may provide more suitable foraging habi-
tat to Cape fur seals breeding at these colonies. In
contrast, the continental shelf and shelf-slope narrow

considerably towards the east and may thus restrict
the range of Cape fur seals breeding at Black Rocks.
Foraging trip metrics and movement patterns may
also be related to other oceanographic influences such
as current speeds, eddies and upwelling cells, which
vary substantially along the South African coast
(Roberson et al. 2017). Although the spatial distribu-
tion and foraging strategies of pinnipeds are often
related to environmental influences (Foo et al. 2019,
2020), other factors such as competition may also be
im plicated, particularly at smaller spatial scales (Wege
et al. 2019). Thus, the longer foraging trips observed
for animals from Kleinsee and False Bay could be
linked to higher levels of intra-specific competition at
these larger colonies and may reflect strategies of
resource partitioning (e.g. Staniland et al. 2011,
Wakefield et al. 2013).

Individuals from the False Bay colony appeared
to utilise 2 different foraging strategies, either re -
maining within False Bay and the neighbouring
Walker Bay, or travelling significantly further and
spending a large proportion of time over the Agul-
has Bank. Al though the sample size of animals for
this colony was small (n = 5), individuals were re -
markably consistent in their trip durations, dis-
tances travelled, distal bearings and at-sea distri-
bution. Within pinniped populations, the use of
multiple individual foraging strategies has been
documented for several species, including Gala -
pagos sea lions Zalophus wollebaeki (Villegas-
Amtmann et al. 2008), southern sea lions Otaria
flavescens (Baylis et al. 2015), Antarctic fur seals
Arctocephalus gazella (Arthur et al. 2015) and
New Zealand fur seals A. fosteri (Hoskins et al.
2017). In most cases, this has been suggested as a
strategy to reduce intra-specific competition or
may be re lated to individual-level specialization.
Given the size of the colony at False Bay and its
proximity to other Cape fur seal breeding sites, it
is possible that some individuals may adopt forag-
ing strategies to reduce competition, and become
specialized in their behaviour. High levels of pro-
ductivity and consequent availability of epipelagic
forage fish over the Agulhas Bank suggest that
longer foraging trips might be more profitable for
female Cape fur seals at False Bay. However,
short travel distances and reliable food sources,
albeit of lower quality, could outweigh the costs of
travelling extensive distances and searching for
preferred prey types (e.g. Botha & Pistorius 2018).
To fully assess this seemingly bimodal foraging
strategy in Cape fur seals, larger sample sizes are
required for this colony.
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4.2.  Habitat use and habitat selection

Consistent with the spatial distributions identified
in the present study, habitat use varied between the
colonies. In particular, individuals from Black Rocks
spent a greater proportion of time in the shallower
waters of the shelf while individuals from Kleinsee
and False Bay typically preferred deeper waters of
the shelf, shelf-break and, to a lesser extent, the shelf
slope. This may further reflect differences in habitat
availability between sites, with the broad, gently
sloping continental shelf at Kleinsee and False Bay
providing a greater availability of suitable habitat for
foraging Cape fur seals. In addition, individuals from
Black Rocks that ventured further more regularly
encountered steeper slopes of the shelf-edge, indica-
ting its proximity to the colony. Inter-colony differences
in habitat use could also reflect different foraging
strategies between sites. For example, the movement
patterns and habitat preferences observed for Black
Rocks animals are analogous to those of female Aus-
tralian fur seals foraging within Bass Strait (Arnould
& Kirkwood 2007), which are almost exclusively ben-
thic foragers. The extensive use of shallower depths
by individuals from Black Rocks could therefore indi-
cate a dominance of benthic foraging by seals from
this colony. Indeed, the large proportion of time
spent in shallower areas of less than 80 m by False
Bay animals was mainly accounted for by the 2 indi-
viduals that remained inshore and whose dives were
almost exclusively benthic. Furthermore, foraging
trips of both Kleinsee and False Bay seals, incorporat-
ing a greater proportion of benthic dives, were signif-
icantly shorter than trips incorporating more pelagic
dives. Overall, habitat selection in relation to total
habitat availability was similar across colonies for
both bathymetric depth and sea floor slope. The
selection of shallow depth classes (<500 m) and gen-
tle-sloping sea floor (<5°) is consistent with females
of other generalist otariids (Villegas-Amtmann et al.
2008, Baylis et al. 2018) and further highlights the
importance of the shelf and shelf-slope habitats to
foraging female Cape fur seals.

As expected, encountered SST values varied widely
between colonies. However, the proportion of time
associated with SST classes and selection of SST val-
ues was somewhat similar across sites, with notable
peaks at temperatures between 16 and 19°C, partic-
ularly at Kleinsee and False Bay. This falls within the
preferred temperature range of several South African
pelagic fish species, including red-eye round herring
Etrumeus whiteheadi (15−18°C), sardine (14−19°C)
and, to a lesser extent, anchovy (<15°C) (Agenbag et

al. 2003). Interestingly, animals from Black Rocks also
showed a bimodal preference, with individuals also
selecting warmer SSTs, in excess of 20°C. This may
reflect a higher degree of benthic foraging behav-
iour. While relationships between foraging activity
and SST have mainly been identified for epipelagic
foraging marine predators (Lea & Dubroca 2003, de
Bruyn et al. 2009), preferences for specific SSTs have
also been shown for benthic foraging species, partic-
ularly in shallow habitats, where high levels of mix-
ing occurs throughout the water column (Fadely et
al. 2005, Arnould & Kirkwood 2007). Thus, it is possi-
ble that the warmer surface temperatures selected by
females at Black Rocks could reflect conditions and
processes at depth. However, future studies should
consider investigating fine-scale vertical habitat util-
isation of Cape fur seals in relation to environmental
covariates (e.g. Hindell et al. 2002).

4.3.  Geographic and diel variation in 
diving behaviour

Mean dive depths recorded in the present study
were within the range previously reported for Cape
fur seals at Kleinsee (Kooyman & Gentry 1986, Kirk-
man et al. 2019). Maximum depths were similar be -
tween the 2 colonies, although on average, slightly
deeper for individuals from Kleinsee compared to
those from False Bay. In addition, benthic dives were
included in the foraging trips of all individuals, and
although the average degree of benthic diving was
similar between Kleinsee and False Bay animals, it
varied substantially between individuals. These re -
sults support recent findings that Cape fur seals
exhibit both pelagic and benthic foraging strategies
(Kirkman et al. 2019), and suggests that these strate-
gies may occur throughout the range of the species.

Shorter foraging trips, consisting predominantly of
benthic foraging, are typically characteristic of sea
lions (Costa & Gales 2000, 2003). Fur seals, in turn,
generally undertake longer foraging trips spanning
multiple days and forage mainly on epipelagic prey
(Guinet et al. 2001, Harcourt et al. 2002). However,
several exceptions to these typical patterns have pre-
viously been documented. For example, California
sea lions Z. californianus exhibit a predominantly
pelagic foraging mode (Costa et al. 2004). In addi-
tion, female and male Australian fur seals A. pusillus
doriferus, conspecifics of Cape fur seals, are almost
exclusively benthic foragers (Arnould & Hindell
2001, Knox et al. 2017). These findings have largely
been attributed to local environmental conditions
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and productivity, and are thought to have important
implications for population dynamics and recovery
from previous overexploitation (Arnould & Costa
2006). The Cape fur seal thus presents an interesting
case. Although previously considered to be a pre-
dominantly epipelagic forager in the highly produc-
tive Benguela, the diving behaviour of some individ-
uals appears more similar to that of benthic foraging
Australian fur seals in the less productive Bass Strait
(Arnould & Kirkwood 2007, Kirkwood & Arnould
2011). Previous diet records suggest that benthic
prey have always comprised at least some proportion
of Cape fur seal diet in the Benguela (de Bruyn et al.
2003, 2005, Mecenero et al. 2006a). Despite this, the
drivers of benthic foraging, as well as its ecological
implications, remain unclear and warrant further in -
vestigation possibly spanning several years.

While no diving data were available for females at
Black Rocks, the at-sea distributions and habitat use
patterns of these individuals suggests a high level of
benthic foraging at this colony. This would be consis-
tent with recent evidence of benthic foraging in
African penguins Spheniscus demersus breeding at
colonies in close proximity to Black Rocks (Sutton et
al. 2020). Historically (1992−1995), benthic prey spe-
cies, particularly redspotted tonguefish Cynoglossus
zanzibarensis and Cape flounder Arnoglossus capen-
sis, were important components in the diet of Cape
fur seals on the south coast of South Africa (Steward-
son 2001). However, more recent diet studies at the
same colonies identified a large proportion of pelagic
prey, mainly anchovy, consumed by Cape fur seals
(Huisamen et al. 2012, Connan et al. 2014). As such,
knowledge of the specific foraging strategies at Black
Rocks remains speculative at present. Future studies
should therefore consider the use of dive behaviour
loggers at this colony and elsewhere to validate the
proposed benthic foraging behaviour of Cape fur
seals on the south coast.

Diel patterns in dive behaviour observed in the
present study are consistent with those recently doc-
umented for Cape fur seals (Kirkman et al. 2019).
Deeper dives and a greater probability of benthic
diving during daylight hours likely reflect diel verti-
cal migrations of preferred prey. Indeed, several
important prey species of Cape fur seals, including
sardine and red-eye round herring, occur deeper
during daylight, while moving closer to the surface at
night (Roel & Armstrong 1991, Beckley & van der
Lingen 1999). While diel patterns were evident at
both colonies, the trend was more apparent at Klein-
see. At False Bay, a high level of inter-individual
variability in the diel pattern was evident. This vari-

ability is most probably accounted for by the 2 indi-
viduals that remained close inshore and foraged at
consistent depths, on the bottom, regardless of the
time of day. The remaining individuals that travelled
further over the Agulhas Bank showed diel patterns
similar to those of individuals from Kleinsee. It is also
possible that the di ving behaviour and at-sea distri-
butions observed in the present stud y could be
related to predation risk. Indeed, spa tiotemporal dif-
ferences in the behavioural and physiological re -
sponses of Cape fur seals to predation by white sharks
Carcharodon carcharias are apparent at several
South African colonies (de Vos et al. 2015a,b, Fallows
et al. 2016, Hammerschlag et al. 2017, Morse et al.
2019). However, quantifying predator−prey inter -
actions at sea is inherently difficult, and could be
investigated through simultaneous tracking of these
2 species.

5.  CONCLUSION

This study provides important baseline information
on the at-sea distribution, habitat selection and utili-
sation, and diving behaviour for the South African
component of the Cape fur seal population. Geo-
graphical differences found in this study, which are
likely to be caused by a number of related factors,
highlight the need to consider geographic variability
in the spatial distribution of marine predators for
future management and spatial planning. Further-
more, while Cape fur seals are mainly epipelagic for-
agers, benthic foraging does occur and is dominant
for some individuals. This raises further questions
regarding observed changes in the availability of for-
age species and potential long-term effects on the
Cape fur seal population.
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